
SESSION

SOFTWARE ENGINEERING AND WEB BASED
SYSTEMS + OBJECT ORIENTED TECHNOLOGY +

SOA

Chair(s)

TBA

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

Int'l Conf. Software Eng. Research and Practice | SERP'14 | 1

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

2 Int'l Conf. Software Eng. Research and Practice | SERP'14 |

A Web-based Visual Analytic System for Understanding the
Structure of Community Land Model

Yang Xu 1, Dali Wang 2 *, Tomislav Janjusic 3, Xiaofeng Xu 2

1 Department of Geography
University of Tennessee, Knoxville

TN 37996, USA
yxu30@utk.edu

2 Climate Change Science Institute

Oak Ridge National Laboratory
TN 37831, USA

{wangd, xux4}@ornl.gov

3 Computer Science and Mathematics Division

Oak Ridge National Laboratory
TN 37831, USA

janjusict@ornl.gov

* Corresponding author, Tel +1 8652418679, Fax +1
865 5749501. Email: wangd@ornl.gov

Abstract - Development of high fidelity earth system models is
important to the understanding of earth system science. Along
with several decades of active developments, the complexity of
the model’s software structure became a barrier that hinders
model interpretation and further improvements. In this paper,
a web-based visual analytic system is introduced to better
understand the software structure of Community Land Model
(CLM) within an earth system modeling framework. First, the
software structure is decomposed from source codes and we
use a graph structure to represent the interrelationships
among different CLM components. Second, a web-based front
end is developed to demonstrate the CLM software structure
in a visual analytical context. Finally, we present a pilot case
study to discuss how an improved understanding of CLM
software structure can be achieved from three different
perspectives, namely CLM structure overview, visualization of
submodel structure and CLM inter-version comparison. We
believe the approaches and visualization tools can be
beneficial to CLM model interpretation and improvements as
well as other large-scale modeling systems across different
research domains.

Keywords - Community Earth System Model, Community
Land Model, Software Structure Decomposition, Graph
Visualization.

1 Introduction

Researchers have made great progress over the past decades
in developing high fidelity earth system models [1]. The
Community Earth System Model (CESM) is one of the leading
earth system models funded by National Science Foundation
(NSF) and U.S. Department of Energy (DOE). The Community
Land Model (CLM) is the land model of CESM that simulates
surface energy, water, carbon, and nitrogen fluxes and state
variables for the land surfaces [2-4]. The model formalizes and
quantifies concepts of ecological climatology under an

interdisciplinary framework to understand how natural and
human changes in vegetation affect climate. As a scientific
application for the earth system simulation, it is important to get
the fundamental processes correct [5]. This requires a good
understanding of CLM ecosystem functions as well as the
interplay among them within the context of ecosystem science.

The CLM contains several submodels related to land
biogeophysics, biogeochemistry, hydrologic cycle, human
dimensions and ecosystem dynamics. The structure of each
submodel is generally organized by software modules or
subroutines based on natural system functions such as carbon-
nitrogen cycles, soil temperature, hydrology and photosynthesis
[6]. Each module or subroutine interacts with a list of variables
which are globally accessible or subroutine explicit. Several
efforts have been made to better understand CLM and the
ecosystem processes through software structure profiling [6],
functional unit testing [7] and memory pattern analysis [8]. The
whole CLM modeling system consists of more than 1800
source files and over 350,000 lines of source code. New CLM
software analysis methods are much needed for rapid model
interpretation and improvements.

In this paper, a web-based visual analytic system is
introduced to gain an improved understanding of CLM software
structure. First, we decompose the CLM software from source
codes and propose a CLM graph structure that summarizes the
interrelationships among all the function calls and variables.
Second, a web-based front end with three different views is
developed to demonstrate the CLM software structure in a
visual analytical context. A pilot case study is then presented to
gain insights into the structure using the three views, namely
CLM structure overview, visualization of submodel structure,
and CLM inter-version comparison. We believe the
visualization tools can be beneficial to the understanding of
CLM software structure. The approaches can also be applied in
other large-scale modeling systems across different research
domains.

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

Int'l Conf. Software Eng. Research and Practice | SERP'14 | 3

2 Methodology and key components

In this section, we introduce the key components and work
flow of our web-based visual analytic system. As shown in Fig.
1, a CLM Fortran-syntax specific Perl script was developed to
decompose the CLM software structure into tokens of function
calls, subroutine explicit parameters and global variables.
Definition of tokens will be further explained in section 2.1.
Then, a Python script builds a CLM graph structure, which
summarizes the interrelationships among all the tokens. Finally,
the graph structure is visualized in the web-based front end
using Javascript and D3.js (http://d3js.org).

2.1 Decomposition of CLM structure

Understanding complex codes such as CLM undoubtedly
requires tools to facilitate code decomposition into simpler
forms. This allows users to use visualization tools to further
understand the code structure. For this purpose, we developed
a CLM Fortran-syntax specific Perl script that categorizes key
variables and data structures into tokens. Herein, we refer to a
token as any source-code identified function call or variable,
which includes name of subroutines, global visible variables, as
well as all the variables used in subroutine definitions
(subroutine-in, subroutine out). Subroutine-in variables are all
tokens identified in the subroutine's signature. Subroutine-out
variables are a subset that was identified to be written to, i.e.
these tokens were used to store a value. Globally visible
variables are identified using the pointer assignment syntax
during source-code scanning. This means that any token found

in the source-code line that adheres to the general pointer
assignment syntax is treated as globally visible variable. We
further break this category into Read-only, Write-only, or
Modified variables. Specifically, during scanning the script
stores any pointer to derived member values into a hash of
tokens. The source code lines are decomposed into left-hand
(lHand) and right-hand (rHand) statements and further broken
down if more assignments are present. Every token found on
the lHand side is a write category and similarly every token on
the rHand side is a read category token. If a token falls into both
categories, we will assign that token into the modified category.
There are, of course, special cases that require further statement
breakdown using special-case rules. For example, statements
that use pointers to access other derived types are often found
in the lHand/rHand statement syntax, thus the script will
decompose tokens to identify the correct category for the
globally visible variable. In addition, tokens found in source-
code statements that are identified by special-keywords (e.g.,
call) are used to build static call-graphs, which is a list of calle
subroutine names originating from the current caller subroutine.
The Perl scanning process outputs a list of files named after the
subroutine’s name. Each file records the variables and function
calls (Calle Subroutines) that a particular subroutine has
accessed. Table 1 gives an example of the output file of
CanopyFluxes subroutine.

Table 1. Tokens of Cannopyfluxes Subroutine

Fig. 1. Work flow and key components of the web-based visual analytic system for understanding the structure of Community Land Model (CLM)

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

4 Int'l Conf. Software Eng. Research and Practice | SERP'14 |

Category Tokens

Subroutine-In ubg, ubc, lbg, lbp, num_nolakep, ……

Subroutine-Out Null

Global Read Only t_grnd, psnsun_wc, alphapsnsun, psnsun, ……

Global Write Only cgrnd, psnsun, rb1, ulrad, dlrad, ……

Global Modified displa, rc13_psnsun, z0qv, z0hv, ……

Global None watopt, watdry

Function Calls QSat, FrictionVelocity, Photosynthesis, ……

2.2 Graph construction of CLM software and

submodels

Based on the output files generated by the Perl script, we
developed a Python script to organize the CLM components
into a graph structure with nodes and edges. The nodes refer to
all the identified tokens, and the edges are used to describe how
these tokens access or are accessed by others. We use this graph
structure to summarize the interrelationships among all the
function calls, subroutine explicit parameters and global
variables. As described in section 1, CLM consists of several
submodels and each submodel is usually organized by
particular subroutines. In order to incorporate this information
into the graph, the Python script also records which submodel
each subroutine belongs to. Then this graph structure is used in
the web-based front end to facilitate the understanding of the
CLM structure from multiple perspectives. For example, users
could get an overall idea of CLM structure by exploring the
submodels and subroutines contained, or look into the structure
of particular CLM submodels. The graph structure can also be
compared across different CLM versions.

Due to the complexity of CLM software, some tokens
(nodes) belong to multiple categories in the modeling context.
For example, in Table 1, the token displa marked as Global
Modified variable for the subroutine CanopyFluxes while its
category becomes Subroutine-in for another subroutine
FrictionVelocity. In order to maintain this information, we
generate a CLM node group list that enumerates all possible
combinations of the token categories. As shown in Table 2,
each Group id corresponds to a particular combination of token
categories. By introducing the list, we are able to label each
node with group information during graph construction. For
example, as shown in Table 1, all Function Calls (e.g., Qsat)
after graph construction will have a Group id of 1. The
Subroutine-in variables (e.g., ubg) will have a Group id of 2.
While variables like displa as described above will have a
Group id of 11. The group information can be used to
understand the CLM software structure with respect to token
category, i.e. its function.

Table 2. CLM Node Group Information

Group id Combination of Token Categories

1 Function Calls

2 Subroutine-in

3 Subroutine-out

4 Global Read-only

5 Global Write-only

6 Global Modified

7 Global-None

8 Subroutine-in & Subroutine-out

9 Subroutine-in & Global Read-only

10 Subroutine-in & Global Write-only

11 Subroutine-in & Global Modified

12 Subroutine-in & Global-None

…
…

…
…

2.3 Web-based front end based on Javascript and

D3.js

One of the important components in our system is the web-
based front end, which is designed to facilitate the exploration
and investigation of CLM software structure in a visual
analytical context. The web-based front end has three major
views: CLM structure overview, visualization of submodel
structure and CLM inter-version comparison. The CLM
structure overview aims to provide users with an overall picture
about different CLM software versions and submodels. The
visualization of submodel structure summarizes the inter-
relationships among all the function calls, subroutine explicit
parameters and global variables related to that submodel (e.g.,
CanopyFluxes shown in the next section). The inter-version
comparison is used to demonstrate what changes and
improvements have been made from one CLM software version
to another. The web-based front end is developed based on
Javascript and D3.js (http://d3js.org). D3.js is a Javascript
library which allows developers to bind their data to a
Document Object Model (DOM) and then transfer the data
information into interactive visualizations. As shown in Fig. 1,
the Python scanning process generates a list of node and edge
files in JSON format (http://json.org). These files that record
the CLM software structures are used to create interactive
visualizations using Javascript and D3.js.

3 A pilot case study

As we mentioned before, visualizing and analyzing the
software structure of large-scale modeling system such as CLM
is very important to model interpretation and provides
opportunities for further improvements of model structures. In
this section, a pilot case study is introduced to describe how an
improved understanding of CLM software structure can be
achieved with the web-based visual analytic system. First, a
collapsible tree is used to demonstrate the overall structure of
CLM software from a hierarchical perspective. This effort will
allow users to explore the submodels and subroutines included
in each CLM version. Second, a directed graph is used to
visualize the CanopyFluxes submodel within CLM. This effort

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

Int'l Conf. Software Eng. Research and Practice | SERP'14 | 5

allows users to further look into the sturcture of particular
submodels based on their research interests. Finally, we present
our case study for the CLM inter-version comparison (CLM
ORNL Bench vs. CLM ORNL Microbe). This effort enables
users to trace the changes between two CLM versions.

3.1 CLM structure overview

The CLM model has several public releases such as CLM
4.0 and CLM 4.5. At Oak Ridge National Laboratory (ORNL),
we have our own code repository, which use the official release
CLM 4.5 as our bench case. Based on that, several new modules
(e.g., the Microbe module [9]) have been developed. In our
web-based visual analytic system, a collapsible tree is used to
demonstrate the CLM software structure from a hierarchical
perspective. As mentioned in section 2.1, after the
decomposition of CLM structure, we generate a list of files
named after the subroutine’s name, which can be used to
construct the overview software structure. Fig. 2 shows a
hierarchical tree, which allows users to explore the CLM
software structure by expanding or collapsing particular nodes.
For example, when users click the node “CLM”, it will expand
and show several CLM major release such as “CLM 4.0” and
“CLM 4.5”. The node “CLM 4.5” can be then expanded to view
different versions of CLM source codes such as “CLM ORNL
Bench” and “CLM ORNL Microbe”. Each CLM2 version can
be further expanded to view its submodels (e.g.,
“CanopyFluxes”) as well as the corresponding subroutines. The
visualization also highlights the nodes in yellow to illustrate the
submodels which are newly developed based on the CLM
bench version. For example, the node “ch4, n2o, microbeCN”

in Fig. 2 shows that this submodel is newly incorporated in
“CLM ORNL Microbe” as compared with its bench version
“CLM ORNL Bench”.

The hierarchical visualization provides users with an overall
picture of CLM software release, submodel components as well
as the model improvements. The interactive visualization can
be found at (http://web.ornl.gov/~7xw/CLM_Overview.html).

3.2 Visualization of submodel structure

Visualizing the structure of CLM submodels can be useful
when users want to understand particular CLM components at
the micro level. As described in section 2.2, the Python script
generates a comprehensive graph structure recording all the
submodels and their corresponding subroutines. Within each
subroutine, the interrelationships among all the function calls
and variables are recorded. Hence, the web-based front end is
able to visualize a subset of the whole graph in order to
demonstrate the structure of a particular CLM submodel.

Fig. 3 shows the structure of CanopyFluxes submodel
within CLM. Nodes with different colors and sizes are used to
denote the types of the tokens. Nodes with bigger size and the
color of yellow stand for all the function calls (subroutines) for
the CanopyFluxes submodel. The nodes with smaller size
denote all the variables and among these variables: (1) green
nodes stand for subroutine explicit parameters; (2) blue nodes
stand for global variables; (3) the nodes in red denote the ones
that are used as both subroutine explicit and global variables.

Fig. 2. Visualization of CLM software structure using a hierarchical collapsible tree. The nodes can be clicked to expand or collapse. The nodes in light blue
denote the ones that can be expanded. The nodes in yellow represent new model development (e.g., ch4, n2o, microbeCN) based on the bench version (e..g,
CLM ORNL Bench).

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

6 Int'l Conf. Software Eng. Research and Practice | SERP'14 |

The visualization using directed graphs provide users with
an intuitive way of investigating how function calls and
variables access or are accessed by others within the context of
particular submodel. By exploring the submodel structure,
users could better understand how the tokens are connected
together as well as the specific role(s) that each of them is
playing. As shown in Fig. 3, several red nodes exist in the
structure of CanopyFluxes, which means that these variables
serve as both global variables for the submodel and explicit
parameters for the function calls (subroutines). The information
allows users to further explore the scientific meanings of these
variables.

The case study of this visualization can be found at
(http://web.ornl.gov/~7xw/CanopyFluxes/CanopyFluxes.html)
. When a user puts the mouse over a certain node, the name as
well as the node group id will pop up. The group id, as described
in Table 2, offers users detailed information about the specific

category of an token. For example, the pop up information will
help users to distinguish if a global variable belongs to the
category of Read-only, Write-only or Modified. Our web page
contains a hyperlink (i.e., “View Group Information”) which
leads to a file similar to Table 2 whenever users want to view
the group information of the tokens.

3.3 CLM inter-version comparison

The CLM is a community model which is open for any
contributions and usages across the scientific community. For
example, the current release of CLM 4.5 (i.e., CLM ORNL
Bench in our case study) consists of four key components:
biogeophysics, hydrologic cycle, biogeochemistry and dynamic
vegetation. For the biogeochemistry component in the CLM,
the carbon and nitrogen cycling in the soil and vegetation under
the influence of environmental factors are simulated. The
microbial controls on carbon and nitrogen processes are

Fig. 3. Visualization of CanopyFluxes submodel of CLM ORNL Microbe. Nodes in yellow stand for the function calls (subroutines). Nodes in green denote
subroutine explicit variables. Nodes in blue represent all the global variables. While nodes in red denote the variables which are used as both subroutine
explicit/global variables. The edges are used to describe how the variables are accessed by particular function call(s).

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

Int'l Conf. Software Eng. Research and Practice | SERP'14 | 7

implicitly represented as a few empirical equations, which are
one of the primary uncertainties for model improvements
targeting better predicting biogeochemistry-climate feedbacks.
Thus, a more advanced model with explicit representation of
microbial processes which contributes to the soil
biogeochemical processes is needed. Targeting this need, a new
modeling structure, CLM ORNL Microbe, is developed to
improve the CLM Bench version by [9, 10].

Our web-based front end uses a rendered directed graph to
describe the changes between two CLM versions. As described
in section 2, the CLM graph structure (nodes and edges) that
summarizes the interrelationships among all the tokens is
generated using Python script. By comparing the graph
structures between two different versions, we are able to
uncover the changes in term of: (1) which function calls and
variables are newly added, modified or no longer existing; (2)
the interplay between function calls and variables that are newly
added or no long existing. Fig. 4 shows an example of our web-

based visualization for comparing CLM ORNL Bench and CLM
ORNL Microbe. The CLM ORNL Bench is chosen as the base
version. The blue nodes denote the newly added function calls
and the yellow nodes stand for the function calls that are
modified. For example, we can see several new function calls
that are added into the CLM ORNL Microbe such as n2o,
microbeCN and microbeRest.

The nodes with smaller size denote all the variables. We use
red to represent newly added variables and green to represent
the ones that are modified. We also use solid and dash lines to
represent the changing relationships among all the tokens
through the two CLM software versions. For example, as
shown in Fig. 4, there are many solid as well as dashed links
associated with the function call ch4. It means that as compared
with the based version, the ch4 submodel for CLM ORNL
Microbe is modified to access some new variables (red nodes
connected with solid lines). Meanwhile, some of the variables
(green nodes) and function calls (yellow nodes) are connected

Fig. 4. Graph visualization of CLM inter-version comparison (CLM ORNL Bench vs. CLM ORNL Microbe). The CLM ORNL Bench is chosen as the base
version. Blue nodes represent newly added function calls and the yellow nodes represent the modified function calls. Red nodes denote the newly added
variables and the onw in green stand for modified variables. The links rendered with solid and dash lines are used to represent newly added and disappeared
links respectively.

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

8 Int'l Conf. Software Eng. Research and Practice | SERP'14 |

to ch4 with dash lines, which means that those variables and
function calls are accessed by ch4 in the CLM ORNL Bench, but
are no longer accessed by ch4 in CLM ORNL Microbe. The
graph structure allows users to easily trace the changes between
two CLM software versions in a visual analytical context. The
web-based visualization for this case study can be found at
(http://web.ornl.gov/~7xw/CLM_Microbe_Comparison/CLM
_Comparison.html).

4 Conclusions and future work

In this paper, we present our approaches for better
understanding the structure of Community Land Model within
the Earth System Modeling framework. A web-based visual
analytic system is developed to allow users to gain insights into
software and data structure from different perspectives. The
CLM structure overview provides an overall picture of different
CLM release and the submodels. It helps users to explore major
components as well as new module development for a
particular CLM version (e.g., CLM ORNL Microbe). The
system also enables users to look into the structure of a
particular submodel by visualizing the interrelationships among
all the function calls and variables. Moreover, a deeper
understanding can be obtained by exploring their names and
categories, which is important for model interpretation and
further improvements. The CLM inter-version comparison
allows users to trace the changes between two CLM versions in
a visual analytical context. Users can easily identify the
function calls and variables which are added, modified or
removed from one CLM version to the other. We believe the
approaches and visualization tools can be beneficial to the
understanding of CLM software structure as well as other large-
scale modeling systems across different research domains.

The future work will focus on two directions. First we will
develop an online database system hosting software structure as
well as performance data from other advanced tools such as
Vampir [11] and Valgrind (www.valgrind.org). Users will be
able to query the database to get detailed information of CLM
submodels, function calls and variables. Meanwhile,
visualizations of software and submodel structures will be
generated on the fly based on the customized queries. Second,
we will incorporate a web-based functional testing platform
over the cloud computing infrastructure to facilitate the
understanding of CLM ecosystem processes.

ACKNOWLEDGMENT

This research was partially funded by the U.S. Department
of Energy (DOE), Office of Science, Biological and
Environmental Research (BER). This research used resources
of the Oak Ridge Leadership Computing Facility at the Oak
Ridge National Laboratory, which is supported by the Office of
Science of the Department of Energy under Contract DE-
AC05-00OR22725. Yang Xu’s work is partially supported

through a subcontract to the University of Tennessee,
Knoxville. Oak Ridge National Laboratory is managed by UT-
Battelle LLC for the Department of Energy under contract DE-
AC05-00OR22725.

REFERENCES

[1] W.M. Washington and C.L. Parkinson, An Introduction to
Three-Dimensional Climate Modeling, 2nd ed. University
Science Books, 2005.

[2] G.B. Bonan, “The Land Surface Climatology of the
NCAR Land Surface Model Coupled to the NCAR
Community Climate Model”, J. of Climate. vol. 11(6),
pp.1307-1326, 1998.

[3] R.E. Dickinson, K.W. Oleson, G. Bonan, F. Hoffman, P.
Thornton, M. Vertenstein, et al. The Community Land
Model and Its Climate Statistics as a Component of the
Community Climate System Model, J. of Climate. Vol.
19(11), pp.2302-2324, 2006.

[4] K. Oleson, D. Lawrence, B. Gordon, M. Flanner, E.
Kluzek, J. Peter , et al. “Technical Description of Version
4.0 of the Community Land Model (CLM)”, 2010.

[5] D. Wang, D. Ricciuto, W. Post and M. Berry. “Terrestrial
Ecosystem Carbon Modeling”, Encyclopedia for parallel
Computing, pp.2034-2039, 2011.

[6] D. Wang, J. Schuchart, T. Janjusic, F. Winkler and Y. Xu,
Toward Better Understanding of the Community Land
Model within the Earth System Modeling Framework.
International Conference on Computational Science.
2014. In press.

[7] D. Wang, Y. Xu, P. Thornton, A. King, C. Steed, L. Gu
and J. Schuchart. “A Functional Test Platform for the
Community Land Model”, Environment Modeling &
Software, vol. 55, pp. 25-31, 2014.

[8] T. Janjusic, K. Kavi and B. Potter. “A Memory Analysis
Tool”, Procedia Computer Science. Vol. 4, pp. 2058-
2067. 2011.

[9] X. Xu, J.P. Schimel, P. Thornton, X. Song, F. Yuan, S.
Goswami. “Substrate and Environmental Controls on
Microbial Assimilation of Soil Organic Carbon: A
Framework for Earth System Models”. Ecology Letters,
DOI: 10.1111/ele.12254. 2014.

[10] X. Xu, D.A. Elias, D.E. Graham, T.J. Phelps, S.L. Carrol
and P. Thornton. “A Microbial Functional Group Based
Model for Simulating CO2 and CH4 Dynamics”.
unpublished.

[11] M.S. Müller, A. Knüpfer, M. Jurenz, M. Lieber, H. Brunst,
H. Mix, et al. “Developing Scalabe Applications with
Vampir, VampirServer and VampirTrace”. Parallel
Computing: Architectures, Algorithms and Applications.
Vol. 15, pp. 637–644. 2008

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

Int'l Conf. Software Eng. Research and Practice | SERP'14 | 9

Adding Semantic Web Technology to the Object-Oriented
Method for Interoperability

P. Anisetty1, P.Young2

1Acxiom Corporation, Conway, AR, USA
2Computer Science Department, University of Central Arkansas, Conway, AR, USA

Abstract—Computer communications advances, functional
similarities in related systems, and enhanced information
description mechanisms have led to the widespread
interconnection of existing systems to meet current and future
system requirements in such diverse fields as healthcare,
e-commerce, and military applications. Full realization of the
potential offered by such interconnections can only be
achieved if systems are fully interoperable. Interoperability
among independently developed heterogeneous systems is
difficult to achieve: systems often have different architectures,
hardware platforms, operating systems, host languages and
data models.

The Object-Oriented Method for Interoperability (OOMI)
introduced by Young offers the capability for resolving
modeling differences among heterogeneous systems, thereby
enabling system interoperation. The OOMI resolves modeling
differences by first identifying corresponding entities among
systems using semantic and syntactic correlation approaches
involving keyword search and neural network techniques. This
paper describes how Semantic Web technologies can be used
to improve the accuracy of the OOMI correlation
methodology by adding Web Ontology Language (OWL) and
reasoning capabilities to the OOMI model.

Keywords: Interoperability, Object-Oriented, Semantic Web,
Information Exchange, XML, Web Ontology Language

1 Introduction
Until fairly recently, most software-intensive systems

were developed as special-purpose, stand-alone applications.
Recent advances in computer communications technology, the
recognition of common areas of functionality in related
systems, and an increased awareness of how enhanced
information access can lead to improved capability have led to
an increased interest in integrating current stand-alone systems
to meet future system requirements.

One example of where independently developed systems
might be interconnected in the healthcare domain would be the
integration of your primary care physician’s healthcare
management system with the local hospital’s Magnetic
Resonance Imaging (MRI) system to provide your physician
with near-real-time results of the scan he ordered on your knee.
In business, connecting a company’s inventory management
system with its retail outlet point-of-sale (POS) system can

result in reduced inventory requirements and faster re-supply
of needed items. Finally, a military application might connect a
squadron’s mission planning suite with the theatre intelligence
center to provide the latest location of the targeted adversary.

In addition to being able to exchange information, full
system interoperability requires that systems share tasks as
well as information [1, 2]. Such an interconnected collection of
independently developed heterogeneous systems or
components is referred to as a system federation. This differs
from the concept of an integrated system, where homogeneous
components are connected by a development team that has
common objectives and shares a common view of the problem
environment being modeled.

Attempts to interconnect independently developed
systems that were never intended to interoperate are often
faced with difficulty. Typically such existing systems were
developed without any of the constructs normally included
when forward-fitting a system to support interoperability. Any
modification to existing systems to enable them to interoperate
is costly and time-consuming. Therefore, methodologies that
will enable systems to interoperate without requiring
modification to existing software are highly desirable.

In the past, establishing communication between different
software systems involved manually resolving differences for
each system interface, which required time and cost to
customize. In the Object-Oriented Method for Interoperability
(OOMI) [3] Young’s first step in creating an interoperable
federation of independently developed heterogeneous systems
or components was to develop an object model of the entities
involved in the interoperation between systems in the
federation, termed a Federation Interoperability Object Model
(FIOM) under the OOMI, shown in Fig. 1. Then, the FIOM is
used by a translator at run-time to reconcile any
representational differences among a component’s attributes
and methods, as seen in Fig. 2. The translator serves as an
intermediary between component systems. It can be
implemented as part of a software wrapper enveloping each
system, as shown in Fig. 2, or as a stand-alone module that lies
between interconnected systems.

Correspondences are established among entities shared
by systems in the federation in order to enable the resolution of
any differences that might be found. The current method used
to establish correspondences among shared entities uses a
combined keyword and neural network search. Inaccuracies
tied to each of these correlation approaches have led to the
introduction of Semantic Web technologies to assist in the cor-

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

10 Int'l Conf. Software Eng. Research and Practice | SERP'14 |

Fig. 1. Federation Interoperability Object Model (FIOM)

relation process and to improve search precision and recall.
This has resulted in a modification of the methodology used for
creating an FIOM for a federation of component systems and a
projected improvement in the correlation process.

The remainder of the paper first provides background
information on the types and categories of heterogeneities that
can be found among systems, how the OOMI utilizes those
categories in creating the FIOM, how the FIOM uses corre-

Fig. 2. OOMI Translator-FIOM Interaction

spondences among information shared among systems in a
federation to resolve system heterogeneities, and how the
Semantic Web can be utilized to improve the ability to
establish correspondences among shared information. The
paper next discusses how Semantic Web technology can be
integrated into the FIOM, comparing the original OOMI
correlation model with the Semantic Web-OOMI correlation
model. Status of the Semantic Web-OOMI correlation model
implementation is provided next, followed by a summary of
insights gained from adding Semantic Web capabilities to the
OOMI, and finally a recommendation for future work.

2 Background
2.1 Heterogeneities among systems

When two systems are not designed to interoperate from
the start, there can be a number of differences between them
that arise when trying to include them in a system federation.
There can be differences due to being developed and deployed
on different hardware and software architectures, differences in
the conceptual models used in their creation, differences in the
structure of how data and information are organized,
differences in application domain, units of measure, or data
type, or differences caused by the existence of synonyms,
homonyms, abbreviations or spellings used in the systems’ data
models. In addition there can be differences in the attributes
which are considered important to model about an entity, or in
how atomic data elements are aggregated between systems.

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

Int'l Conf. Software Eng. Research and Practice | SERP'14 | 11

Finally there can be disparities in the timeframe or scale used
to model an entity [4] [5] [6] [7] [8].

Resolving heterogeneities among systems involves first
constructing a model of the external interface of each system
involved in the interoperation. Modeling differences among
systems can be classified as differences in view or in
representation [3]. Differences in view exist when different
information is shared about an entity as a result of differences
in scope, level of abstraction, or temporal validity. Fig. 3
provides an example of a difference in view where Patient
Record A contains information related to the patient’s medical
history, whereas Patient Record B contains medical billing
information. Both model different aspects of a Patient’s
Record, which is modeled as a Federation Entity (FE) in the
FIOM.

Even when two systems share the same view of an entity,
representational differences can also exist, such as those caused
by different systems of measurement. In Fig. 4, attributes
shown in italics in System A are measured using the metric
system of measure whereas the same attributes in System C use
the U.S. system. Differences in attribute naming, a common
occurrence in computing, also results in representational
differences among systems.

2.2 Introduction to the Object-Oriented
Method for Interoperability (OOMI)

The OOMI [9, 3] has been developed as a means for
resolving differences among software systems that were not
designed to interoperate in order to enable them to exchange
information and share tasks. The foundation for the OOMI is
built upon the FIOM, an object model of the information
shared by the external interfaces of the systems connected in a
system federation.

2.2.1 Federation Interoperability Object Model (FIOM)
The FIOM consists of a number of Federation

Entities (FEs), each used to represent an item shared among
systems, such as a Patient Record or Lab Report. Entities will
normally be shared among systems utilizing some sort of
messaging standard, preferably represented using the
eXtensible Markup Language (XML). These entities will
subsequently be represented as Java classes in the OOMI in
order to facilitate functional transformations required to resolve
differences in view and representation among entities.

Fig. 3. Differences in View

Fig. 4. Differences in Representation

For each FE modeled by the systems in the FIOM,
differences in view are captured by one or more Federation
Entity Views (FEVs). A Federation Class Representation
(FCR) provides a standard representation for each view.
Creation of a standard representation for each FEV facilitates
the use of a two-step process for resolving differences among
software systems. In a two-step process the component
representation of one system is first translated into a common
standard representation before being converted into the
representation used by the second system. Use of a two-step
process over the more traditional direct system-to-system
translation enables a reduction in the number of translations
required from n(n-1) to 2n for a federation of n systems.

Associated with each FCR are one or more Component
Class Representations (CCRs) which are used to provide
component system specific representations of a view. Fig. 1
provides an overview of the FIOM’s top-level components.

A translation class is provided for each FCR-CCR pair to
resolve differences between component system and standard
representations of a view. The OOMI includes an Integrated
Development Environment (OOMI IDE) which contains a
Translation Generator that provides computer aid in creating
the translation class in three areas. First, the IDE uses
correspondences between a CCR’s and FCR’s attributes and
operations identified by the user to provide a framework for
translation definition. Second, it provides facilities for creation
and maintenance of a library of pre-defined translation
definitions for insertion into this translation framework.
Finally, the OOMI IDE provides the user tools to facilitate
customization of the translations used for representational
difference resolution [3].

In the current OOMI, resolution of differences in view of
an entity between component systems is handled by means of a
transformation class used by a translator at run time. A
component system’s view of an entity is represented by the
FCR to which it is registered. Multiple FCRs shall be defined
for an entity having different views. Each of the views for an
entity are related by means of an inheritance hierarchy whereby
all FCRs defined for the view extend from a common
superclass. Differences in view are resolved using the
transformation class through exploitation of the information
contained in this FCR inheritance hierarchy using Liskov and
Wing’s notion of behavioral subtyping [10]. These classes and
the relationships among component systems are used by a

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

12 Int'l Conf. Software Eng. Research and Practice | SERP'14 |

translator application to resolve system heterogeneities at
runtime as previously seen in Fig. 2.

2.2.2 Creating a Model of System Interoperation
The first task in resolving heterogeneities among

systems in the OOMI is the creation of the FIOM. In the
OOMI, it is assumed that a component system’s external
interface can be expressed as a series of messages by which
information and task requests are exported and imported.
These messages represent the entities that are to be shared
among systems in the federation. In the OOMI, these
messages are further presumed to be in the form of a series of
XML messages, the content and composition of which are
constrained by a corresponding series of XML Schema
documents. Thus, communication between systems is done via
XML messaging.

The first step in creating an FIOM in the current OOMI
IDE is to take each XML Schema document used to represent
a message exported or imported by a particular component
system and convert it to an equivalent Java class, referred to in
the FIOM as a Component Class Representation (CCR). This
CCR is added to a CCR Library to be used by the translator
during run-time resolution of system differences.

Either as each CCR is added to the FIOM, or after all
CCRs have been created, an FCR is selected which holds the
same view as the CCR. In order for two systems to have the
same view of an entity, “there must be no difference in scope,
level of abstraction, or temporal validity between the two
systems’ models of the entity … this means that at some level
of aggregation each attribute set and each operation set of each
system must be in one-to-one correspondence” [3].
Furthermore, “corresponding operations must be behaviorally
equivalent for two systems to have the same view of a real-
world entity” [3]. This FCR may already exist in the FIOM or
if not, it must be created. Creating an FCR can follow either a
step-by-step process whereby the FCR is defined and
attributes and operations added, or by following a similar
procedure used to create a CCR from an XML Schema
document. The current implementation of the OOMI IDE
provides only the latter method for FCR creation.

2.2.3 Original OOMI Correlation Model
When adding a new component system CCR to a

federation, effort must be expended to determine if there are
existing Federation Entities and FEV’s in the FIOM to which
the new system’s entities correspond. If corresponding FE’s

and FEV’s are found, translation and transformation classes
can be created to resolve any differences in representation or
view, respectively, between the component system and
standard representations of those entities. If such FE’s and
FEV’s cannot be found, the FIOM is expanded to include
FEV’s and / or FE’s to which the new CCR can be added.

Determining whether an FCR already exists in the FIOM
which corresponds to a CCR being added can be done by
manually browsing the FIOM or by using a more automated
approach. The Component Model Correlator is responsible for
locating corresponding FE’s and FEV’s in the FIOM if they
exist. The original Correlator used in the OOMI utilized a
combined keyword and neural network-based approach for
establishing correspondences among CCRs and FCRs in the
FIOM. While providing a foundation for demonstrating the
correlation process in the OOMI, this approach is believed to
not provide sufficient values for precision and recall in the
correlation process. Therefore, an investigation was conducted
to determine what added promise the Semantic Web might
offer to the correlation problem.

Fig. 5 summarizes how the components in the FIOM are
used in resolving differences in representation and view
between a source and destination system. First, an XML
Schema, to which a source system XML document conforms,
is used to create a CCR class using XML data binding [11].
Then, the source system XML document is converted to a CCR
object which is an instance of the CCR class created initially
using the same data binding process. The CCR object is
converted to an FCR object using the CCR-FCR translation
class created by the OOMI IDE Translation Generator
described previously. The FCR object, in turn, is an instance of
an FCR class created by the OOMI IDE. The source system
FCR object is converted to a destination system FCR object
using Liskov and Wing’s notion of behavioral subtyping [10].

2.3 Introduction to Semantic Web technologies
As discussed in the previous section, the process of

constructing an FIOM includes creating a standard
representation, called an FCR, for every view of an entity that
is present in the object model. The terminology used to
represent the information in the FCR should be based on terms
which reflect the federation-sanctioned representation of an
entity’s state and behavior [3].

An ontology defines the terms used to represent an area of
knowledge. There have been many languages developed to de-

Fig. 5. Original OOMI Modeling Difference Resolution Process

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

Int'l Conf. Software Eng. Research and Practice | SERP'14 | 13

scribe the contents of an ontology, the most predominant of
which is the Web Ontology Language (OWL) which was
selected by the World Wide Web Consortium (W3C) as its
standard ontology language [12]. OWL is a Resource
Description Framework (RDF) language developed by the
W3C for defining classes and properties. It can also be used
for enabling more powerful reasoning and inference over
relationships between classes and properties as well as
between objects and classes. OWL is based on XML-
authoring tools, used mainly to express the needs of computer
applications to deal with knowledge and information
presented in the internet [13].

Soon after the W3C released the OWL language, it has
“rapidly become a de facto standard for ontology development
in general” [14]. Since OWL became a standard for creating
ontologies it started influencing additional research such as
investigation of reasoning techniques for ontology designs
[14]. This research led to the creation of numerous reasoners
for the OWL language, referred to as OWL reasoners. Some
of the most popular open-source reasoners are Pellet [15],
FaCT++ [16], and HermiT [17].

3 Adding Semantic Web technology to
the OOMI

3.1 Overview
Since an FCR is defined to embody the standard

representation of an entity, the information or terminology
used to model an FCR should be taken from an ontology of
federation-sanctioned terms and components. As the first step
in adding Semantic Web technology to the OOMI, a
Federation Ontology Library is added to the FIOM. The
Federation Ontology Library defines the ontology classes,
properties and individuals needed to specify the standard
representation of the entities involved in system
interoperation.

Recalling from earlier, even though two component
systems share the same view of an entity, they may not
represent that view in the same manner. A CCR is used to
capture the unique way each component system may choose to
represent its view of an entity. The next step in constructing
the FIOM is to determine the view each component system
represents. This can be accomplished by determining the FCR
to which each CCR corresponds.

Locating an FCR which corresponds with a particular
CCR is treated as a class correlation problem in the OOMI.
CCR-FCR correlation in the original OOMI is handled using
keyword and neural network techniques to provide semantic
and syntactic matching between the classes used to represent a
CCR and FCR. In subsequent sections we describe how the
use of ontologies and reasoners can be used to improve upon
the results returned by the original OOMI correlation process.

3.2 Semantic Web-OOMI Correlation Model
In the Semantic Web-OOMI Correlation Model,

correlation is conducted between OWL classes using
reasoning capabilities provided by an OWL reasoner such as

Pellet [15], FaCT++ [16], or HermiT [17]. First, a Federation
Ontology Library is constructed for the federation from
federation-sanctioned OWL classes, properties and
individuals. This library can either be imported from an
existing ontology or ontologies or created using tools included
with the OOMI Integrated Development Environment (IDE).

In the Semantic Web model it is assumed that the
external interfaces of component systems are available as
XML Schema Documents (XSD). Then, in order to utilize
OWL to establish a correspondence between a component
system and standard representation of an entity, each XSD
which represents an entity from the component system
external interface is converted into an OWL Ontology class,
termed a CCR OWL class in Fig. 6. Finally, the Federation
Ontology Library is queried using an OWL reasoner to find a
class in the library corresponding to the CCR OWL class. If
such a corresponding class is found, termed an FCR OWL
class, an interoperability engineer creates an object model of
that class with selected properties by converting the candidate
FCR OWL class into a corresponding FCR class.

There may be some situations where the interoperability
engineer cannot find a matching class in the current ontology
library. Then, with permission of the ontology library
custodian, the interoperability engineer can use the OOMI
IDE’s OWL editor capabilities to add a new class to the
ontology library. The search for an FCR OWL class which
corresponds to the desired CCR OWL class is regenerated,
this time with success in finding a match almost certain. This
FCR OWL class is then converted to a corresponding FCR
which is used to create the desired CCR-FCR translation. This
paper is mainly focused on providing the capabilities of
creating and managing the OWL ontology and converting
classes and their properties from an OWL ontology into object
models so that it would be easy for an interoperability
engineer to create corresponding FCRs.

The process to search for a corresponding OWL class in
the Federation Ontology library as well as the creation of a
CCR object model from an XSD representation of a system’s
external interface is left as future work. Creating the
translation class to resolve the representational differences
between the component CCR and standard FCR has been done
previously by Young [3].

4 Implementation status
At its core, this work defines a new correlation methodology
for the OOMI as depicted in Fig. 6. The original OOMI relied
on a keyword search and neural network-based approach for
locating existing standard representations of a component
system’s entities which are shared via its external interface in
the FIOM. The new methodology incorporates Semantic Web
technology to assist in the correlation process used to locate
standard entity representations.

The foundation for the Semantic Web technology used in
redefining the FIOM creation process is the creation of a
Federation Ontology Library containing OWL classes,
properties and individuals used to define the standard
representation of entities to be shared by components in the

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

14 Int'l Conf. Software Eng. Research and Practice | SERP'14 |

Fig. 6. Semantic Web-Based FIOM Creation Process

federation. Included with the addition of a new Federation
Ontology Library are tools which enable an interoperability
engineer to 1) import an existing library or libraries from other
systems, federations or domains; 2) create a new library,
adding classes, properties, and individuals to define the entities
shared among components in the federation, and 3) modify an
existing library by adding, deleting or changing existing items
in the library.

As depicted in Fig. 6 and discussed previously, an entity
imported to or exported from a component system is
represented by an XML Schema document. This document is
to be converted into an equivalent CCR OWL Class which is
used to locate an equivalent standard representation of the
entity, termed an FCR OWL class, in the Federation Ontology
Library using an OWL-based reasoner. While not currently
developed for the OOMI, such a reasoner should be able to be
constructed using currently available technology such as that
provided by Pellet [15], FaCT++ [16], or HermiT [17]. This
portion of the new correlation methodology has not been
implemented and is left for future work.

If a corresponding FCR OWL class is found in the
library, it is converted into an equivalent FCR and used to
create the CCR-FCR translation class used to resolve
representational differences between the component and
standard versions of the entity. The ability to convert an FCR
OWL class into an equivalent FCR has been partially
completed; it lacks only the user interface necessary to select

which elements from the FCR OWL class are to be used in
creating the FCR. The functionality required to create a CCR-
FCR translation class from a matching CCR and FCR had been
completed as part of the original OOMI IDE development
effort.

Should an existing FCR OWL class not be found which
matches the CCR OWL class of interest, a new FCR OWL
class can be created using the existing Federation Ontology
Library tools discussed previously. Repeating the process for
locating a matching standard representation for a given
component representation should result in this newly created
FCR OWL class being found, with the CCR-FCR translation
process proceeding as previously described.

5 Conclusion and recommendation for
future work
Transition of the correlation process for matching

component and standard representations of entities involved in
the interoperation among systems from a keyword and neural
network based approach to one using Semantic Web
technologies promises to increase the precision and recall
results of such search efforts. In addition, introducing the
ontology-based approach for maintaining the standard
representation of such entities provides an accepted list of
terms from which to define the vocabulary for a federation,

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

Int'l Conf. Software Eng. Research and Practice | SERP'14 | 15

while limiting the disadvantages such a standards-based
approach brings.

Ontologies and standards-based approaches for achieving
interoperability enable syntactic and semantic differences
among systems to be addressed by dictating a common
structure and meaning for entities in a domain. An ontology
defines the set of terms, entities, objects, classes, and their
relationships, providing formal definitions and axioms that
constrain the interpretation of these elements [18]. Adopting an
ontology as a standard provides a clear, unambiguous structure
and meaning to the elements in the domain to which the
standard applies.

While an ontology and standards-based approach to
interoperability has many benefits, one of the primary
limitations to such an approach is the number of standards that
have been defined. In the Health Information Technology
(HIT) domain, Eichelberg, Aden, Riesmeier, Dogac, and Laleci
review seven competing standards used in creating electronic
health records (EHRs) with no clear winners found among
them [19]. In fact, Wendt points out that Microsoft is involved
in more than 100 standards-based organizations worldwide
[20]. Another difficulty with standards-based approaches lies in
the conformance of systems to the standards- when systems
deviate from a standard they erode its value [21]. A final
limitation with standards is their resistance to change. As
standards are generally overseen by some organization to
ensure their applicability, the time required for adapting an
existing standard to changing technology or circumstances can
be excessive.

The OOMI-Semantic Web approach provides the benefits
of such an ontology-based methodology for maintaining the
standard representation of such entities while minimizing its
liabilities. By providing the capability to custom define the
ontology to be used for a specified federation, the OOMI-
Semantic Web method eliminates the problem of competing or
conflicting standards by creating a specific ontology for the
federation in question. While this ontology may be derived
from an existing ontology or ontologies, it is specific to the
federation being defined. This approach also virtually
eliminates non-conformance among federation systems by
providing the capability to customize the ontology to meet the
demands of its component systems and is more flexible than
traditional standards to changes in technology or requirements.

This paper lays the foundation for adapting the OOMI to
utilize Semantic Web technology in constructing the FIOM.
While this work goes a long way in taking advantage of the
benefits a Semantic Web based approach brings, there is still
work remaining to realize the full advantage of this capability.
Such future work includes: 1) implementing an XML Schema
to CCR Ontology Class converter; 2) implementing and
integrating an OWL class reasoner to match component and
standard ontology representations of an entity, 3) generating an
FCR OWL class from the Ontology Library class matching the
selected component representation of an entity, and 4) convert-
ing the generated FCR OWL class to an equivalent FCR. Full
integration of Semantic Web technology into the OOMI will
enable further exploration of areas where the OOMI approach
may be adopted to improve system interoperability.

6 References
[1] Levels of Information Systems Interoperability (LISI), C4ISR
Architecture Working Group, 30 March 1998.
[2] E. Pitoura, “Providing Database Interoperability through
Object-Oriented Language Constructs”, Journal of Systems
Integration, Volume 7, No. 2, August 1997, pp. 99-126.
[3] P. Young, “Heterogeneous Software System Interoperability
Through Computer-Aided Resolution of Modeling Differences,”
Ph.D. Dissertation, Comp. Sci. Dept., Naval Postgraduate School,
Monterey, CA, June 2002.
[4] G. Wiederhold, “Intelligent Integration of Information”, ACM-
SIGMOD 93, Washington, DC, May 1993, pp. 434-437.
[5] J. Hammer, D. McLeod, “Resolution of Representational
Diversity in Multidatabase Systems", Management of Heterogeneous
and Autonomous Database Systems, Morgan Kaufman, 1999.
[6] J. Kahng, J., McLeod D., “Dynamic Classificational
Ontologies: Mediation of Information Sharing in Cooperative
Federated Database Systems”, Cooperative Information Systems,
Trends and Directions, Academic Press, 1998.
[7] Holowczak, R., Li, W., “A Survey on Attribute
Correspondence and Heterogeneity Metadata Representation”,
[Online]. Available: [http://www.computer.org/conferences/meta96/
li/paper.html], 1996.
[8] Kim, W., Seo, J., “Classifying Schematic and Data
Heterogeneity in Multidatabase Systems”, IEEE Computer, Vol. 24,
No. 12, pp. 12-18, December 1991.
[9] P. Young, V. Berzins, J. Ge, and Luqi, "Using an Object
Oriented Model for Resolving Represenataional Differences between
Heterogenous Systems," in Proc. 17th ACM Symp. on Applied
Computing, Madrid, Spain, March 10-14, 2002, pp. 976-983.
[10] B. Liskov, J. Wing, “A Behavioral Notion of Subtyping,” ACM
Transactions on Programming Languages and Systems, Vol. 16, No.
6, November 1994, pp. 1811-1841.
[11] “Java Architecture for XML Binding,” [Online]. Available:
http://www.oracle.com/technetwork/articles/javase/index-40168.html
[12] M. Taye, "Web-Based Ontology Languages and its Based
Description Logics," Int. Journal of ACM Jordan, vol. 2.
[13] P. Anisetty, “Adding Semantic Web Technology to the Object-
Oriented Method for Interoperability (OOMI),” Masters Project
Report, Comp. Sci. Dept., Univ. of Central Arkansas, Conway, 2012.
[14] T. Gardiner, D. Tsarkov, and I. Horrocks, "Framework for an
Automated Comparison of Description Logic Reasoners," Proc. 2006
Int. Semantic Web Conf.-ISWC 2006, pp. 654-667, 2006.
[15] Pellet: OWL 2 Reasoner for Java. [Online]. Available:
[http://clarkparsia.com/pellet/]
[16] FaCT++ [Online]. Available: [http://owl.man.ac.uk/
factplusplus/]
[17] HermiT OWL Reasoner [Online]. Available: [http://hermit-
reasoner.com/]
[18] L. Pouchard, A. Cutting-Decelle, “Ontologies- and Standards-
Based Approaches to Interoperability for Concurrent Engineering,” in
Concurrent Engineering in Construction Projects. Chimay Anumba,
John Kamara, Anne-Francoise Cutting-Decelle, eds. pp.118-161.
January 2007.
[19] Eichelberg, Aden, Riesmeier, Dogac, and Laleci, “A Survey
and Analysis of Electronic Healthcare Record Standards,” Journal of
ACM Computing Surveys (CSUR), Vol. 37, Issue 4, Dec. 2005, pp.
277-315, ACM New York, NY, USA
[20] M. Wendt, “A Standards-Based Approach to Cloud
Interoperability,” [Online]. Available: [http://ow2.org/xwiki/bin
/download/Events/OW2_Berlin_Day_2012/MicrosoftStandardsBased
ApproachToCloud.pdf]
[21] Mahugh, D., “Standards-Based Interoperability,” [Online].
Available: [http://blogs.msdn.com/b/dmahugh/archive/2009/06/05/
standards-based-interoperability.aspx]

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

16 Int'l Conf. Software Eng. Research and Practice | SERP'14 |

Clustering Analysis for Object Formation in Software
Modeling

Dusan Sormaz1, Danyu You1, and Arkopaul Sarkar2

1Department of Industrial and Systems Engineering, Ohio University, Athens, OH, USA
2Institute for Corrosion and Multiphase Technologies, Ohio University, Athens, OH, USA

Abstract - Object-oriented software modeling (OOM) is a
widely used approach to provide structured way of designing
software architecture. The object in OOM is a group of
‘functions’ and ‘attributes’ which perform related
functionalities. The identification of objects is challenging in
some application domains where functionalities are difficult
to be partitioned/grouped, for instance, chemical calculations.
This paper conducts the clustering analysis to partition those
‘functions’ and ‘attributes’ and form preliminary objects for
OOM. The objective of clustering algorithm is to minimize the
number of functions and attributes shared by more than one
object. In this study, a function attribute matrix is first
developed to represent the requirement of attributes for each
function. And then a clustering algorithm is proposed to
continuously restructure the function attribute matrix until the
termination conditions are met or no more improvement can
be found. The experimentation is carried based on the
corrosion prediction software which contains up to 200 nested
functions and attributes. And the results show that the
promising approach can capture the homogeneous functions
and attributes and form preliminary objects.

Keywords: software clustering, legacy software, object
oriented modeling

1 Introduction
 Object-oriented software modeling (OOM) is a matured
software design function and widely applied in the early
phase of software development [1]. Clustering algorithms are
commonly functions of discovering intrinsic patterns from a
collection of raw data. It has been applied in many domains
such as group technology, cellular manufacturing,
organizational behavior and others.

This paper intends to apply the clustering technology on
reference from functions to variables, and to reveal potential
combination pattern of them, which then is used to find
objects.

The rest of this paper is organized as following: Section 2
describes the background of the current problem. Section 3
reviews the development in the software modeling and the
clustering technology. Section 4 explains the construction of

Functions-Variables matrix, the clustering algorithm, the
adjustments to result and the creation of classes. Section 5
shows results of applying clustering analysis on an existing
software application. At last, in section 6, the conclusion is
drawn and the reference papers are listed.

2 Problem Description
This paper focuses on identification of potential objects,
which is the preparation of OOM; in existing software
applications. In our case, the target system is a software
application for predicting corrosion rate of oil pipeline [1].
Since it was written many years ago when OO features were
not supported by Fortran 77 language, it is not an OO
designed application, which means a large portion of its
functions and variables were defined globally to simplify
passing arguments through functions, but its functional
modules are coupled tightly. An obvious shortcoming of such
structure is: whenever any modification is introduced into this
system, corresponding global influences should be
considered. It makes development and maintenance become
increasingly harder as the growth of application size. To
solve that problem, a loosen-coupled structure should be built
to replace that out-dated structures. As OOM is a very
common and matured function to construct flexible software
structure, and OO mannered programming starts being
supported by Fortran 90, it is applied to guide the process of
reorganization. In order to solve the problem, well-known
function of clustering is it’s applies from is chosen and the
goal has been set to explore its performance in a new domain.

Using OOM to build system models, the initial stage is
defining system objects and understanding relationship
between them in a high enough level. Usually, developers
have complete freedom to create necessary objects as long as
they are consistent with customer’s requirements. But in this
case, in order keep existing modules, which are well
functioned, OOM has to start from the lowest lever – the
level of codes, and objects needs to be extracted from codes.
In another words, the task is to observe potential groups of
interrelated functions and variables from current codes to
build objects. This is the opposite of the early process of
OOM; however, it is what clustering technology is designed
for – finding groups in a collection of unstructured data.

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

Int'l Conf. Software Eng. Research and Practice | SERP'14 | 17

3 Previous Work
3.1 Software Reorganization
 Software reorganization is quite common in software
engineering. Studies of software engineering [1] reveal that a
great amount of code changes are requested in the later stage
of development and even after development is finished.
Implementation of those changes is proved not only costly
and time-consuming, but also negatively impacts existing
system architecture, especially when the existing structure is
not well designed to accommodate changes. Under some
serious situation, the existing design even needs to be
reorganized to upgrade to a better structure.

OOM, because of its successful application in software
engineering, becomes the most common technology being
used in process software design and redesign. The core
concept of OOM is the object [3]which is a group of
functionally related ‘functions’ / ’functions’ and ‘attributes’ /
’variables’, called members. Other concepts, such as
inheritance, interface and polymorphism, help to construct a
flexible network of objects. Inside objects, members are
coupled tightly; outside objects, models are loosen-coupled
[7].

3.2 Clustering Algorithms
 Clustering algorithm is a function in observing structures of
data so that interrelated members can be organized into
groups [8]. It has been used in diverse domains, such as
network optimization [11], information retrieval [12], market
research [9], and quality control [11].

4 Methodology
The clustering analysis of the existing software structure is
performed through several steps as shown in figure 1. First, a
function-variable matrix is built for the existing software
package. For clustering, King’s ROC algorithm [5] is
applied. Then, adjustments are implemented to simplify
matrix. By dividing the matrix into segments and treating
each segment as a class, the function-variable matrix is
changed into a class-function matrix. Through analysis
against the matrix, functions are distributed into the class
having the strongest connection to them. At the end, the logic
of cross reference between classes is established focus the
existing relations.

4.1 Function-Variable Matrix
 Function-variable matrix is a binary matrix constructed
to explore the relationship between function funtions and
variables, which can be expressed by equation (1):

)(crmatrixX (1)

Start

Run clustering algorithm

Simplify Matrix

Build Class-Method MatrixDefine Method Variable Matrix

Create preliminary classes

End

Figure 1: The procedure of methodology

Where, r is the row of matrix, equals to number of functions;
c is the column of matrix, and equals number of variables.

ijX 0 or 1 (2)

Where, iE [1, r] and jE[1, c]. If Xi, j=1, it means function
with index i uses variable with index j; if Xi, j=0, there is no
connection between function i and a variable j.

Following is an example of the function variable matrix,
which is for an application having 8 variables and 4
functions. So the matrix is a two dimensional array with 4
rows and 8 columns. In that matrix, X3, 3=1, which means
variable v3 is used in function f3.

 v
1

v
2

v
3

v
4

v
5

v
6

v
7

v
8

f
1

0 0 1 0 0 0 0 0

f
2

0 1 0 0 1 0 0

f
3

1 0 1 1 0 1 1 1

f
4

1 1 0 1 0 0 0 0

Figure 2. An Example of function-variable Matrix

Another example gives a demonstration of how to build such
a matrix from codes. A segment of codes is taken from
MULTICORP and shown in Figure 2, where functions names
and global variables are marked by rectangles and ellipses
separately (repeatedly used variables are only marked once).
There are 4 different global variables and 3 functions. Using
the method discussed in this section, the corresponding
function-variable matrix having 4 columns and 3 rows is built
and show in figure 3

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

18 Int'l Conf. Software Eng. Research and Practice | SERP'14 |

Figure 3: An example of building function-variable matrix
from codes.

4.2 Run Algorithm
 King’s POC algorithm is applied a function–variable
matrix connected focus the software. To apply the algorithm
for each function and variable, a score is assigned by using
following equations. Each row and column of the matrix is
given a weight factor equal to 2i-1 or 2j-1 (for example, third
row has weight 23 = 8).

Then for each method and variable, a score is assigned by
using following equations.

Score of the function is,

Si j

c

j
ij WX *

1

 (3)

Similarly, score of the variable is,

S j= i

r

i
ij WX *

1

 (4)

For example, using equation (3), in figure 2, the score for
function 3 (the fourth row) is = 21 + 23 + 24+ 26 + 27 +
28=474.

The clustering algorithm applied by this paper. Using score
for rows and columns, King’s ROC algorithm is applied on
the following sequence:

(1) Calculate score for each row and each column,

(2) Sort columns basing on their scores from low to high,

(3) Sort rows by the same way,

(4) After each sorting, compare with the latest matrix with
the previous one, if there is no obvious change after sorting,
stop algorithm; otherwise, go to (1), continue the loop.

For example, if applying previous steps to matrix in figure 2,
following result (figure 4) should be generated.

Figure 4: Result of applying the algorithm against the

matrix in figure 3

4.3 Adjustments
If there is a complete separation of functions and variable
result of clustering, figure 5 would be an ideal combination of
variables and functions. Such a result, however, cannot be
expected in a real case is usually not obtained.

 v
1

v
2

v
3

v
4

v
5

v
6

v
7

v
8

f
1

1 1 0 0 0 0 0 0

f
2

1 1 0 0 0 0 0 0

f
3

0 0 1 1 1 0 0 0

f
4

0 0 0 0 0 1 1 1

Figure 5: An example of ideal result

For a realistic matrix, which does not have such a clean
pattern, such as the result shown in figure 5, some
adjustments are necessary for its simplification. Rules are
developed for adjustments and described as following:

Rule 1: Separate global variables

 If prX
r

i
ij *

1

,],1[cj ,]1,0(p , in our case, p =

20%.
This Rule indicates, a variable will keep staying as a global
one and be taken out of the matrix if it is used by a relatively
large collection of functions, say 20% of total functions. An
extreme situation is shown in figure 6, where variable 5 is
used by every function. So V5 should be global and not be
considered in this matrix.

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

Int'l Conf. Software Eng. Research and Practice | SERP'14 | 19

Figure 6: An example application of Rule1

Rule 2: Combine variables (columns) with the same functions
callers.

If there are existing n columns, for , is true, then keep only
one column of them, and remove the rest. An example is
shown in figure 7.

Figure 7: An example application of Rule2

Rule 3: Combine functions which has the same set of
variables.

 If there are existing n rows, for , is true, then keep only one
row, and remove the rest. An example is shown in figure 8.

Figure 8: An example application of Rule3

Rule 4: Eliminate variables which are used in only one
function.

After applying those rules, it may be necessary to run POC
algorithm once again to obtain additional clusters.

4.4 Create Classes
 After the clustering completed, the final matrix serves
the purpose of defining the classless. Class creation is
performed in three steps: indentify divisions, assign methods
to classes, setup cross references between the classes as
shown in this section.

4.4.1 Identify Divisions
 Classes are formed by identifying divisions as shown
Figure 6 gives an example of the matrix that might be formed
after previous steps.

The matrix needs to be divided into divisions horizontally,
and each of them becomes a class. The basic rule of drawing
division is trying to put as much as possible usages
(represented by cells with number 1) of the same variable into
one area. One possible plan of division is given by red lines
in figure 9.

Figure 9: An example of possible division of a matrix

4.4.2 Assign Functions to Classes
Given divisions from figure 9, another form of matrix, the
function-class matrix, is developed. The function-class matrix
shown is similar to the function-variable matrix built in
Section 4.1 except of following two differences:
(1) The first row contains name of preliminary classes
(excluding first cell to the left);
(2) Cells contain integer numbers instead of Boolean value to
indicate how many variables a function uses in the class.
An example is shown in figure 10, which is generated from
the matrix in figure6.

Figure 10 Matrix improvement

As shown in figure 10-(a), some functions are shared by
classes, but, in OOM, one specific function usually only
belong to one class. Other classes that need to call that
function only need to keep an instance of that class. A
function should be put into the class that has the strongest
connection with it. Assuming that, the more one function is
used in one class, the stronger their connection is. In figure
10, the first maximum number of each row is marked with
green color to tell which class uses a function the most. Then,
rows are swapped to make green cells in the same column
stay as continuous as possible. Swapped matrix is shown in
figure 10-(a). In column of each class, there is a strip of
continuous green cells (circled by red rectangle), which stands
for a collection of functions that are strongly depended by the

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

20 Int'l Conf. Software Eng. Research and Practice | SERP'14 |

class. Thus, those functions are assigned to their depending
class.

4.4.3 Set up cross references between classes
 The last step is to construct a bridge between classes so that
a function is able to be called by other classes. This bridge is
the reference. In OOM, a reference is an instance of a class.
In order to highlight references between classes, the matrix in
figure 10-(b) is simplified into a new matrix and shown in
figure 11.

Figure 11: Function–class matrix.

In figure 11, a green rectangle is considered as a class; integer
number inside a cell means how many variables a class uses
functions form another one. Specifically, for Xi, j = N, Xi, j is
the value of cell in row i and column j, i>0, j>0, N ≥ 0, (1) If i
> j, it means class i calls function from class j N times; (2) If
i<j, it means class j calls function from class i N times.

In figure 11, for example, X2, 3 = 2, which means Class3
uses functions from Class2 two times; and X3, 1 = 1 means
class3 uses functions from Class1 one time.

The matrix can be interpreted by table 1 to indicate if a class
needs an instance of another one.

Table 1 Establishing references between classes

Class
Name

Reference to
Class1

Reference to
Class2

Reference to
Class3

Class1 -- No Yes
Class2 Yes -- Yes
Class3 No Yes --

Based on table 1, a solution for calling functions between
classes is proposed in figure 12.

Figure 12: calling methods between classes

5 Case Study
 Methodology discussed in section 4 is applied on a
collection of functions and variables from a real software
application, Multicorp/Corrsim, originally implemented in
Fortran 77, and results are shown. AS a result the application
has been converted into Fortran 90, which supports abstract
data types and allows application of object-oriented
modeling.

5.1 Build function-variable matrix
Analysis of the existing application reveals that there are 33
functions and more 90 global variables. Related function-
variable matrix is built and shown in Figure 13.

5.2 Apply clustering algorithm and adjust

After the first clustering, matrix is changed and shown in
figure 14, which is not excellent but expected. Though, there
is some clustering achieved, the structure of the code requires
further analysis.

 Through adjustments discussed in section 4.2, the matrix is
simplified to variables and functions and shown in figure 15.

 Figure 13: Initial function-variable matrix

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

Int'l Conf. Software Eng. Research and Practice | SERP'14 | 21

Figure 14: Preliminary result of running algorithm

Figure 15: Divisions of matrix

5.3 Identify classes
In figure 15, four divisions are drawn via function discussed
in section 4.4.1 and variables are grouped into the following
classes:

Class1:

RK NCHEM DHH2C3 IANODE CBULK IHUPOHE
 IJOTO NY POROSITYI ISANODE IST NH2S
 NCO3

Class2:

Z NHC3 IELCHHAC NH2C3 GIBBSHPLS TIME
 NHPLS FARADAY ISTST FLUXI

Class3:

TPAS NYFILM DIFF KAPPA VISC PORTOR
 TORTUOSITY DIFFM TEMP IPAS

Class4:

IMIGR NUMANODE DELTAX DELTAY PORTORI
 DIFFI DYCV AMX FEXCO3K DXCV NX NFL
 UMOB DT IPIT

Then, the matrix is modified into a class-function matrix,
which is shown in figure 16-(a). The maximum number of
each row is marked as green to show connections between
functions and classes.

 Figure 16 Mark maximum in each row of Class-function
Matrix

By swapping rows in the matrix, green cells in the same
column are connected together. Each strip of green cell is a
collection of functions that should belong to the same class.

Figure 17 Matrix with classified functions further simplified

Using function discussed in 4.3.2.3, continuous green cells
and cells inside red rectangle are merged into single cells, a

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

22 Int'l Conf. Software Eng. Research and Practice | SERP'14 |

simple and clean matrix about connection between classes is
formed. Based on structure indicated by this figure, a possible
solution for building four classes are proposed as following.

Figure 18: One possible implementation of collaboration
between classes

6 Conclusions and future studies
The results shown in section 5 demonstrate that, in the
process of redesigning the structure of an existing software
application, it is possible to draw a rough picture of potential
classes and their interrelation by using clustering algorithms,
without fully understanding the logic structure of that
application. Although this function does not guarantee the
correctness and reasonability of the results, it at least can
server as preprocess of OOM to help discover some patterns
inside codes. Future work will be related to how to use results
from this paper to assist semantic analysis, and also to
distinguish between reading and writing variables.
Implementation of the improved version of the software
based on the findings is under way.

7 References
[1] S. Nesic, Jiyong Cai, Shihuai Wang, Ying Xiao and

Dong Liu, Ohio University Multiphase Flow and
Corrosion Prediction Software Package MULTICORP
V3.0, Ohio University(2004).

[2] Chandra K. S., 2007, “Identifying Software Patterns
Approaches to Cognitive Modeling”, The ICFAI
Journal of Computer Sciences, 56 (1), 54-60.

[3] Aksit M., 1996, “Composition and Separation of
Concerns in the Object-Oriented Model”, ACM
Computing Surveys, Vol. 28A, No. 4.

[4] Siva Balan R. V., Punithavalli M., 2010, “Software
Architecture, Scenario and Patterns”, IJCSI
International Journal of Computer Science Issues, 7
(5), 418-423

[5] Kamrani A. K., 1998, Group Technology and Cellular
Manufacturing: Methodologies and Applications,
Taylor & Francis

[6] Landauer T. K., 1995, The Trouble with Computers:
Usefulness, Usability and Productivity., MIT Press.,
Cambridge.

[7] Li W. and Henry S., 1993, “OO Metrics that Predict
Maintainability”, Journal of Systems and Software,
23(2), 111-122.

[8] Wu Z., and Leahy R., 1993, “An Optimal Graph
Theoretic Approach to Data Clustering: Theory and Its
Application to Image Segmentation”, IEEE
Transactions on Pattern Analysis and Machine
Intelligence, 15, 1101–1113.

[9] Punj G., and Stewart D.W., 1983, “Cluster analysis in
marketing research: review and suggestions for
application, Journal of Marketing Research, 20, 134–
148.

[10] Lew M.S., Sebe N., Djeraba C., and Jain R., 2006,
“Content-based multimedia information retrieval: state
of the art and challenges”, ACM Transactions on
Multimedia Computing, Communication, and
Applications, 2, 1–19.

[11] Zarandia M. H. F., and Alaeddinib A., 2010, “A
general fuzzy-statistical clustering approach for
estimating the time of change in variable sampling
control charts”, Information Sciences, 180, 3033–3044.

[12] Deng Y., and Wang F., 2006, “Optimal Clustering
Size Of The Small File Access In Network Attached
Storage Device”, Parallel Processing Letters, 16 (4),
501-502.

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

Int'l Conf. Software Eng. Research and Practice | SERP'14 | 23

Domain-Driven Model Inference Applied To Web Applications

A. Sébastien Salva1, B. William Durand2

1LIMOS - UMR CNRS 6158, Auvergne University, France
2LIMOS - UMR CNRS 6158, Blaise Pascal University, France

Abstract— Model inference methods are attracting increased
attention from industrials and researchers since they can be
used to generate models for software comprehension, for test
case generation, or for helping devise a complete model
(or documentation). In this context, this paper presents an
original inference model approach which recovers models
from Web application HTTP traces. This approach combines
formal model inference with domain-driven expert systems. Our
framework, whose purpose is to simulate this human behaviour,
is composed of inference rules, translating the domain expert
knowledge, organised into layers. Each yields partial IOSTSs
(Input Output Symbolic Transition System), which become more
and more abstract and intelligible.

Keywords: Model inference, formal model, IOSTS, rule-based
system

1. Introduction and Contribution
In the Industry, legacy applications are often problematic as

they are hard to maintain, poorly documented, and usually not
covered by tests. When it comes to this situation, there is a
high risk of introducing a bug, and options left to developers
are weak. The only way to ensure stability while fixing a bug
is to learn how the application behaves.

A first classic solution is to express these behaviours with
formal models, for instance Input/Output Symbolic Transition
Systems (IOSTS) [3]. Such models are particularly interesting
to automatically generate test suites using Model- based testing
techniques. But, the complete model writing is often an heavy
task, and is error prone; hence the need for model inference
approaches.

Model inference is a relatively recent research field aim-
ing at recovering the application behaviours captured by a
model. Zong et al. [9] proposed to infer specifications from
API documentations to check whether implementations match
them. Such specifications do not reflect the implementation
behaviours though. In [6], specifications, which are extremely
detailed, show the method calls observed from a related set
of objects. Some works [4], [5], [1], [8] proposed to derive
models by automatically testing an application. These are often
based upon crawling techniques, which can produce either basic
models or too detailed models. In both cases, it is not suitable
for test case generation. For instance, Memon et al. [4] initially
presented GUITAR, a tool for scanning desktop applications
which produces event flow graphs and trees showing the GUI
execution behaviours. The generated models are quite simple
and many false event sequences have to be weeded out later.
Mesbah et al. [5] proposed the tool Crawljax specialised in

AJAX applications, which produces state machine models that
are too complex and unreadable.

In this paper, we leverage model inference techniques in
order to obtain a model from an existing application, running
in a production environment. We decided to record incoming
and outgoing data (traces) by monitoring applications, rather
than crawling the entire application to prevent the limitations
described above. Our proposal takes another direction to infer
models. We do not suppose that the application being analysed
is event-driven but at least yields traces. It emerges from the
following idea: a domain expert, which is able to conceive
specifications, is also able to diagnose the behaviour of the
corresponding implementation by reading and interpreting its
execution traces. His knowledge can be formalised and ex-
ploited to automatically infer models. Our approach is based
upon this notion of domain knowledge, implemented with an
expert system which includes inference rules. The originality of
our approach also resides in the incremental production of sev-
eral models, expressing the behaviour of the same application
at different abstraction layers. This approach can be applied
on any application producing traces, i.e. not only event-driven
applications.

Below, we describe the architecture of our model inference
framework. Then, we recall some definitions on the IOSTS for-
malism used throughout the paper in Section 3. We concretely
describe and define this framework in the context of Web
applications in Section 4. We give some experimentation results
in Section 5. Conclusions are drawn in Section 6 together with
directions for further research and improvements.

2. Architecture of our framework
Our framework is divided into several modules as depicted

in Figure 1. The Models generator is the centrepiece of the
framework. It takes traces as inputs, which can be sent by a
Monitor collecting them on the fly. But it is worth mentioning
that the traces can also be sent by any tool or even any
user, as far as they comply to a chosen standard format. The
Models generator is based upon an expert system, which is
an artificial intelligence engine emulating acts of a domain
expert by inferring a set of rules representing the expert
knowledge. This knowledge is organised into a hierarchy with
several layers. Each gathers a set of inference rules written
with a first order predicate logic. Typically, each layer creates
two IOSTSs (except the first one), and the higher the layer
is, the more abstract the IOSTSs become. These models are
then successively stored and can be later analysed by experts,
verification tools, etc. This number of layers is not strictly

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

24 Int'l Conf. Software Eng. Research and Practice | SERP'14 |

Fig. 1: Model generation framework

bounded even though it is manifest that it must be finite. The
domain knowledge encapsulated in the expert system can be
used to cover trace sets coming from several applications of
the same category thanks to generic rules. But, rules can also
be specialised and refined for a given application in order to
yield more precise models, easing application comprehension.

Our approach allows to take a predefined set of traces
collected from any kind of applications producing traces. For
event-driven applications, traces could be produced using au-
tomatic testing techniques. We provide a Robot explorer which
will not be presented here because of lack of room. It generates
traces and find new application states in an efficient manner
using strategies, that are expressed with inferences rules as
well, tackling the issue related to the amount of traces needed
to decently cover an application.

Our proposal is both flexible and scalable. It does not
produce one model but several ones, depending on the number
of layers of the Models generator, which is not limited and
may evolve in accordance to the application type. Each model,
expressing the application behaviours at a different level of
abstraction, can be used to ease the writing of complete
formal models, to apply verification techniques, to check the
satisfiability of properties, to automatically generate functional
test cases, etc.

In the following, we detail the different framework parts in
the context of Web applications, except for the Monitor, which
is here a classical proxy.

3. Model Definition and Notations
We consider the Input/Output Symbolic Transition System

(IOSTS) formalism [3] for describing the functional behaviour
of systems or applications. An IOSTS is a kind of automata
model which is extended with two sets of variables, internal
variable to store data, and parameters to enrich the actions.
Transitions carry actions, guards, and assignments over vari-
ables. The action set is separated with inputs beginning with
? to express actions expected by the system, and with outputs

beginning with ! to express actions produced by the system.
An IOSTS does not have states but locations.

Definition 1 (IOSTS) An IOSTS S is a tuple < L, l0, V,
V 0, I,Λ, →>, where:
• L is the finite set of locations, l0 the initial location,
• V is the finite set of internal variables, I is the finite

set of parameters. We denote Dv the domain in which a
variable v takes values. The assignment of values of a set
of variables Y ⊆ V ∪ I is denoted by valuations where
a valuation is a function v : Y → D. v∅ denotes the
empty valuation. DY stands for the valuation set over the
variable set Y . The internal variables are initialised with
the assignment V 0 on V , which is assumed to be unique,

• Λ is the finite set of symbolic actions a(p), with p =
(p1, ..., pk) a finite list of parameters in Ik(k ∈ N). p is
assumed unique. Λ = ΛI ∪ ΛO ∪ {!δ}: ΛI represents the
set of input actions, (ΛO) the set of output actions,

• → is the finite transition set. A transition (li, lj , a(p),
G,A), from the location li ∈ L to lj ∈ L, denoted

li
a(p),G,A−−−−−−→ lj is labelled by: an action a(p) ∈ Λ, a guard

G over (p ∪ V ∪ T (p ∪ V)) which restricts the firing of
the transition. T (p ∪ V) is a set of functions that return
boolean values only (a.k.a. predicates) over p ∪ V , an
assignment function A which updates internal variables.
A is of the form (x := Ax)x∈V , where Ax is an expression
over V ∪ p ∪ T (p ∪ V).

An IOSTS is also associated with an IOLTS (Input/Out-
put Labelled Transition System) to formulate its semantics.
Intuitively, IOLTS semantics correspond to valued automata
without symbolic variables, which are often infinite: IOLTS
states are labelled by internal variable valuations while tran-
sitions are labelled by actions and parameter valuations. The
semantics of an IOSTS S =< L, l0, V, V0, I,Λ,→> is the
IOLTS JSK =< Q, q0,Σ,→> composed of valued states in
Q = L×DV , q0 = (l0, V0) which is the initial one, Σ which
is the set of valued symbols, and → which is the transition
relation. The IOLTS semantics definition of can be found in
[3]. In short, for an IOSTS transition l1

a(p),G,A−−−−−−→ l2, we
obtain an IOLTS transition (l1, v)

a(p),θ−−−−→ (l2, v
′) with v a set

of valuations over the internal variable set, if there exists a
parameter valuation set θ such that the guard G evaluates to
true with v ∪ θ. Once the transition is executed, the internal
variables are assigned with v′ derived from the assignment
A(v ∪ θ). Runs and traces of an IOSTS can now be defined
from its semantics.

Definition 2 (Runs and traces) For an IOSTS S = <
L, l0, V, V 0, I,Λ,→>, interpreted by its IOLTS semantics
JSK =< Q, q0,Σ,→>, a run of S, q0α0q1...qn−1αn−1qn is
a sequence of terms qiαiqi+1 with αi ∈ Σ a valued action and
qi, qi+1 two states of Q. Run(S) = Run(JSK) is the set of
runs found in JSK.

It follows that a trace of a run r is defined as the projection
projΣ(r) on actions. TracesF (S) = TracesF (JSK) is the set

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

Int'l Conf. Software Eng. Research and Practice | SERP'14 | 25

of traces of all runs finished by states in F ×DV .

4. Model inference

Fig. 2: Models generator layers

The Models generator is mainly composed of a rule-based
system, adopting a forward chaining. Such a system separates
the knowledge base from the reasoning: the former is expressed
with data a.k.a. facts and the latter is realised with inference
rules that are applied on the facts. Our Models generator
initially takes traces as an initial knowledge base and owns
inference rules organised into layers for trying to match the
human expert behaviour. These layers are depicted in Figure 2.

Usually, when a human expert has to read traces of an
application, he often filters them out to only keep those that
are relevant to him. This step is done by the first layer whose
role is to format the received raw traces into sequences of
valued actions, and to delete those considered as unnecessary.
The resulting structured trace set, denoted ST , is then given
to the next layer. This process is incrementally done, i.e.
every time new traces are given to the Models generator,
these are formatted and filtered before being given to Layer
2. The remaining layers yield two IOSTSs each: the first one
Si(i ≥ 1) has a tree structure derived from the traces. The
second IOSTS, denoted App(Si), is an approximation which
captures more behaviours than Si. Both IOSTSs are minimised
with a bisimulation minimisation technique. The role of Layer 2
is to carry out a first IOSTS transformation from the structured
traces. The obtained IOSTSs are not re-generated each time
new traces are received but are completed on the fly. The
next layers 3 to N (with N a finite integer) are composed of
rules that emulate the ability of a human expert to simplify
transitions, to analyse the transition syntax for deducing its
meaning in connection with the application, and to construct
more abstract actions that aggregate a set of initial ones. Theses
deductions are often not done in one step. This is why the
Models generator supports a finite but not defined number of
layers. Each of these layers i takes the IOSTS Si−1 given by
the direct lower layer. This IOSTS, which represents the current
base of facts, is analysed by the rules to infer another IOSTS
whose expressiveness is more abstract than the previous one.

The lowest layers (at least Layer 3) are composed of generic
rules that can be reused on several applications of the same
type. In contrast, the highest layers own the most precise rules
that may be dedicated to one specific application.

In the following, and for readability purpose, we chose to
represent inference rules using this format: When conditions on
facts Then actions on facts (format borrowed from the Drools
inference engine 1). Independently on the application type, the
Layers 2 to N handle the following fact types: Location which
represents an IOSTS location, and Transition, which represents
an IOSTS transition, composed of two Locations Linit, Lfinal,
and two data collections Guard and Assign. Now, it is manifest
that the inference of models has to be done in a finite time and
in a deterministic way. To reach that purpose, we formulate the
following hypotheses on the inference rules:

1) (finite complexity): a rule can only be applied a limited
number of times on the same knowledge base,

2) (soundness): the inference rules are Modus Ponens,
3) (no implicit knowledge elimination): after the application

of a rule r expressed by the relation r : Ti → Ti+1(i ≥
2), with Ti a Transition base, for all transition t =
(ln, lm, a(p), G,A) extracted from Ti+1, ln is reachable
from l0.

In the following, we detail these layers in the context of Web
applications while giving some rule examples.

4.1 Layer 1: Trace filtering
Traces of Web applications are based upon the HTTP pro-

tocol, conceived in such a way that each HTTP request is
followed by only one HTTP response. Consequently, the traces,
given to Layer 1, are sequences of couples (HTTP request,
HTTP response). This layer begins formatting these couples so
that these might be analysed in a more convenient way.

For a couple (HTTP request, HTTP response), we extract
the following information: the HTTP verb, the target URI, the
request content which is a collection of data (headers, content),
and the response content which is the collection (HTTP status,
headers, response content). An header may also be a collection
of data or may be null. Contents are texts e.g., HTML texts.
Since we wish translating such traces into IOSTSs, we turn
these textual items into a structured valued action (a(p), θ)
with a the HTTP verb and θ a valuation over the variable
set p = {URI, request, response}. This is captured by the
following proposition:

Definition 3 (Structured HTTP Traces) Let t = req1,
resp1, ..., reqn, respn be a raw HTTP trace composed of an
alternate sequence of HTTP request reqi and HTTP response
respi. The structured HTTP trace σ of t is the sequence
(a1(p), θ1)...(an(p), θn) where:
• ai is the HTTP verb used to make the request in reqi,
• p is the parameter set {URI, request, response},
• θi is a valuation p → Dp which assigns a value to each

variables of p. θ is deduced from the values extracted from
reqi and respi.

1http://www.jboss.org/drools/

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

26 Int'l Conf. Software Eng. Research and Practice | SERP'14 |

The resulting trace set derived from raw HTTP traces is
denoted ST .

Now, the structured traces can be filtered. Given a main
request performed by a user, many other sub-requests are also
sent by a browser in order to fetch images, CSS and JavaScript
files. Generally speaking, these do not enlighten a peculiar
functional behaviour of the application. This is why we propose
to add rules in Layer 1 to filter these sub-requests out from
the traces. Such sub-requests can be identified by different
ways, e.g., by focussing on the file extension found at the
end of the URI, or on the Content-Type value of the request
headers. Consequently, we created a set of rules, constituted
of conditions on the HTTP content found in an action, that
remove valued actions when the condition is met.

After the instantiation of the Layer 1 rules, we obtain a
formatted and filtered trace set ST composed of valued actions.
Now, we are ready to extract the first IOSTSs.

Completeness, soundness, complexity: HTTP traces are
sequences of valued actions modelled with positive facts. Typi-
cally, they form Horn clauses. Furthermore, inference rules are
Modus Ponens (soundness hypothesis). Consequently, Layer 1
is sound and complete. Keeping in mind the (finite complexity)
hypothesis, its complexity is proportional to Om(k + 1) with
m the valued action number and k the rule number. (at worst,
every action is covered k + 1 times).

4.2 Layer 2: transformation of the traces into
IOSTSs

Intuitively, the IOSTS transformation relies upon the IOLTS
semantics transformation that is achieved in a backward man-
ner. Two IOSTSs are built: the former, structured as a tree,
represents the original traces modelled with an IOSTS formal-
ism. The latter is an over approximation of the former. These
IOSTSs are generated by performing the following steps:
1. the associated runs are computed from the structured traces
by injecting states between valued actions,
2. the first IOSTS denoted S1 is derived from these runs and
minimised,
3. a second IOSTS, denoted App(S1), is obtained from S1

by merging some of its locations, and by also applying a
minimisation technique.

These steps are detailed below:

4.2.1 Traces to runs
Given a trace σ, a run r is firstly derived by constructing

and injecting states on the right and left sides of each valued
action of σ. Keeping in mind the IOLTS semantics definition,
a state shall be modelled by the couple ((URI, k), v∅) with
v∅ the empty valuation. (URI, k) is a couple composed of a
URI and of an integer (k ≥ 0). Typically, a couple (URI, k)
shall be a location of the future IOSTS. Since we wish to
preserve the sequential order of the actions found in the traces,
when a URI previously encountered is once more detected, the
resulting state is composed of the URI accompanied with an
integer, which is incremented to yield a new and unique state.

Due to lack of room, the algorithm translating the structured
traces into a run set is not provided in this paper but can be
found in [7].

4.2.2 IOSTS generation
The first IOSTS S1 is derived from the run set SR. It

corresponds to a tree composed of paths, each expressing one
trace starting from the same initial location.

Definition 4 Given a run set SR, the IOSTS S1 is called the
IOSTS tree of SR and corresponds to the tuple < LS1

, l0S1
,

VS1
, V 0S1

, IS1
,ΛS1

,→S1
> such that:

• LS1
= {li | ∃r ∈ SR, (li, v∅) is a state found in r},

• l0S1
is the initial location such that ∀r ∈ SR, r starts

with (l0S1 , v∅),
• VS1 = ∅, V 0S1 = v∅,
• ΛS1

= {ai(p) | ∃r ∈ SR, (ai(p), θi) is a valued action in
r},

• →S1
is defined by the following inference rule applied on

every element r ∈ SR:

si(ai(p), θi)si+1 is a term of r, si = (li, v∅),

si+1 = (li+1, v∅), Gi =
∧

(xi=vi)∈θi

xi == vi

`
li

ai(p),Gi,(x:=x)x∈V−−−−−−−−−−−−−→S1 li+1

From an IOSTS tree S1, an over-approximation IOSTS can
now be straightforwardly deduced by merging together all the
locations of the form (URI, k)k≥0 into a single location (URI).
This possibly cyclic IOSTS usually expresses more behaviours
and should be strongly reduced in term of location size. But
this is also an approximation in the sense that new action
sequences, which do not exist into the initial traces, may appear.
This model may be particularly interesting to help establish
a complete model or to increase the coverage of specific
testing methods e.g., security testing, since more behaviours
are represented. In contrast, it is manifest that a conformance
testing method must not take this model as a reference to
generate test cases.

Definition 5 Let S1 be an IOSTS tree of SR. The approxima-
tion of S1, denoted App(S1), is the IOSTS < LApp, l0App,
VApp, V 0App, IApp,ΛApp,→App> such that:
• LApp = {(URI) | (URI, k) ∈ LS1

, k ≥ 0},
• l0App = l0S1 , VApp = VS1 , V 0App = V 0S1 , ΛApp = ΛS1 ,

• →App= {(URIm)
a(p),G,A−−−−−−→ (URIn) |

(URIm, k)
a(p),G,A−−−−−−→ (URIn, l) ∈→S1} ∪

{l0App
a(p),G,A−−−−−−→ (URIn) | l0S1

a(p),G,A−−−−−−→
(URIn, l) ∈→S1

} ∪ {(URIm)
a(p),G,A−−−−−−→ l0App |

(URIm, k)
a(p),G,A−−−−−−→ l0S1

∈→S1
}(k ≥ 0, l ≥ 0).

4.2.3 IOSTS minimisation
Both IOSTSs are reduced in term of location size by applying

a bisimulation minimisation technique which still preserves

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

Int'l Conf. Software Eng. Research and Practice | SERP'14 | 27

the functional behaviours expressed in the original model.
Intuitively, this minimisation constructs the state sets (blocks)
that are bisimilar equivalent. Two states are said bisimilar
equivalent, denoted q ∼ q′ iff they simulate each other and
go to states from where they can simulate each other again. A
bisimulation minimisation algorithm can be found in [2].

Completeness, soundness, complexity: Layer 2 takes any
structured trace set obtained from HTTP traces. If the trace
set is empty then the resulting IOSTS S1 has a single location
l0. A structured trace set is translated into an IOSTS in finite
time: every valued action of a trace is covered once to construct
states, then every run is lifted to the level of one IOSTS path
starting from the initial location. Afterwards, the IOSTS is
minimised with the algorithm presented in [2]. Its complexity is
proportional to O(mlog(m+ 1)) with m the number of valued
actions. The soundness of Layer 2 is based upon the notion of
traces: an IOSTS S1 and its approximation are composed of
transition sequences derived from runs in SR, itself obtained
from the structured trace set ST . As defined, the behaviours
encoded in ST and S1 are equivalent since (ordered) runs are
transformed into ordered IOSTS sequences. On the other hand,
the approximation of S1 shares the behaviours found in S1 and
ST but also describes new behaviours. This is captured by the
following Proposition:

Proposition 6 Let ST be a trace set and SR be is corre-
sponding run set. If S1 is the IOSTS tree of SR, we have
Traces(S1) = ST and Traces(App(S1)) ⊇ ST .

The proof is this proposition is Given in [7]. For sake of
readability, we do not provide the rules of Layer 2, which match
the above definitions and algorithms. Instead, we illustrate an
IOSTS generation example below:

Example 4.1
We take as example a trace obtained from the Github Web

site 2 after having executed the following actions: login with
an existing account, choose an existing project, and logout.
These few actions already produced a large set of requests and
responses. The trace filtering from this example returns the
following structured traces where the request and response parts
are concealed for readability:
GET(h t t p s : / / g i t h u b . com /)
GET(h t t p s : / / g i t h u b . com / l o g i n)
POST(h t t p s : / / g i t h u b . com / s e s s i o n)
GET(h t t p s : / / g i t h u b . com /)
GET(h t t p s : / / g i t h u b . com / w i l l d u r a n d)
GET(h t t p s : / / g i t h u b . com / w i l l d u r a n d / Geocoder)
POST(h t t p s : / / g i t h u b . com / l o g o u t)
GET(h t t p s : / / g i t h u b . com /)

After having applied rules of Layer 2, we obtain the IOSTS
of Figure 3(a). Locations are labelled by the URI found in the
request plus an integer to keep the tree structure of the initial
traces. Actions are composed of the HTTP verb enriched with
the variables URI, request, and response. This IOSTS exactly
reflects the trace behaviour but is still difficult to interpret. More
abstract actions shall be deduced by the next layers.

2https://github.com/

(a) IOSTS tree S1 (b) IOSTS App(S2)

Fig. 3: Approximation models

4.3 Layers 3-N: IOSTS Abstraction
As stated earlier, the rules of the upper layers analyse

the transitions of the current IOSTS for trying to enrich its
semantics while reducing its size. Given an IOSTS S1, every
next layer carries out the following steps:
1. apply the rules of the layer and infer a new knowledge base
(new IOSTS Si, i ≥ 2),
2. derive App(Si) and apply a bisimulation minimisation on
both,
3. store the two IOSTSs.

Without loss of generality, we now restrict the rule structure
to keep a link between the generated IOSTSs. Thereby, every
rule of Layer i (i ≥ 3) either enriches the sense of the actions
(transition per transition) or aggregates transition sequences
into one unique new transition to make the obtained IOSTSs
more abstract. It results in an IOSTS Si exclusively composed
by some locations of the first IOSTS S1. Consequently, for a
transition or path of Si, we can still retrieve the concrete path
of S1. This is captured by the following proposition:

Proposition 7 Let S1 be the first IOSTS generated from the
structured trace set ST . The IOSTS Si(i > 1) produced by
Layer i has a location set LSi such that LSi ⊆ LS1 .

Completeness, soundness, complexity: the knowledge base
is exclusively constituted by (positive) Transition facts that have
an Horn form. The rules of these layers are Modus Ponens
(soundness hypothesis). Therefore, these inference rules are
sound and complete. Furthermore, a behaviour encoded in an
IOSTS Si cannot be lost in Si. With regards to the (no implicit
knowledge elimination) hypothesis and to Proposition 7, the
transitions of Si are either unchanged, enriched or combined

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

28 Int'l Conf. Software Eng. Research and Practice | SERP'14 |

together into a new transition. The application of these layers
ends in a finite time ((finite complexity) hypothesis) and the
complexity of each is proportional to Om(k) with m the
transition number and k the rule number.

In the following, we detail two layers specialised for Web
applications:

4.3.1 Layer 3
As stated above, Layer 3 corresponds to a set of generic rules

that can be applied on a large set of applications belonging to
the same category. This layer has two roles:
• the enrichment of the meaning captured in transitions. In

this step, we have chosen to mark the transitions with new
internal variables. These shall help deduce more abstract
actions in the upper layers. For example, the rule depicted
in Figure 4 aims at recognising the receipt of a login
page: if the response content, which is received after a
request sent with the GET method, contains a login form,
then this transition is marked as a "login page" with the
assignment on the variable isLoginPage,

• the generic aggregation of some successive transitions.
Here, some transitions (two or more) are analysed in the
conditional part of the rule. When the rule condition is
met then the successive transitions are replaced by one
transition carrying a new action. The rule of Figure 5
corresponds to a simple transition aggregation, introducing
a new PostRedirection action.

rule "Identify Login Page"
when

$t: Transition(Action == GET, Guard.
response.content contains(’login-form’))

then
modify ($t) { Assign.add("isLoginPage:=true") }

end

Fig. 4: Login page recognition rule

rule "Identify Redirection after a Post"
when

$t1: Transition(Action == POST and
(Guard.response.status = 301 or Guard.response.
status = 302) and $l1final := Lfinal)

$t2: Transition(Action == GET, linit == $l1final,
$l2linit:=Linit)

not (Transition (Linit == $l2linit))
then

insert(new Transition("PostRedirection", Guard(
$t1.Guard, $t2.Guard), Assign($t1.Assign,
$t2.Assign), $t1.Linit, $t2.Lfinal);

retract($t1);
retract($t2);

end

Fig. 5: Redirection recognition rule

Example 4.2 When we apply these rules on the IOSTS
example of Figure 3(a), we obtain a new IOSTS, illustrated
in Figure 3(b), which has 6 transitions instead of 9 initially.
However, it does not reflect clearly the initial scenario yet.

Rules deducing more abstract actions are required. These are
found in the next layer.

4.3.2 Layer 4

This layer allows to infer a more abstract model composed
of more expressive actions. Its rules may have different forms:

• they can be applied on a single transition. In this case, the
rule replaces the transition action to add more sense,

• the rules can also aggregate several successive transitions
up to complete paths into one transition labelled by a more
abstract action. For instance, the rule illustrated in Figure
6 recognises a user authentication thanks to the variable
"isLoginPage" added by Layer 3.

rule "Identify Authentication"
when

$t1: Transition(Action == GET,
Assign contains "isLoginPage:= true",

$t1final:=Lfinal)
$t2: Transition(Action == PostRedirection,

Linit == $t1lfinal, $t2linit:=Linit)
not (Transition (Linit == $t2linit))

then
insert(new Transition("Authentication",

Guard($t1.Guard,$t2.Guard), Assign($t1.Assign,
$t2.Assign), $t1.Linit, $t2.Lfinal);

retract($t1);
retract($t2);

end

Fig. 6: Authentication recognition rule

Other rules can also be application-specific, so that these
bring specific new knowledge to the model. For instance, the
GitHub Web application has a dedicated URL grammar (a.k.a.
routing system). GitHub users own a profile page that is avail-
able at: https : //github.com/username where username
is the nickname of the user. However, some items are reserved
e.g., edu and explore. The rule given in Figure 7 is based upon
this structure and produces a new action Showprofile offering
more sense. We did the same for projects as well, introducing
a Showproject action.

rule "GitHub profile pages"
when

$t: Transition(action == GET, (
Guard.uri matches "/[a-zA-Z0-9]+$",
Guard.uri not in ["/edu", "/explore"]))

then
modify ($t) (SetAction("Showprofile"));

end

Fig. 7: User profile recognition rule

Example 4.3 The application of the previous rules leads to
the final IOSTS depicted in Figure 8, owning actions that have
a precise meaning, and now clearly describing the application
behaviour.

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

Int'l Conf. Software Eng. Research and Practice | SERP'14 | 29

Fig. 8: IOSTS App(S3) obtained from Layer 4

5. Experimentation
The framework presented earlier has been implemented in

a prototype tool called Autofunk (Automatic Functional model
inference). A user interacts with Autofunk through a Web inter-
face and either gives a URL or a file containing traces formatted
with the HTTP Archive (HAR) format, the defacto standard
for describing HTTP traces, used by various HTTP related
tools (many HTTP monitoring tools, and Web browsers such as
Mozilla Firefox and Google Chrome). The JBoss Drools Expert
tool has been chosen to implement the rule-based system. Such
an engine leverages Oriented Object Programming in the rule
statements and takes knowledge bases given as Java objects
(Location, Transition, GET, POST objects in this work).

From the Github Web site, we recorded a trace set composed
of 840 HTTP requests / responses. Then, we applied Autofunk
on them with a Models generator composed of 5 layers gather-
ing 18 rules whose 3 are specialised to Github. After the trace
filtering (Layer 1), we obtain a first IOSTS tree composed of 28
transitions. The next 4 layers automatically infer a last IOSTS
tree S4 composed of 13 transitions whose 7 have a clear and
intelligible meaning. Its approximation App(S4) is illustrated in
Figure 9. Most of its actions have a precise meaning reflecting
the user interactions while the trace recording. Now, one can
easily deduce that the user created, chose, deleted some projets
and read the issues of others.

6. Conclusion
This paper presents an original approach combining model

inference and expert systems to derive IOSTSs models. Our
proposal yields several models, reflecting different levels of
abstractions of the same application with the use of inference
rules that capture the knowledge of an expert. Our approach can
be applied on all applications that are able to produce traces.

We applied our framework on Web applications as a premise.
In the future, we intend to apply it on industrial systems to ease
their diagnostics. But this kind of system brings several issues
not yet addressed in the model inference area. For instance,

Fig. 9: IOSTS App(S4) obtained from the Github Web site

industrial systems may include asynchronous actions and timed
properties. At the moment, our solution does not yet support
this kind of properties. Furthermore, writing rules may be as
tough as writing models in some cases. This is why we are
working on a human interface which helps design rules from
a trace set example. We also plan to add a test case generation
module for regression testing.

References
[1] V. Dallmeier, M. Burger, T. Orth, and A. Zeller. Webmate: a tool for testing

web 2.0 applications. In Proceedings of the Workshop on JavaScript Tools,
JSTools ’12, pages 11–15, New York, NY, USA, 2012. ACM.

[2] J.-C. Fernandez. An implementation of an efficient algorithm for bisimu-
lation equivalence. Science of Computer Programming, 13:13–219, 1989.

[3] L. Frantzen, J. Tretmans, and T. Willemse. Test Generation Based on
Symbolic Specifications. In J. Grabowski and B. Nielsen, editors, FATES
2004, number 3395 in Lecture Notes in Computer Science, pages 1–15.
Springer, 2005.

[4] A. Memon, I. Banerjee, and A. Nagarajan. Gui ripping: Reverse engineer-
ing of graphical user interfaces for testing. In Proceedings of the 10th
Working Conference on Reverse Engineering, WCRE ’03, pages 260–,
Washington, DC, USA, 2003. IEEE Computer Society.

[5] A. Mesbah, A. van Deursen, and S. Lenselink. Crawling Ajax-based web
applications through dynamic analysis of user interface state changes. ACM
Transactions on the Web (TWEB), 6(1):3:1–3:30, 2012.

[6] M. Pradel and T. R. Gross. Automatic generation of object usage
specifications from large method traces. In Proceedings of the 2009
IEEE/ACM International Conference on Automated Software Engineering,
ASE ’09, pages 371–382, Washington, DC, USA, 2009. IEEE Computer
Society.

[7] S. Salva and W. Durand. Model inference combining expert systems and
formal models. Technical report, LIMOS, http://sebastien.salva.free.fr/RR-
14-04.pdf, 2014. LIMOS Research report RR-14-04.

[8] W. Yang, M. R. Prasad, and T. Xie. A grey-box approach for automated
gui-model generation of mobile applications. In Proceedings of the 16th
international conference on Fundamental Approaches to Software Engi-
neering, FASE’13, pages 250–265, Berlin, Heidelberg, 2013. Springer-
Verlag.

[9] H. Zhong, L. Zhang, T. Xie, and H. Mei. Inferring specifications for
resources from natural language api documentation. Autom. Softw. Eng.,
18(3-4):227–261, 2011.

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

30 Int'l Conf. Software Eng. Research and Practice | SERP'14 |

Web Accessible for the Deaf and Blind People

AbdulRahman Saud Alsaif

Department of Software Engineering, Florida Institute of Technology

Melbourne, Florida, 32901
alsaif789@hotmail.com

Abstract—the World Wide Web is used nowadays by a variety

of normal users and users with disabilities in order to gather

information look for resources and access services. Many web

sites are designed and improved to be easy for the majority of
people who are without disability. However, the percentage of

disable people in the society has been quickly increasing

today. Researchers and governmental leader have to pay little

attention to their requirements and needs when planning,

design, and improve Web sites. Therefore, this paper is a

collection of some research papers representing by some

scientists or researchers in Web System Evolution conferences

and other conferences to give some suggestions and advice on

how to access the Internet and improve the accessibility of

hearing impaired and sight impaired people. Thus, people

with disabilities can understand, navigate, perceive,
communicate with other people and interact with the web.

Keywords— hearing impaired, sight Impaired, W3C, WAI.

I. INTRODUCTION

Web accessibility today is one of the essential issues for the

improvement and usability of web sites and applications. Web

sites today are mostly inaccessible to the disabled people.
According to what Geoff Freed, the director of the Web Access

Project for Boston-based, has said, "Only 1% of web

developers have taken any action to make their sites more

accessible to the disabled [1]." Therefore, this shows a critical

issue. The proportion of disabled people today has been quickly

growing in the world. For example, In the United States of

America, the population of people with different kinds of

disabilities (the hearing impaired, the sight impaired or others)

has been evaluated to be about 40s millions. In addition, the

number of people who face challenges to see words, letters, or

to distinguish between colors on computer screens has been
evaluated to be in range of 4 millions [1].While, web sites and

applications today continue to improve, and evolve, disabled

people are increasingly finding themselves at a disadvantage.

As a graduate student and developer, I would like to present

their problems in how to deal with computers. In addition,

developers may need to be aware, and to pay attention to those

disabled people in order to make their life easier. Disabled

people have to feel comfortable and a member of the world's

society. Thus, web accessibility has been reported and

regulated by the World Wide Web consortium, which has

boosted the Web Accessibility Initiative in order to improve

strategies, resources, guidelines in order to support disabled

people to make their lives better [2]. Moreover, in the last ten

years, there are some researchers and developers have

discussed the issues related to the usability of Web Sites and

how to make them accessible to disabled people.

In this paper, I divided it to two major topics. The first

major is how to make Web Sites accessible for hearing

impaired or deaf people. The second major is how to improve
usability of Web Sites for blinds or sight impaired. In addition,

the paper is organized as follows: in section 2 a synopsis

paragraph about Web Accessibility. Then, in section 3 I talk

about the hearing impaired and the sight impaired in general.

After that, in section 4 and 5 I go deep to define each of them,

find some solutions, and define some tools that being used

today.

II. WEB ACCESSIBILITY
Web accessibility is the way of making Web Sites easy,

available, and accessible for all users, including people with

disabilities (e.g., blind and deaf people) [3]. In addition, Web

Sites need to be improved and designed using easy tools and

techniques, so that all users could have the equal right to

browse, access, and search over the Internet. Therefore, people

with disabilities can navigate, perceive, understand, and
interact with Web, and that they can communicate with other

people, contribute to the Web and share knowledge with

others.

Many disabled people today have disabilities that could

affect their lives and ways of using Web. Moreover, most Web

sites nowadays are inaccessible which make it complicated

and hopeless for many people with disabilities to access the

Web. As more accessible Web sites available, people with

disabilities are eligible to use, share, and contribute to the Web

more effectively.

A. Why to make the Web Accessible
It is very imperative that the Web Sites be accessible for all

kinds of users, including users with disabilities in order to

provide equal rights and equal occasion. Accessible Web Sites

can also help people with disabilities more lively contribute in

the society. In addition, access to information makes

opportunities and empowers all people to participate.
Therefore, this will help people with disabilities more than

others, so that they can benefit from huge services,

information, resources available on the Internet. In fact, there

is one of five people disabled [1]. This percentage will

increase as the number of population has obviously increased.

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

Int'l Conf. Software Eng. Research and Practice | SERP'14 | 31

B. How to make the Web Accessible
There are some limitations and barriers may make moving

to accessible Web Sites more difficult. The World Wide Web

Consortium lists seven common accessibility barriers [1]

which are:

1. Pictures with no alternate text.

2. Image map without alternative text.

3. Do not know how to reorganize the element on pages.

4. Uncaptioned audio or undescribed video.

5. Scarcity of information for users who cannot access
frames or scripts.

6. Complicated tables.

7. Building sites with poor color contrast.

However, the World Wide Web Consortium (W3C) has

countered the issue of the accessibility of Web sites by

regulating some rules and guidelines to follow and creating the

Web Accessibility Initiative (WAI) [4]. Therefore, WAI

guidelines and rules are considered the international standard

for Web accessibility. In addition, to make your Web Site

accessible, WAI states that accessibility must be achieved and
considered when Web Site designed. Web sites' content has to

be practicable, functional, perceivable, easy and

understandable by the majority possible range of users and

convenient with a wide range of assistive technologies, now

and in the future [4].

Furthermore, WAI sets some rules and guidelines related

to Web Sites accessibility [1] which are Web content

accessibility guidelines, authoring tool accessibility

guidelines, and user agent accessibility guidelines. Web

content accessibility guidelines, which may benefit people

with disabilities, builds of two things. First, the Web Site's

content should be accessible and clear despite a user's
disability and the limitation of any hardware or software

he/she uses. Second, the Web Site's content should be

understandable and navigable by using plain and simple

language and navigation so that people with disabilities could

quickly and easily understand the content and able to the

orient themselves [1].

Developers and designers should be aware when design

and implement Web Sites and follow the fourteen rules and

guidelines that set by W3C [1] which are:

1. Provide sensible alternatives solutions to auditory users
and visual context.

2. Using alternative and do not base on color alone.

3. Use markup to highlight and style sheets.

4. Try to use easy natural language.

5. Make tables easy to convert.

6. Ensure also that pages featuring are easy to transform.

7. Ensure user control of time-sensitive content changes.

8. Ensure embedded user interfaces are direct to access.

9. Design independent devices.

10. Use temporary solutions.

11. Use W3C technologies and rules.

12. Provide context and all information for accessibility.

13. Provide obvious navigation techniques.

14. Ensure that the written documents are evident and

simple to comprehend.

III. HEARING IMPAIRED AND SIGHT

IMPAIRED
In this section, I will give a brief written essay about the

difference between hearing impaired and sight impaired in

how to contribute, anticipate, share, and deal with the Internet.

For more details, techniques, and case study skips this section

and move to the next section. According to what (Daniel M.

Berry, [5]) has said, It should be obvious what is perfect for

the hearing impaired is not pretty for the sight impaired and

vice versa. Nowadays, both HI and SI people complain and

ask for their right. It is rare that to find a Web Site offers the
most features for both to be in textual and graphical interfaces

and at the same time has the features of speech and read the

content. It is obvious that the number of Wes Sites that offers

pictures, images, graphics, and written plain English language

more than the aural Web Sites. However, both of them are

enfranchising.

Daniel is a hearing impaired and has a good experience of

a blind student who took one of his courses gives us some

recommendation on how to make Wes Sites accessible. The

first recommendation is when designers and developers

implement the Web Sites; they should make it possible in two

ways sounds and text or pictures. In addition, the sound and
text should be synchronized together in order to diminish

cognitive interference. The second recommendation is that the

computer is to agree input from the user as voice and textual

input. Because, many HI people are not capable to speak well,

and many SI people find the visual content difficult [5].

To complete what he has said, the output from the machine

or computer or any smart electronic devices should be in both

sound so that the blind or sight impaired can get the result, and

text, graphics or picture so that deaf or hearing impaired can

get the output. In addition, if developers do the same what

Daniel has said, it will be an original source and other media
that generate from the source. If the web content is text, then

the sound can be created by a voice synthesizer which is

working on the text. For example, as I mention that Daniel has

a good experience that one of his students is blind. So that

student could use lip readable or text to read the text and at the

same time listen to the generated sound. There is a technique

called lip synching; it is a very useful technique that could be

used to the synchronized sound with lip reading or text or

graphics. On the other hand, if the source is a text in a

phonetic alphabet character. Then this text should be clear to

read and displayed [5].
One of the most things that Daniel has talked about it is the

input. The machine should be built to accept different kinds of

input. Some inputs that computers can accept are voice, which

powered by voice recognition technology, keyboard, mouse,

clicking on a button, typing a direct response, menu entries or

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

32 Int'l Conf. Software Eng. Research and Practice | SERP'14 |

making hand gestures. If the user has difficulty speaking

clearly or cannot speak, as many HI people do. Then, voice

input may not be the convenient tools, and the other input will

be needed [5].

IV. HEARING IMPAIRED AND DEAF
Daniel is an academic teacher, and describes some

difficulties that could face hearing impaired people in his

paper (Requirements for maintaining Web access for Hearing

Impaired Individuals). He is a hearing impaired person from

birth and he used to understand the English language by

reading lips. Then, he explains how it was his life and how he

faces challenges in using a telephone. Moreover, reading lips

in the telephone is so hard for him. He is not satisfied with the

quality of the telephone. It will be more distortion if the sound

is amplified. In addition, he says," the increased use of

answering machines, voice mail, and voice-directed menu

selection have taken away the possibility of my asking the
person on the other end of a call if I understood her or of my

requesting her to repeat what she just said. In essence, I have

become disenfranchised from the telephone, so much so that I

do not give out my phone number anymore [5]."

Therefore, he feels more comfortable with written

communication. He used to use the Internet for

communication since 1979. However, he was panic after he

knew that the computer will have built to accept a different

kind of inputs which is a voice interface. At the end, he felt

that it is very important for him and hearing impaired people

to participate to prevent disenfranchisement form the
computer and the Internet and make them accessible.

A. Classification of Hearing Impaired people
First of all, a person who is not able to hear as well as

normal hearing person or hearing thresholds of 25dB or better

in both ears is considered to be a hearing loss person. In fig 1,

Daniel describes his situation.

Figure 1

He says," An audiogram shows two plots, one for each ear.
The plot for an ear shows for each frequency, the hearing loss

of the ear at the frequency. The loss of an ear at a frequency is

measured by determining the minimum volume required for

the ear to hear a tone of the frequency. The more of the

speech-understanding rectangle that lies below the plots for an

ear is the more that the ear can help understand human speech

[5]."

There are many ways to classify hearing impaired people

to. The first way depends on the severity of the hearing loss.
The second way is the length of time he has had the hearing

loss. The last one is what kind of inputs hearing loss person

requires in place of pure voice.

1. The severity of loss classification:

The author divided them to three groups [5]:

a) The first group is a person who has less than a 50db

loss in all frequencies; that is, he can hear some

frequencies.

b) The second group is a person who has greater than

100 db loss in all frequencies; that is, he is considered

completely deaf.
c) The third group is a person who is neither in the first

group nor in the second group. He has usable hearing

in some ranges of frequencies and is totally deaf in

other ranges of frequencies.

So that, people who are in the first group speak well and

wear some hearing aid tools that amplify all frequencies.

Nevertheless, people who are in the second group always

cannot speak and they only sign and do not wear any aid tools

since aids are useless. People who are in the third group

sometimes they use aid tools to help them to hear or could use

lip reading or only sign.

2. Length of time of Hearing loss:

Here we can classify Hearing impaired people depend on

the long of time of being hearing loss [5]:

a) The first group is a person who has loss his hearing

since before he could talk.

b) The second group is a person who has loss his

hearing after he learned to talk.

So that, a person in the second group has already learned

how to speak since he became hearing loss after he has learned

to talk. In addition, he could make the sound correctly.

However, a person in the first group could not understand the
speech and they use to sign.

3. Kind of input classification

Here, the author classified hearing loss into three groups

depend on what kind of inputs they used [5]:

a) The first group is a person who requires signing.

b) The second group is a person who wears residual

hearing aids and uses lip reading to understand

speech as it is spoken.

c) The third group is a person who wears only residual

hearing.

The most group that is considered to be hearing loss is first
group. Signers are the largest group of hearing impaired how

uses the Internet. Moreover, it is very hard for non hearing

impaired to understand them.

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

Int'l Conf. Software Eng. Research and Practice | SERP'14 | 33

B. How to help Hearing Impaired People:
One of the common techniques that are being used today is

signed language. Signing language will be a significant

contribution to the development of the Web accessible to deaf

people. In addition, it would mean a great deal to their daily

uses to the Internet. There are different variants of sign

language American Sign Language (ASL), Greek Sign

Language (SYNENNOESE), South African Sign Language
(SASL-MT), Arabic Sign Language (ArSL-TS), Spanish Sign

Language, Italian Sign Language, Japanese Sign Language,

British Sign Language [7].

There are different well-known writing systems for singing

language. The first one called Stokoe Notation. The stokoe

notation system [8] is the world’s first phonemic script that

has been developed by William Stokoe for writing American

Sign Language (ASL). The original language notation contains

of 55 symbols. In which it divided into three groups.

Moreover, each group represents one of the important aspects

of sign: ("tab" or sign location), ("dez" or handshape &
orientation), and ("sig" or movement). For example, Stokoe

notation for the American Sign Language for the term “don’t

know” can be seen in Fig 2

.
 Figure 2

The second one called HamNoSys Notation [8]. The

Hamburg Sign Language Notation System or HamNoSys is a

phonetic transcription system which has its root in the Stokoe
notation. The hamNoSys notation system includes about 210

iconic characters to represent the different sign aspects. It is

more accurate that the Stokoe notation system. The third one

called Sign Writing Notation, [8] which was originated from a

choreographic notation system called Dance Writing. There

are intuitive graphical symbols to record every sign and to

represent hand shapes, palm orientation, movements, body

locations, facial expressions and punctuation.

One of the most effective techniques that could be used to

help to communicate is Singing Avatar System. An avatar

system gives us a visual language alternative to displaying
spoken massages within educational settings or workplaces

that include deaf, and hearing loss. The first step is a speech

recognition. This step is to convert an audio stream containing

spoken words to a stream of text. Then, the text is converted

into sign language phonetics, which consists of a combination

of manual and non-manual signals including hand shape,

position, orientation, as well as facial expression and body

motion [7]. After that, the avatar system is instructed. Finally,

all user motions are captured, and stored.

V. SIGHT IMPAIRED
According to the World Health Organization [9], the

proportions of people who are estimated to be complete blind

are 39 million people, and 246 million people are considered

to be low vision. In addition, the percentage of blind or visual
impaired people who lives in modern countries is rated to be

about 90%. Moreover, blindness is defined to be unable to see,

look for or lacking the sense of sight. There are many reasons

to cause blindness which are uncorrected refractive errors,

which is considered the main cause of visual impairment,

cataract, and glaucoma.

As I mentioned before, researchers and governmental

leader pay little attention to the visual impaired people needs

when planning, design, and improve Web sites. They tend to

design the Web Sites and application to be visual interface.

Web interface in general comprises of three different kinds

[10]. The first one is content. Content means all stuffs that are
considered to be looked at such as images, graphics, text,

videos. In addition, all these contents may involve together in

one page. The second is interface semantics. There are

different layouts for every Web Sites and different graphics;

moreover, users may need to move between Web Site pages

and using linking. The third one is navigation. So that, mobile

from one page to another page is rely on the activation of

links, and the user should be capable to visually identify links,

guessing their meaning, and moving the pointer of the mouse

directly over one of them.

In the last ten years, "many government and other
international organizations such as the United Nations and

European Union stat that the accessibility to services and

information on the web is a fundamental right for any citizen,

so the needs of people with disabilities must be taken into

account by Web site and application developers [2]." So that,

W3C sets some rules and guidelines in order to make

accessible Web Sites. This will include the needs of sight

impaired. W3C guidelines are eager to cover all technical

aspects in order to make content and functionality can reach

and access by users.

A. Requirements for Aural Web Sites:
There are three requirements [10] which are needed in

order to make accessible Web Sites. The first one is the

information architecture requirement. These requirements will

help a user to comprehend and memorize the overall structure

of Web Sites. The second is related to page navigation

requirements. So that, users may need to comprehend,
navigate, and access the content of the Web sites. The third is

related to how the Web's contents interact. To accomplish

these entire requirements, there are fourteen rules [10] will

help developers and designers to make Web Sites accessible

for all:

1. At the beginning and whenever necessary, giving a user

quick aural glance of the web sites.

2. Besides that, give a user an aural semantic map of the

whole application.

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

34 Int'l Conf. Software Eng. Research and Practice | SERP'14 |

3. Provide a synopsis summary of any list.

4. Partition long lists in smaller meaningful chunks.

5. Do not use the sequence of physical pages. Provide a tool

to emphasize the history of visited pieces of content.
6. Provide a semantic navigation button to allow a user to

go “up” to the last visited list of items.

7. Creating aural page templates.

8. Minimize the number of templates.

9. Give a user a brief talk in how the page is organized and

it is structure.

10. Read the first key message of the page.

11. Making accesses to section available whenever needed.

12. Allow a user to move freely (forward and backward)

across page sections.

13. Allow the user to pause, and resume the dialogue flow.

14. Allow the user to re-play an item or an entire section.

B. Tools and Techniques to help Sight Impaired

people:
W3C recommends some assistive technology software for

blind users to use in order to provide highly accessible

content. Home Page Reader (HPR) [11] is a computer

program. HPR was developed by IBM from the work of

Chieko Asakawa at IBM Japan. It was design for blind users,

and developers to experience the blind users’ usability. The

first step, all text can be spoken loudly so that they can make

sure that the visually information in the graphics view

corresponds to the information in the text view. It reads aloud

the text on Web pages. However, it has some problems and
defects [2] as following:

1. There are some contents that cannot be transferred as

speech, such as images, flash animations, and other

multimedia contents.

2. There are some contents that are difficult to proceed,

such as hyperlinks or tables.

3. The listening of the contents of a Web page is very slow,

with respect to the cognitive speech of the user so that

the usability of Web pages can be very poor.

There is also another technology program called

aDesigner. ADesigner is a disability simulator, which was
developed for Web developers to help them ensure that their

pages are accessible and usable for people with vision

disabilities. ADesigner have complete set of tools for color

contrast of the page, the font size. In addition, tools also check

the page's compliance with accessibility guidelines. Moreover,

each Web page is given an overall score. With this

information, Web content developers get immediate feedback

and can make the necessary modifications to address these

problems before the content is published [11].

In addition, there are several softwares [12] such as JAWS

and NVDA for visually impaired people. Most of the software
uses screen reading technique. JAWS is one of the common

softwares which is used mainly for documents. So that, JAWS

read information displayed on a computer monitor loudly.

Moreover, it reads aloud text within a document, information

within dialog boxes and error messages. It also reads aloud

menu selections, text with the graphical icons on the desktop.

However, we may face another issue which is related to

bilingual language. Are those screen reader softwares able to
understand different language such as Arabic or not? It is a

perfect idea for researchers to find solutions for this kind of

challenge.

VI. CONCLUSION
In summation, making web sites accessible for all people

including deaf and blind people is vital. All users should have

the same equal rights so that they can access, browse, and

research over the Internet. In this novel, I talk about the

importance of making web sites accessible for disabled people

and how to help them to make their lives easy. W3C sets some

rules and guidelines for web sites' designers and developers to

help disabled people to access web sites. After that, I explain

the differences between hearing impaired and visual impaired
people. In addition, I mention how to make the web accessible

for both of them. Then, I talk about both of them. Moreover,

there are some tools and techniques that will help disable

people to make the Internet accessible and available.

For future work, researchers and scientists may need to

think about bilingual tools. These tools just support some

languages around the world. We need these tools to aid all

different people with different languages. So that, there is a

default language which a disable person speaks or knows and

there is a popular international language which is English.

VII. ACKNOWLEDGMENT

 I appreciate Dr. Scott Tilley from the Florida Institute of
Technology (Software Engineering Dept.) to help me to stand

and explain the idea of writing my first research paper. Also, I

thank all researchers and scientists who spend their lives to

help disable people to make their lives easy.

VIII. REFERENCES
[1] J. Carter and M. Markel, “Web accessibility for people

with disabilities: an introduction for web developers,”

Professional Communication, IEEE Transactions on, vol. 44,

no. 4, pp. 225–233, 2001.

[2] C. Cesarano, A. R. Fasolino, and P. Tramontana,

“Improving usability of web pages for blinds,” in Web Site

Evolution, 2007. WSE 2007. 9th IEEE International Workshop

on. IEEE, 2007, pp. 97–104.

[3] S. Sandhya and K. S. Devi, “Accessibility evaluation of

websites using screen reader,” in Next Generation Web

Services Practices (NWeSP), 2011 7th International

Conference on. IEEE, 2011, pp. 338–341.

[4] G. A. Di Lucca, A. R. Fasolino, and P. Tramontana, “Web

site accessibility: Identifying and fixing accessibility problems

in client page code,” in Web Site Evolution, 2005.(WSE

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

Int'l Conf. Software Eng. Research and Practice | SERP'14 | 35

2005). Seventh IEEEInternational Symposium on. IEEE,

2005, pp. 71–78.

[5] D. M. Berry, “Requirements for maintaining web access

for hearing impaired individuals,” Software Quality Journal,

vol. 12, no. 1, pp. 9–28, 2004.

[6] A. Cavender and R. E. Ladner, “Ntid international

symposium on technology and deaf education: a review,”

ACM SIGACCESS Accessibility and Computing, no. 97, pp.

3–13, 2010.

[7] Y. Bouzid and M. Jemni, “An animated avatar to interpret

signwriting transcription,” in Electrical Engineering and

Software Applications (ICEESA), 2013 International

Conference on. IEEE, 2013, pp. 1–5.

[8] M. Muhammad, Y. Thoo, and S. Masra, “Sound navigation

aid system for the vision impaired,” in Humanities, Science

and Engineering (CHUSER), 2012 IEEE Colloquium on.

IEEE, 2012, pp. 288–293.

[9] D. Bolchini, S. Colazzo, and P. Paolini, “Requirements for

aural web sites,” in Web Site Evolution, 2006. WSE’06.

Eighth IEEE International Symposium on. IEEE, 2006, pp.

75–82.

[10] H. Takagi, S. Kawanaka, M. Kobayashi, D. Sato, and C.

Asakawa, “Collaborative web accessibility improvement:

challenges and possibilities,” in Proceedings of the 11th

international ACM SIGACCESS conference on Computers

and accessibility. ACM, 2009, pp. 195– 202.

[11] M. R. Amin, B. Sylhet, B. Paul, and F. A. Khan, “Bi-

lingual audio assistance supported screen reading software for

the people with visual impairments.”

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

36 Int'l Conf. Software Eng. Research and Practice | SERP'14 |

Comparative Evaluation of Executable Modeling Languages for
Object-Oriented Modeling Education

S. Akayama1, K. Hisazumi2, S. Kuboaki3, S. Hiya1, and A. Fukuda4
1Graduate School of Information Science and Electrical Engineering, Kyushu University, Fukuoka, Japan

2System LSI Research Center, Kyushu University, Fukuoka, Japan
3Afrel Co.,Ltd., Tokyo, Japan

4Faculty of Information Science and Electrical Engineering, Kyushu University, Fukuoka, Japan

Abstract— In this study, we investigated modeling education
for novices that is based on executable modeling languages
and model-driven development(MDD). MDD can verify the
accuracy of models and generate the source code, which
allows programmers to reduce the development time required
for evaluating the software so that they can focus on the
modeling process. Thus, modeling should be taught using
MDD, because it allows students to acquire modeling skills
in a short time.

In this paper, two executable modeling languages for
object-oriented modeling education, Executable UML and
domain-specific modeling (DSM), are compared. We con-
ducted two trial courses in which we used the Executable
UML and DSM languages, respectively. The results show the
effectiveness of using MDD in modeling education.

Keywords: MDD (Model-driven development), Executable UML,
object-orientation, DSM (Domain-specific modeling), learning sup-
port

1. Introduction
Object-oriented modeling is widely used during embedded

software development and is taught in many institutes of
higher education. Since, modeling ensures good quality
and productivity during software engineering [1], software
development is shifting from manual programming to model-
driven development (MDD) [2]. However, it is difficult to
teach modeling. In the early stages of the learning process,
students ask questions such as “How do we model?” and “Is
this model equivalent to the specification?” MDD is used
to verify the accuracy of models and generate source code,
which allows programmers to minimize the development
time so that they can focus on the modeling process.
Therefore, modeling should be taught using MDD, because
it allows students to acquire modeling skills quickly.

Previous studies on MDD and education can be divided
into three categories: MDD education [3][4], including sub-
jects such as the meta-model and mechanisms of MDD;
developing MDD in system development exercises [5][6][7];
and software modeling education using MDD [8][9].

The purpose of this study was to demonstrate the effec-
tiveness of using MDD in modeling education for novices.

In this study, we used two MDD languages. One was
Executable UML [10], which has the following advantages.
(1) It uses a small, well-defined subset of UML to represent
domain models. (2) It provides a framework for the system-
atic development of software. (3) Executable UML models
can be systematically translated into deployable software
using tool support or by manual coding. Executable UML
also has many advantages even when used for purposes
other than automatic code generation. Thus, it has been used
in the teaching of software analysis and design [6]. It has
also been used to introduce the abstract thinking processes
involved in modeling, before the more concrete thought
processes involved in programming with the standard textual
imperative programming languages used at high school level
are introduced [8].

The second MDD language that we used was the domain-
specific modeling (DSM) language, which has two aims:
first, to raise the level of abstraction beyond programming
by specifying the solution in a language that directly uses
concepts and rules from a specific problem domain, and
second, to generate from these high-level specifications final
products in a chosen programming language or other form
[11].

In the study presented in this paper, we compared the
effectiveness of these two executable modeling languages
for object-oriented modeling education. The results show the
effectiveness of using MDD for object-oriented modeling
education.

The remainder of this article is organized as follows. In
Section 2, the learning objective is described. In Section 3,
MDD is presented. In Sections 4 and 5, the contents and
results of two trial courses are presented, while in Section 6,
the support of modeling education using MDD is discussed.
We provide our conclusions in Section 7.

2. Learning objective
The aim of the educational courses used in this study

was to facilitate the acquisition of the minimum skill set
required to create an object-oriented model in a short time.
The educational subjects were software novices. We used
class diagrams as a static model and state machine diagrams
as a dynamic model.

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

Int'l Conf. Software Eng. Research and Practice | SERP'14 | 37

The learning-specific goals were as follows.
Class diagrams

Assign responsibility to each class where the name repre-
sents the responsibility of the class.

State machine diagrams
Define the appropriate state name or event name and rep-
resent the dynamic behavior of each class using a state
machine diagram.

3. MDD
Instead of directly coding software using programming

languages, MDD developers model software systems using
intuitive, highly expressive, graphical notations that provide
a higher level of abstraction than native programming lan-
guages. In this approach, generators automatically create the
code and implement the system functionalities [2].

MDD methods have the following advantages. (1) MDD
facilitates the separation of design and implementation, so
that developers can focus on modeling tasks. (2) MDD can
simulate the model and therefore developers can conduct
validation early in the development process. (3) Testing and
improvement can be achieved quickly by automating the
implementation process to repeat the design cycle.

Modeling education based on MDD allows students to
repeat the model refinement process quickly. In addition, it
provides a development environment that can be called by
the programs, except the modeling target of the model, and
therefore, students can focus solely on modeling the target
application. Thus, they can learn modeling methodology
more easily.

During the early stages of learning, students also gain
experience in the software development process and the
modification of existing models, which can be learned using
MDD methods.

3.1 Executable UML
Executable UML is an extension of UML that allows

models to be executed and translated into code via model
compilers [5]. The basic elements of Executable UML are
class diagrams, state machine diagrams, and action lan-
guages. The steps of the modeling process using Executable
UML are as follows.

1) Define the subject matter, or domain, of the system.
2) Create class diagrams for the domain.
3) Model the life cycle using state machine diagrams.
4) Describe the procedure of each state machine using

action languages.
5) Validate the models.
6) Compile the models and generate the source code.

In this study, we used BridgePoint (Mentor Graphics) as
the MDD tool.

3.2 DSM
Domain-specific modeling has two main objectives: first,

to raise the level of abstraction beyond programming by
specifying the solution in a language that directly uses
concepts and rules from a specific problem domain, and
second, to generate final products in a chosen programming
language or other form from these high-level specifications
[11].

When creating and using a DSM language, (domain-
specific language (DSL))tools that can are required. We
developed a domain-specific modeling (DSM) language for
the purpose of teaching modeling using the social DSL
platform “clooca [12].” This platform allows the user to
make class diagrams and state machine diagrams. A class
diagram consists of classes and relations, while state ma-
chine diagrams consist of states (including an initial state),
event transmission states, events, and actions.

Fig. 1 shows the editing screen of the MDD tool.

Fig. 1: Editing screen of the DSL tool.

4. Modeling education using Executable
UML
4.1 Content of practical exercises

We conducted an Executable UML course (xUML course)
for first-year college students. The framework of this course
was hierarchical. It comprised three classes: basic, advanced,
and project-based learning (PBL). Each class addressed sev-
eral subjects. In the basic and advanced classes, the subjects
were fundamental techniques, fundamental exercises, and
integrated exercises. In the PBL class, the subjects were
kick-off, PBL, and result presentation.

It was a characteristic of this course that the same material
was used in all the classes. The materials used in the basic
class and the advanced class were shared, although the
development process was different. The material used in the
PBL class was an extension of the material used in the basic

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

38 Int'l Conf. Software Eng. Research and Practice | SERP'14 |

and advanced classes. These common and different aspects
helped students to learn throughout the development process.

The basic and advanced classes contained a set of a funda-
mental exercise and an integrated exercise. The educational
items used in the basic and advanced classes are shown
in Table 1. In addition, the C language was used as the
implementation language, Executable UML as the modeling
language, and BridgePoint (Mentor Graphics) as the MDD
tool.

In fundamental exercise A, the students created a simple
program, such as a line trace. In fundamental exercise B, the
students learned the relationship between the model and the
code by reverse modeling and refactoring the program. In the
integrated exercise, the students could also acquire the skills
to help them utilize the knowledge acquired during each
step via programming and modeling a more complex system.
The students developed the system by gradually increasing
the level of abstraction, as follows. The basic class exercise
involved only implementation, while the first half of the
advanced class involved design and implementation by hand
coding and the second half involved design and automatic
transformation for coding using the MDD tool.

The goal of the integrated exercise was to develop an
automated transport robot for a fictitious transportation
company. The development objective was a vehicle robot
developed using LEGO Mindstorms NXT (Fig. 2). The
automated operations were transportation, forwarding, and
sending round. Three types of operations were affected
by the presence or absence of the delivery destinations
or cargoes. A wall detector (sonar sensor) also monitored
the delivery destinations, while the bumper (touch sensor)
detected the forwarding destination. The challenge for the
robot was to trace a black line in the course using a
line monitor (light sensor) to make stops at the delivery
destination, forwarding destination, or garage. The robot
should behave appropriately at each point and deliver the
cargo. Fig. 3 shows the exercise robot course.

Fig. 2: Automated transport robot.

In integrated exercise B, we provided part of the class
diagram and a development environment, which made it easy

Fig. 3: Course layout for integrated exercise in the xUML
course.

for the students to call external devices from the model,
such as sensors and motors. Thus, they could focus on the
modeling of the target application and learn the modeling
methodology.

Fig. 4 shows the class diagram. This class diagram also
shows the BridgePoint, additional key letters, and the rela-
tionship specifiers1.

The classes in the unit layer are distributed as executable
models in the lower layers of the class diagram, which
are used to configure the auto transport robot, such as the
Bumper class and Carrier class. The main challenges were to
create state machine diagrams focused on the responsibilities
of the two classes, i.e., the AutoTransporter (control of the
automatic transport system) and the LineTracer (tracing the
line). This helped the students learn how to describe dynamic
behavior using state machine diagrams by focusing on the
responsibilities of only two classes.

We presented a list of major events in order to help stu-
dents create a model of the appropriate level of abstraction.
The event list is shown in Table 2.

The subjects taking this course had background knowl-
edge of C language grammar, excluding pointers and struc-
tures. The outline of the xUML course is shown in Table
3.

4.2 Results of practical exercises
In integrated exercise B, the achievement rate was evalu-

ated according to ten milestones. The achievement rates for
integrated exercise B are shown in Table 4. Most students
were able to reach Milestone No. 4, but failed to reach
No. 5. Thus, they were not able to attempt Nos. 6 to 10.
Difficulties in detecting the marker, rather than in modeling,

1The alphanumeric characters in the lower right hand corner of the
class (example: TP_ATP) are known as key letters, which are used to
describe the access of the class. The alphanumeric characters are added
to the relationships between classes (example: R1), which are known as
relationship specifiers and are used to describe the access relationships.

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

Int'l Conf. Software Eng. Research and Practice | SERP'14 | 39

Table 1: Educational Items used in Basic and Advanced Classes
Basic Fundamental techniques A Fundamentals of embedded systems, RTOS, cross development

Fundamental exercise A Sensor and motor programming, line trace programming
Integrated exercise A Implementation of a series of operations

Advanced Fundamental techniques B UML, MDD methods, modeling techniques, implementation techniques
Fundamental exercise B Reverse modeling of fundamental exercise A,

Manual translation of the code from models based on the translation rule
Integrated exercise B Development of the same exercise as the integrated exercise

using the MDD methodology

Fig. 4: Class diagram of the integrated exercise in the advanced class.

Table 2: Event List of the xUML course
class name event name

bumper_touched
bumper_released

Auto cargo_loaded
Transporter cargo_unloaded

end_of_turning
wall_detected
marker_detected

LineTracer step_into_the_line
go_out_from_the_line

caused failure at Milestone No. 5. Therefore, in our opinion
the students were able to appreciate the responsibility of
each class and model state change in the class using state
machine diagrams.

5. Modeling education using DSM
5.1 Content of practical exercises

We conducted the DSM language course for six second-
and third-year college students. This was an eight-hour

course. The subjects were well versed in Java and UML.
This course covered:

• Using the MDD tool (clooca).
• MDD methods and modeling techniques.
• Developing the auto transport system (a system similar

to that used in the programming class of the Executable
UML course) using a DSML and MDD.

The outline of the DSM course is shown in Table 5.
In the integrated exercise, we changed the exercise robot

course such that there was no marker, because the students
found marker detection difficult in the xUML course. Fig. 6
shows the exercise robot course.

Table 6 shows the action and event list of the DSM course.

5.2 Results of practical exercises
In the DSM course, the achievement rates were evaluated

according to only eight milestones, because we changed the
robot course in the exercise. The achievement rates for the
integrated exercise are shown in Table 4. Approximately

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

40 Int'l Conf. Software Eng. Research and Practice | SERP'14 |

Table 3: Outline of the xUML Course
Basic Students 21 first-year college students

Background knowledge C Language grammar, excluding pointers and structure
Exercise style Pair (one PC and one robot per pair)
Term 3 days (7 hours per day)
Test Nothing
Questionnaire Course content, knowledge, and skills

Advanced Students 20 first-year college students
Background knowledge Acquired in the basic course
Exercise style Pair (1 PC and 1 robot per pair)
Term 4 days (7 hours per day)
Test Knowledge of UML (day 2), knowledge of MDD (day 4)
Questionnaire Course content

PBL Students 17 first-year college students
Background knowledge Acquired in the basic and advanced courses
Exercise style 4 or 5 students per team
Term 14 days (kick-off: 2 days; presentation of results: 2 days)
Test Nothing
Questionnaire Course content, knowledge, and skills

Table 4: Achievement Rates for Integrated Exercise in
xUML and DSM Courses

Milestone xUML course DSM course
1) Trace a line 100 % 100 %
2) Detect a wall and stop 78 % 67 %
3) Detect unloading and send round 78 % 83 %
4) Stop in the garage 89 % 67 %
5) Change behavior to detect a marker 56 % - %
6) Change right course 44 % - %
7) Trace the opposite line edge 33 % 83 %
8) Ignore the marker 33 % - %
9) Invert 33 % 67 %
10) Complete all patterns 11 % 17 %

Table 5: Outline of the DSM Course
Students 6 second and third-year students
Background knowledge C Language grammar

excluding pointers and structure
Exercise style Single (one PC and one robot per person)
Term 2 days (4 hours per day)
Test Nothing
Questionnaire course content

70% of the students met the challenges, except for Milestone
No. 8 (complete all patterns).

Typical examples of class diagrams are shown Fig. 7.
Table 7 shows the number of errors in the class diagrams.

Each subject created one class and therefore the maximum
number of errors is six.

A typical example of a state machine diagram is shown
in Fig. 8. Five students used the same name to describe
multiple states in the state machine diagrams. Two students
made “No states names” and “State names inappropriate”
errors, such as a or b. However, such an error in state name
was made in only a few states and the remaining states were

Table 6: Action and Event List of the DSM course
Action Event
Stop Bumper touched
Go forward Bumper released
Go forward with turn right Cargo loaded
Go forward with turn left Cargo unloaded
Go backward Wall detected
Go backward with turn right Marker detected
Go backward with turn left Step into the line

Go out from the line

Table 7: The Total Number of Classes with Errors
Errors Number
Relations are not drawn 2
No relations names 4
Class names do not represent the responsibilities 2
Relation names are inappropriate 2
There are unnecessary classes 1
One class has several responsibilities 1

given appropriate state names.

6. Discussion
6.1 Are the languages useful for modeling ed-
ucation?

Executable UML can be used to draw a model of many
areas, because it is a generic language.

However, it was found that when learners create a model
using Executable UML, it takes them a long time to learn the
action language that is required to define the state actions.
Therefore, they find it difficult to focus on creating state
machine diagrams and class diagrams. Because all the names
in the models, such as class names and state names, must be

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

Int'l Conf. Software Eng. Research and Practice | SERP'14 | 41

Fig. 5: Example of a state machine diagram in the xUML
course.

written in English, it was difficult for the students who were
not proficient in English to determine appropriate names.
This also led to a decrease in the students’ motivation.

In contrast, the DSM course required that a modeling
language be created for the development domain. In this
practical exercises, we developed a DSM language based on
the results of the xUML course. Because the design goal
of the DSM language was to enable the students to focus
on modeling without having to consider the strict rules of
grammar, this language allowed a low degree of freedom.
However, the students were able to develop this system
smoothly in the practical exercises.

The total development time of the integrated exercise in
xUML was nine hours, whereas in the DSM course it was
three hours. Even taking into account the change in the robot
course in the exercise, the students were able develop the
system in a relatively short time in the DSM course. Some
students in the DSM course stated that “It is good that I
can check my model using a executable model,” “It is good
to be able to attempt the challenge many times,” and “I am

Fig. 6: Course layout for integrated exercise in the DSM
course.

able to keep my motivation high.” Thus, the DSM course
was able to keep students’ motivation at a high level.

6.2 Learning support using MDD
6.2.1 Class diagrams

The class name must be stated in alphanumeric form in
both Executable UML and DSM language, and thus, in
this characteristic there is no difference between the two
languages. The advantage of using MDD is that it is very
effective for making structural changes in the second half
of development. In the DSM course, in order to analyze
the process of creating the model (examples: classes added,
modified, and deleted), the exercise time was divided into
three parts: first, middle, and last. According to the results,
students also added and deleted classes in the last part.
Therefore, the students changed the class structure until they
reached the last part. Thus, they took time to address the
model refinement process. We found that these educational
courses based on MDD gave the students the necessary
experience to improve their modeling skills.

6.2.2 State machine diagrams

The state name must be written in English in Executable
UML. In contrast, in the DSM language Japanese can be
used. Thus, since time is not spent on translating them into
English, it is possible to determine the state names more
smoothly. Because the event and action can be chosen from
a pull-down menu, the time it takes to create a state machine
diagram is shorter.

In the xUML course, however, the procedure for each state
machine must be described using action languages. Thus, the
time it takes to create a state machine diagram in Executable
UML is longer.

A comparison of Fig. 5 and Fig. 8 shows that in Ex-
ecutable UML the action scripts in the states are so long
that it takes time to understand the content of the action. In

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

42 Int'l Conf. Software Eng. Research and Practice | SERP'14 |

Fig. 7: Examples of class diagrams in the DSM course.

Fig. 8: Example of a state machine diagram in the DSM
course.

contrast, in the DSM language, the state can be understood
immediately, because the action is defined in one sentence.

Thus, creating a DSM tailored to the educational subject
may help improve the understanding of the students.

7. Conclusion
In this paper, we described a study in which we com-

pared two executable modeling languages for object-oriented
modeling education: Executable UML and DSM language.
We conducted two trial courses for modeling education
for novices in which the two languages were used. In
development using Executable UML, problems related to
drawing the models were found: formulating action scripts
is difficult for students and the fact that all the names in the
models, such as class names and state names, must be written
in English, hinders the students and lowers their motivation.

It was found that the students spent less time on develop-
ment in the exercise in the DSM course than in the xUML
course. Therefore, in the introductory teaching of modeling,
it is effective to use the DSM language, which is customized
for educational targets and items.

One problem arose when using the MDD method for
teaching modeling: the students neglected the quality of
the model because they were focused on completing the
functional aspects that could be evaluated with the MDD.
In these courses, we addressed this issue by conducting a
review with the participation of the teachers. It is necessary
to consider a supporting method for enhancing the quality
of the model for the future.

Acknowledgment
This work was supported by JSPS KAKENHI Grant

Number 26730174.

References
[1] T. C. Lethbridge, G. Mussbacher, A. Forward, and O. Badreddin,

“Teaching uml using umple: Applying model-oriented programming
in the classroom,” in 24th IEEE-CS Conference on Software Engi-
neering Education and Training, 2011, pp. 421–428.

[2] P. Liggesmeyer and M. Trapp, “Trends in embedded software engi-
neering,” IEEE Software, vol. 26, no. 3, pp. 19–25, 2009.

[3] T. Gjøsater and A. Prinz, “Teaching model driven language handling,”
Electronic Communications of the EASST, vol. 34, pp. 1–10, 2010.

[4] B. Tekinerdogan, “Experiences in teaching a graduate course on
model-driven software development,” Computer Science Education,
vol. 21, no. 4, pp. 363–387, 2011.

[5] H. Burden, R. Heldal, and T. Siljamaki, “Executable and translatable
uml - how difficult can it be?” in 18th Asia Pacific Software Engi-
neering Conference, 2011, pp. 114–121.

[6] S. Flint, H. Gardner, and C. Boughton, “Executable/translatable uml
in computing education,” in Sixth Australasian Computing Education
Conference, vol. 30. ACS, 2004, pp. 69–75.

[7] Y. Khmelevsky, G. Hains, and C. Li, “Automatic code generation
within student’s software engineering projects,” in Proc. of the Sev-
enteenth Western Canadian Conference on Computing Education.
ACM, 2012, pp. 29–33.

[8] C. Starrett, “Teaching uml modeling before programming at the high
school level,” in Seventh IEEE International Conference on Advanced
Learning Technologies. IEEE Computer Society, 2007, pp. 713–714.

[9] S. Akayama, S. Kuboaki, K. Hisazumi, T. Futagami, and T. Kitasuka,
“Development of a modeling education program for novices using
model-driven development,” in Proc. 2012 Workshop on Embedded
and Cyber- Physical Systems Education. ACM, 2012.

[10] S. J. Mellor and M. J. Balcer, Excutable UML -A Foundation for
Model-Driven Architecture. Addison-Wesley, 2002.

[11] J.-P. T. Steven Kelly, Domain-Specific Modeling: Enabling Full Code
Generation. Wiley-IEEE Computer Society Press, 2008.

[12] Technical Rockstars, “clooca,” http://www.clooca.com.

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

Int'l Conf. Software Eng. Research and Practice | SERP'14 | 43

Effectiveness of Coupling Metrics in Identifying Change-
Prone Object-Oriented Classes

Mahmoud O. Elish1 and Ali A. Al-Zouri2

1Information and Computer Science Department, King Fahd University of Petroleum and Minerals, Dhahran,
Saudi Arabia, elish@kfupm.edu.sa

2IT Development Department, IT Head Office, SABB, Riyadh, Saudi Arabia, ali.alzouri@sabb.com

Abstract - This paper empirically evaluate the effectiveness of
a set of coupling metrics, identified in a literature survey, as
early indicators of change-prone classes from one release to
the next in object-oriented software evolution process. Several
hypotheses were tested, and different logistic regression mod-
els were constructed for predicting change-prone classes.
Coupling metrics were found to be statistically correlated with
change-proneness of classes. The results also indicate that a
prediction model based on coupling metrics is generally more
accurate than a model based on cohesion metrics. Further-
more, a prediction model based on import coupling metrics is
more accurate than a model based on export coupling met-
rics. We also found that the coupling metrics in the C&K suite
are not necessarily more accurate than other metrics in the
suite in identifying change-prone classes in evolving object-
oriented software. Moreover, there is no confounding effect of
class size in the validity of some of the investigated coupling
metrics.

Keywords: Coupling metrics; object-oriented software;
software evolution.

1 Introduction
 Identification of change-prone classes in an object-
oriented software system is an important activity especially in
large and complex systems. A great majority of changes is
rooted in a small proportion of classes [14]. In other words,
around 80% of the changes are actually rooted in around 20%
of the classes. This phenomenon has been known as Pareto's
Law (also as the 80:20 rule) [14]. Identifying change-prone
classes can therefore be very useful in guiding software
maintenance and evolution; distributing resources more effi-
ciently and effectively; and thus enabling the project manager
and his team to focus their effort and attention on the change-
prone classes during the evolution process.
 Many coupling metrics have been proposed in the litera-
ture. Most of them have been empirically validated by explor-
ing the relationships between them and certain software
quality attributes such as fault-proneness [3, 4, 8, 13, 16],
testability [5], reusability [12], and maintenance effort [15].
Results from the previous empirical studies indicate that cou-
pling metrics are good indicators of several quality attributes.

 This paper aims to empirically evaluate a set of coupling
metrics, identified in a literature survey [1], as early indica-
tors of change-prone classes from one release to the next in
evolving object-oriented software. This set of metrics covers
comprehensively different type of interaction and relation-
ships within a class and between classes. Metrics that are
correlated with class change-proneness will be essential for
objective and quantitative identification and characterization
of change-prone classes and for effective prediction of
change-proneness during software evolution throughout the
releases. In addition, these metrics will provide useful guid-
ance to practitioners involved in development and mainte-
nance of evolving large-scale software.
 The rest of this paper is organized as follows. Section 2
reviews related works. Section 3 describes the empirical
study and discusses its results. Section 4 concludes the papers
and suggests directions for future work.

2 Related Work
 In the literature, the relationships between coupling
metrics and several software quality attributes have been
explored. Briand et al. [4] explored the relationships between
design measures and fault-proneness of classes. They found
that most of the coupling metrics are good predictors of fault-
proneness. Gyimothy et al. [13] found that CBO (coupling
between object classes) and RFC (response set for class)
metrics are good predictors of fault-proneness. El-Emam et
al. [8] found that OCMEC (export coupling based on class-
method interaction) and OCAEC (export coupling based on
class-attribute interaction) metrics have strong association
with fault-proneness.
 Bruntink and Deursen [5] empirically studied the rela-
tionship between several object-oriented metrics and software
testability. RFC metric was one of them. Testability was
measured in terms of test efforts which were taken from the
size of test suites. Results showed that there is significant
relationship between RFC and testability.
 Gui and Scott [12] empirically studied the relationship
between CBO, RFC, MPC (message passing coupling) and
DAC (data abstraction coupling) metrics and software reusa-
bility. Reusability was measured by the number of lines of
code that were added, modified or deleted in order to extend
some function in the system. Their results indicated that there

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

44 Int'l Conf. Software Eng. Research and Practice | SERP'14 |

is strong relationship between coupling metrics and reusabil-
ity, especially CBO and RFC.
 Li and Henry [15] studied coupling metrics (CBO, RFC,
MPC, DAC) with respect to maintenance effort, which was
measured by the number of lines changed per class. A line
change could be an addition or a deletion. Their results
showed that there is strong relationship between coupling
metrics and maintenance effort.
 Wilkie and Kitchenham [18] studied two versions of
CBO metric according to direction of coupling,
CBO(backward) to count export coupling and CBO(forward)
to count import coupling, with respect to how the final ver-
sion of the system differs from the first version. Changes
were counted as the number of changes per class. They found
that CBO(forward) is a good predictor of change-prone clas-
ses. CBO(backward) had slightly lower correlation with
change-proneness and found to be not significant.
 Koru and Liu [14] tested and validated the Pareto's Law
which implies that a great majority (around 80%) of changes
are rooted in a small proportion (around 20%) of the classes.
They also identified and characterized the change-prone clas-
ses in two products (KOffice and Mozilla) by producing tree-
based models. Their results from both systems strongly sup-
ported Pareto's law. The resulting tree-based model consists
of several metrics and OCMEC and OCMIC (import coupling
based on class-method interaction) coupling metrics were part
of the model.
 In addition to the coupling metrics, other metrics and
approaches have been proposed in the literature to predict
change-proneness. For example, Tsantalis et al. [17] proposed
a probabilistic approach to estimate the change proneness of
an object-oriented design. Moreover, Elish and Al-Khiaty [9]
proposed a suite of metrics for quantifying historical changes
to predict future change-prone classes in object-oriented
software.
 This study explores the relationships between a compre-
hensive set of coupling metrics and class change-proneness,
whereas previous studies have been limited to few coupling
metrics. In addition, we are assessing these metrics in a soft-
ware evolution context throughout the releases.

3 Empirical Study
 The objective of this study is to empirically investigate
the relationships between a set of coupling metrics and the
change-proneness of classes in evolving object-oriented soft-
ware. In other words, we want to evaluate the capability of
these metrics as early indicators of change-prone classes from
one software release to the next.

3.1 Independent and Dependent Variables
 The main independent variables are 22 coupling metrics,
which were identified in a literature survey on object-oriented
design measures [1]. All of them are static and language in-
dependent. For comparison purposes, cohesion metrics (iden-
tified in a literature survey on object-oriented design

measures [2]) and C&K metrics (Chidamber and Kemerer
[6]) were used as other independent variables to build other
prediction models. Definitions of the coupling, cohesion and
C&K metrics are provided in [1], [2] and [6] respectively.
 As a dependent variable, we used a dichotomous varia-
ble (named CHANGE) that indicates whether or not a class
was changed from one software release to the next release. A
class is considered changed if at least one of its lines of
source code was changed or deleted, or at least one new line
of code was added to it. Comment and blank lines were ex-
cluded.

3.2 Hypotheses
• Hypothesis 1: There is a statistically significant correlation

between each of the investigated coupling metrics and
change-proneness of classes in evolving object-oriented
software.

• Hypothesis 2: A prediction model based on the investigated
coupling metrics is more accurate than a model based on
cohesion metrics in identifying change-prone classes in
evolving object-oriented software.

• Hypothesis 3: A prediction model based on import coupling
metrics is more accurate than a model based on export
coupling metrics in identifying change-prone classes in
evolving object-oriented software.

• Hypothesis 4: Coupling metrics in the C&K suite are more
accurate than other metrics in the suite in identifying
change-prone classes in evolving object-oriented soft-
ware.

3.3 Software Systems Analyzed
 Two multi-release object-oriented software systems of
different size and from different application domains were
analyzed in this study: Stellarium1 and LabPlot2. Both systems
are open source systems and written in C++ programming
language. Stellarium is an educational system for astronomy,
and the goal of the system is to render 3D photo-realistic
skies in real time with OpenGL. It displays stars, constella-
tions, planets, nebulas and others things like ground, land-
scape, atmosphere, etc. LabPlot is a desktop environmental
system for visualization data. The goal of the system is data
plotting and function analysis.
 All releases of both systems were analyzed from the
first release to the most recent release at the time of this
study. Stellarium system has seven releases, whereas LabPlot
system has six releases. Release numbers and size measures
of these two systems are provided in Table 1. The percentage
of changed and unchanged classes from one release to the
next are shown in Figure 1 and Figure 2 for Stellarium and
LabPlot systems respectively.

1 www.sourceforge.net/projects/stellarium/
2 www.sourceforge.net/projects/labplot/

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

Int'l Conf. Software Eng. Research and Practice | SERP'14 | 45

Table 1. Release numbers and size measures

Stellarium system LabPlot system

Release
Number

Number
of
classes

Lines of
code
(LOC)

Release
Number

Number
of classes

Lines of
code
(LOC)

0.6.2 102 9499 1.4.0 35 1399
0.7.1 117 12774 1.4.1 38 1794
0.8.0 140 16103 1.5.0 44 1519
0.8.1 147 17004 1.5.1 49 2173
0.8.2 154 20141 1.6.0 53 2902
0.9.0 191 22334 2.0.0 24 852
0.9.1 190 12140

 It can be observed that the size of the Stellarium system
is bigger than the LabPlot system in terms of the number of
classes and lines of code (LOC). Moreover, the number of
classes and LOC are increasing from one release to the next
in both systems, from the first release to the release before the
last one, which is most likely due to the addition of new fea-
tures and requirements. However, there is a significant drop
in the number of classes in the LabPlot system, and a signifi-
cant drop in LOC in both systems in the last release. This
suggests that a major refactoring was performed. The per-
centages of changed classes that are provided in Figure 1 and
Figure 2 include deleted classes. The differences in the per-
centages of changed classes between releases and between
the two systems will be helpful in evaluating the accuracy of
the prediction models and preventing biased results.

0.6.2-
0.7.1

0.7.1-
0.8.0

0.8.0-
0.8.1

0.8.1-
0.8.2

0.8.2-
0.9.0

0.9.0-
0.9.1

% of changed classes 57% 76% 31% 16% 67% 37%

% of unchnaged classes 43% 24% 69% 84% 33% 63%

0%

20%

40%

60%

80%

100%

%
 o

f c
la

ss
es

From a release - to the next

Figure 1. Percentage of changed and unchanged classes from one
release to the next in Stellarium system

1.4.0-1.4.1 1.4.1-1.5.0 1.5.0-1.5.1 1.5.1-1.6.0 1.6.0-2.0.0

% of changed classes 49% 66% 59% 47% 74%

%.of unchnaged classes 51% 34% 41% 53% 26%

0%

20%

40%

60%

80%

100%

%
 o

f c
la

ss
es

From a release - to the next

Figure 2. Percentage of changed and unchanged classes from one

release to the next in LabPlot system

3.4 Data Collection
 Columbus3 tool [11] was used in this study to collect all
independent variables, i.e., coupling, cohesion and C&K
metrics. ExamDiff Pro4 tool was used to collect the dependent
variable by comparing classes from one release to the next.
Comment and blank lines were excluded in class comparison.
Our approach is release by release prediction where we train
the prediction model using all releases from the first release
to release i-1 and then test it using release i. Since there are
seven releases in the Stellarium system and six in the LabPlot
system, five and four pairs of training and testing datasets
were produced from each system respectively; no training
dataset for the first release and no testing dataset for the last
release.

3.5 Descriptive Statistics
 Table 2 and Table 3 provide descriptive statistics of the
22 coupling metrics under investigation, which were collect-
ed from Stellarium and LabPlot systems, respectively. In
general, the LabPlot system has lower coupling than the
Stellarium system. Only coupling metrics that have more than
five non-zero values were considered for further analysis
since those metrics that have less than five non-zero values
have low variance (almost zero) and they may mislead the
analysis. This strategy was also applied in the previous stud-
ies [4, 8]. Metrics with less than five non-zero values are
highlighted in both tables.

3.6 Correlation Analysis
 We performed Spearman’s rank-order correlation analy-
sis, at 99% confidence level, between the dependent variable
(CHANGE) and each of the investigated coupling metrics.
Table 4 reports the results over all the releases of Stellarium
and LabPlot systems, respectively, in terms of the correlations
coefficients and p-values. All metrics in both systems, except
OCAEC in Stellarium, were found to be significantly corre-
lated (p-value < 0.01) with CHANGE. However, OCAEC
metric in Stellarium was significantly correlated with
CHANGE but at 95% confidence level (p-value < 0.05).
Hypothesis 1 is therefore accepted.
 It can be observed that all coupling metrics, except IH-
ICP (information-flow-based inheritance coupling) metric,
are positively correlated with class change-proneness. This
indicates that the more the coupling of a class with the rest of
the system the higher the probability that the class will
change. In case of IH-ICP metric, the negative correlation
between it and class change-proneness suggests that the more
the coupling of a class with its ancestors through methods
invocations the less likely the class will change. This obser-
vation can be explained; ancestor classes are expected to be
highly stable [10], and thus change propagations from them
to their descendant classes are less likely to occur.

3 http://www.frontendart.com
4 http://www.prestosoft.com/edp_examdiffpro.asp

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

46 Int'l Conf. Software Eng. Research and Practice | SERP'14 |

Table 2. Descriptive statistics of coupling metrics in Stellarium system

Metric Mean Std Dev. Max Min
CBO 2.24 3.91 47 0

CBO1 1.63 3.63 45 0

RFC 16.4 37.49 447 0

RFC1 14.85 34.02 424 0

MPC 16.38 74.08 1309 0

DAC 2.19 12.04 165 0

DAC1 1.09 3.22 34 0

ICP 29.28 141.74 2357 0

IH-ICP 3.13 10.57 109 0

NIH-ICP 26.15 141.51 2357 0

ACAIC 0 0 1 0

DCAEC 0 0 1 0

ACMIC 0 0 2 0

DCMEC 0 0 3 0

AMMIC 0 0 0 0

DMMEC 0 0 0 0

OMMIC 0 0 0 0

OMMEC 0 0 0 0

OCAIC 2.11 11.36 165 0

OCAEC 1.89 5.8 117 0

OCMIC 1.93 4.05 32 0

OCMEC 1.81 7.45 71 0

Table 3. Descriptive statistics of coupling metrics in LabPlot system

Metric Mean Std Dev. Max Min
CBO 0.32 0.75 4 0

CBO1 0.31 0.75 4 0

RFC 9.31 17.18 124 0

RFC1 9.31 17.18 124 0

MPC 4.13 15.45 124 0

DAC 0.97 2.21 13 0

DAC1 0.73 1.43 7 0

ICP 4 18.29 168 0

IH-ICP 0 0 0 0

NIH-ICP 4 18.29 168 0

ACAIC 0 0 0 0

DCAEC 0 0 0 0

ACMIC 0 0 0 0

DCMEC 0 0 0 0

AMMIC 0 0 0 0

DMMEC 0 0 0 0

OMMIC 0 0 0 0

OMMEC 0 0 0 0

OCAIC 0.97 2.21 13 0

OCAEC 0.95 2.37 12 0

OCMIC 0.97 2.28 14 0

OCMEC 0.93 2.59 18 0

Table 4. Spearman correlation results

Metric Stellarium LabPlot
Corr. Coef. p-value Corr. Coef. p-value

CBO 0.14 <0.01 0.26 <0.01

CBO1 0.20 <0.01 0.24 <0.01

RFC 0.19 <0.01 0.48 <0.01

RFC1 0.22 <0.01 0.48 <0.01

MPC 0.20 <0.01 0.21 <0.01

DAC 0.27 <0.01 0.43 <0.01

DAC1 0.27 <0.01 0.44 <0.01

ICP 0.18 <0.01 0.24 <0.01

IH-ICP -0.16 <0.01 --- ---

NIH-ICP 0.21 <0.01 0.24 <0.01

OCAIC 0.28 <0.01 0.43 <0.01

OCAEC 0.07 0.03 0.30 <0.01

OCMIC 0.26 <0.01 0.43 <0.01

OCMEC 0.17 <0.01 0.28 <0.01

3.7 Prediction Models
 Different logistic regression models, standard models
based on maximum likelihood estimation, were constructed in
this study for predicting change-prone classes from one soft-
ware release to the next. In the following subsections, we
compare the accuracy (correct classification rate) of coupling-
based model vs. cohesion-based model; import coupling-
based model vs. export coupling-based model; and among the
models that are based on each metric in the C&K suite.

3.7.1 Coupling-based Model vs. Cohesion-based Model
 In a modular design, each individual class should have
high cohesion within the class and low coupling with other
classes. It is interesting to investigate which one of these two
class characteristics (coupling and cohesion) are better pre-
dictors of its change-proneness. Accordingly, two prediction
models were constructed for identifying change-prone classes
for each system (Stellarium and LabPlot). One model was
based on the coupling metrics as independent variables; and
the other was based on the cohesion metrics as independent
variables. The prediction was performed release by release
where the models were trained using all releases from the
first release to release i-1 and then tested using release i. The
accuracy (correct classification rate) of each model for each
release was calculated as well as the average accuracy over
all the releases. Figure 3 and Figure 4 illustrate the accuracy
curve of these models on Stellarium and LabPlot systems
respectively. The horizontal axis represents the release num-
ber and the vertical axis represents the accuracy for identify-
ing change-prone classes in that release.
 Out of the five releases of Stellarium system, the accu-
racy of the coupling-based model was better than the accura-
cy of the cohesion-based model in two releases (0.8.0 and
0.8.1), and the accuracy of the cohesion-based model was
better in two releases as well (0.7.1 and 0.8.2). In release
0.9.0, both models have almost the same accuracy. However,
the best achieved accuracy by the coupling-based model
throughout the releases was 70.1% compared to 68.6% which
was achieved by the cohesion-based model. In LabPlot Sys-
tem, the coupling-based model had better accuracy than the
cohesion-based model in three releases, and in release 1.5.1
in which the accuracy of the cohesion-based model was bet-
ter, the difference was only 2%. The highest accuracy of the
coupling-based model reached 79.5% in release 1.5.0, while
the highest accuracy of the cohesion-based model was 75.5%.
 It was observed that the models based on coupling met-
rics outperform the models based on cohesion metrics in both
systems in terms of the average accuracy across the releases.
In Stellarium system, the average accuracy of the coupling-
based model was 62.2%, whereas it was 58.8% by the cohe-
sion-based model. In LabPlot System, the average accuracy
of the coupling-based model was 72.2%, whereas it was 68%
by the cohesion-based model. These results suggest the ac-
ceptance of hypothesis 2.

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

Int'l Conf. Software Eng. Research and Practice | SERP'14 | 47

0.7.1 0.8.0 0.8.1 0.8.2 0.9.0

Coupling-based
Model 59.8% 58.6% 70.1% 55.2% 67.5%

Cohesion-based
Model 64.1% 50.7% 51.7% 59.1% 68.6%

40.0%

50.0%

60.0%

70.0%

80.0%
Ac

cu
ra

cy

Figure 3. Accuracy of coupling-based model and cohesion-based

model for Stellarium system

1.4.1 1.5.0 1.5.1 1.6.0

Coupling-based
Model 65.8% 79.5% 73.5% 69.8%

Cohesion-based
Model 55.3% 75.0% 75.5% 66.0%

50.0%

60.0%

70.0%

80.0%

90.0%

Ac
cu

ra
cy

Figure 4. Accuracy of coupling-based model and cohesion-based

model for LabPlot system

3.7.2 Import Coupling-based Model vs. Export Cou-
pling-based Model

 A class could depend on some other classes, and some
classes could depend on it. Import and export coupling met-
rics measure these dependencies respectively. Table 5 lists
import and export coupling metrics. We investigated which
one of these two types of coupling metrics (import and ex-
port) is better predictor of class change-proneness. Two pre-
diction models were constructed for identifying change-prone
classes for each system (Stellarium and LabPlot). One model
was based on the import coupling metrics as independent
variables; and the other was based on the export coupling
metrics as independent variables. The prediction was also
performed release by release where the models were trained
using all releases from the first release to release i-1 and then
tested using release i. The accuracy (correct classification
rate) of each model for each release was calculated as well as
the average accuracy over all the releases. Figure 5 and Fig-
ure 6 illustrate the accuracy curve of these models on
Stellarium and LabPlot systems respectively.

Table 5. Import and export coupling metrics

Import Coupling Me-
trics

CBO, CBO1, RFC, RFC1, MPC, DAC, DAC1,
ICP, IH-ICP, NIH-ICP, OCAIC, OCMIC

Export Coupling Me-
trics

CBO, CBO1, OCAEC, OCMEC

0.7.1 0.8.0 0.8.1 0.8.2 0.9.0

Import Coupling-
based Model 54.7% 45.7% 70.1% 55.2% 68.1%

Export Coupling-
based Model 55.6% 35.7% 70.1% 49.4% 67.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

Ac
cu

ra
cy

Figure 5. Accuracy of import coupling-based model and export cou-

pling-based model for Stellarium system

 In Stellarium system, the import coupling-based model
outperformed the export coupling-based model in three re-
leases (0.8.0, 0.8.2 and 0.9.0). In release 0.8.1, both models
had the same accuracy (70.1%), and in release 0.7.1, the
accuracy of the export coupling-based model was better than
the accuracy of the import coupling-based model by 1% only.
The average accuracy of the import coupling-based model
was 58.7%, whereas it was 55.5% by the export coupling-
based model. In LabPlot system, the import coupling-based
model outperformed the export coupling-based model in all
releases. The highest accuracy of the import coupling-based
model was 81.8%. The average accuracy of the import cou-
pling-based model was 71.9%, which is very high compared
to the average accuracy of the export coupling-based model
(55.5%).
 These results indicate that the models based on import
coupling metrics outperform the models based on export
coupling metrics in both systems in terms of the average
accuracy. We therefore accept hypothesis 3.

1.4.1 1.5.0 1.5.1 1.6.0

Import Coupling-
based Model 68.4% 81.8% 71.4% 66.0%

Export Coupling-
based Model 57.9% 52.3% 59.2% 52.8%

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

Ac
cu

ra
cy

Figure 6. Accuracy of import coupling-based model and export cou-

pling-based model for LabPlot system

3.7.3 Models based on Each Metric in C&K Suite
 The C&K suite of metrics consists of six metrics [6]:
CBO (coupling between object classes), RFC (response set
for class), LCOM (lack of cohesion in methods), WMC
(weighted methods per class), DIT (depth of inheritance tree),
NOC (number of children). Two of them are coupling metrics

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

48 Int'l Conf. Software Eng. Research and Practice | SERP'14 |

which are CBO and RFC. The following analysis aimed to
compare the prediction performance of each of these two
metrics in identifying change-prone classes against each of
the other four metrics in the C&K suite.
 For Stellarium system, six prediction models were built;
each based on one of the six metrics in the C&K suite. For
LabPlot system, only four models were built since there is no
inheritance in LabPlot system and thus DIT and NOC metrics
were excluded. Figure 7 and Figure 8 illustrate the accuracy
curve of these models on Stellarium and LabPlot systems
respectively.
 We now compare the accuracy of the coupling metrics
(CBO and RFC) against the other four metrics (LCOM,
WMC, DIT, and NOC) in the C&K suite. Out of the five
releases of Stellarium system, the LCOM model was the best
in two releases, the WMC model was best in two other re-
leases, and the CBO model was the best in one release. The
average accuracy achieved by each of the CBO, RFC,
LCOM, WMC, DIT and NOC models was 53.1%, 52.2%,
54.2%, 54.9%, 45.9% and 44.6% respectively. It can be ob-
served that the average accuracy achieved by each of the
CBO, RFC, LCOM, WMC models is competitive (less than
3% differences). However, the performance of the DIT and
NOC models is noticeably lower than the other metrics. This
suggests that inheritance-based metrics are not good indica-
tors of change-prone classes. In LabPlot system, the average
accuracy achieved by each of the CBO, RFC, LCOM and
WMC models was 57.4%, 72.6%, 67.5% and 61.6% respec-
tively. The RFC model outperformed all other three models in
all release except the last release where it was outperformed
by the WMC model. The CBO model, however, has the low-
est accuracy on average. These results suggest the rejection of
hypothesis 4.

3.8 Confounding Effect of Class Size
 We also investigated the potential confounding effect of
class size on the validity of the investigated coupling metrics
with respect to their relationship with change-proneness. This
helps to determine if the relationship between these metrics
and change-proneness of classes is real regardless of the class
size. We followed the same approach suggested by El Emam
et al. [7] to determine whether there is a confounding effect
of class size. The idea is to include a size metric (LOC in this
study) as another independent variable, in addition to a cou-
pling metric, in a prediction model for change-proneness. If
there is a statistically significant difference in the results with
and without the size metric, then this indicates a confounding
effect of size on the validity of that coupling metric.
 In order to examine the confounding effect of size on
each coupling metric Ci, two prediction models for class
change-proneness were built: (i) one based on the coupling
metric Ci only and (ii) one based on the Ci and LOC. Wil-
coxon nonparametric test was then performed, at 95% confi-
dence level, to evaluate the significance difference between
the results obtained from each model. Table 6 reports the Z
statistic values and p-values for the Wilcoxon test results. If

the p-value is less than 0.05, then there is a confounding
effect of size on the validity of the corresponding coupling
metrics.
 It can be observed that, in LabPlot system, there is no
confounding effect of class size on the validity of all of the
coupling metrics. However, in Stellarium system, the associa-
tions between some coupling metrics (i.e. CBO, CBO1, RFC,
ICP, IH-ICP, OCAEC, and OCMEC) and change-proneness
of classes disappear after controlling for class confounder.

0.7.1 0.8.0 0.8.1 0.8.2 0.9.0

CBO Model 76.1% 31.4% 60.5% 42.9% 54.5%

RFC Model 64.1% 31.4% 63.3% 42.9% 59.2%

LCOM Model 58.1% 31.4% 72.8% 40.9% 67.5%

WMC Model 63.3% 38.6% 64.6% 46.8% 61.3%

DIT Model 53.9% 32.1% 51.7% 33.1% 58.6%

NOC Model 72.7% 32.9% 21.8% 33.1% 62.8%

15.0%

30.0%

45.0%

60.0%

75.0%

90.0%

Ac
cu

ra
cy

Figure 7. Accuracy of models based on each metric in C&K suite for
Stellarium system

1.4.1 1.5.0 1.5.1 1.6.0

CBO Model 60.5% 59.1% 57.1% 52.8%

RFC Model 63.2% 81.8% 77.6% 67.9%

LCOM Model 47.4% 77.3% 77.6% 67.9%

WMC Model 42.1% 59.1% 75.5% 69.8%

30.0%

45.0%

60.0%

75.0%

90.0%

Ac
cu

ra
cy

Figure 8. Accuracy of models based on each metric in C&K suite for

LabPlot system

3.9 Limitations
 The results of this study were obtained by analyzing two
C++ open source systems. Although these systems are normal
open source systems and representing different size and ap-
plication domains, more studies should be conducted to fur-
ther support the results and to accumulate knowledge.
 This study focused on static coupling metrics. It did not
explore the relationship between dynamic coupling metrics
and change-processes of classes. This study was also focused
on change-proneness of classes, i.e., whether or not a class
was changed from one software release to the next release.
The capability of coupling metrics in estimating change size
and density was not evaluated.

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

Int'l Conf. Software Eng. Research and Practice | SERP'14 | 49

 In addition, this study was a regression and correlation
study. Association between most of the investigated coupling
metrics and change-proneness of classes was observed but
causality of the association cannot be claimed. In other
words, claims cannot be made as altering a class to reduce its
coupling would necessarily decrease its likelihood of being
changed.

Table 6. Wilcoxon test for confounding effect of class size

Metric Stellarium LabPlot
Z p-value Z p-value

CBO 3.29 <0.05 0.67 0.50

CBO1 2.58 <0.05 1.80 0.07

RFC 3.51 <0.05 0.53 0.59

RFC1 1.62 0.11 0.53 0.59

MPC 1.61 0.11 0 1

DAC 1.22 0.22 0 1

DAC1 1.60 0.11 0 1

ICP 3.00 <0.05 0 1

IH-ICP 5.17 <0.05 --- ---

NIH-ICP 1.87 0.06 0 1

OCAIC 0.39 0.69 0 1

OCAEC 4.95 <0.05 1.23 0.22

77OCMIC 1.30 0.19 0 1

OCMEC 4.17 <0.05 0.67 0.50

4 Concluding Remarks
 In this study, empirical evaluation of coupling metrics
was performed to explore their capability to identify change-
prone classes in evolving object-oriented software systems.
Coupling metrics were found to be statistically correlated
with change-proneness of classes. Different logistic regres-
sion models were constructed for predicting change-prone
classes from one software release to the next. The results
indicate that a prediction model based on coupling metrics is
generally more accurate than a model based on cohesion
metrics. Furthermore, a prediction model based on import
coupling metrics is more accurate than a model based on
export coupling metrics. We also found that the coupling
metrics in the C&K suite are not necessarily more accurate
than other metrics in the suite in identifying change-prone
classes in evolving object-oriented software. Moreover, there
is no confounding effect of class size in the validity of some
of the investigated coupling metrics.
 There are several directions for future work. One direc-
tion is to conduct more studies that include software systems
written in different programming languages (Java, C#, etc.),
and also proprietary software systems and compare the re-
sults. Another direction is to empirically evaluate dynamic
coupling metrics and compare them against static coupling
metrics. In addition, it would be interesting to evaluate the
capability of coupling metrics in estimating change size and
density, and to explore the relationship between coupling
metrics and other software quality attributes. Finally, a com-
parative study of different computational intelligence models
for identifying change-prone classes could be also conducted.

5 References
[1] L. Briand, J. Daly, and J. Wust, "A Unified Framework for

Coupling Measurement in Object-Oriented Systems," IEEE

Transactions on Software Engineering, vol. 25, no. 1, pp. 91-121,
1999.

[2] L. Briand, J. Daly, and J. Wüst, "A Unified Framework for
Cohesion Measurement in Object-Oriented Systems," Empirical
Software Engineering, vol. 3, no. 1, pp. 65-117, 1998.

[3] L. Briand, P. Devanbu, and W. Melo, "An Investigation into
Coupling Measures for C++," in 19th Int’l Conf. Software Eng.,
ICSE‘97, pp. 412-421, 1997.

[4] L. Briand, J. Wüst, J. Daly, and V. Porter, "Exploring the
Relationships between Design Measures and Software Quality in
Object-Oriented Systems," Journal of Systems and Software, vol.
51, no. 3, pp. 245-273, 2000.

[5] M. Bruntink and A. Deursen, "An empirical study into class
testability," Journal of Systems and Software, vol. 79, pp. 1219-
1232, 2006.

[6] S. Chidamber and C. Kemerer, "A Metrics Suite for Object
Oriented Design," IEEE Transactions on Software Engineering,
vol. 20, no. 6, pp. 476-493, 1994.

[7] K. El-Emam, S. Benlarbi, N. Goel, and S. Rai, "The Confounding
Effect of Class Size on the Validity of Object-Oriented Metrics,"
IEEE Transactions on Software Engineering, vol. 27, pp. 630-650,
2001.

[8] K. El-Emam, W. Melo, and J. Machado, "The Prediction of Faulty
Classes Using Object-Oriented Design Metrics," Journal of
Systems and Software, pp. 63-75, 2001.

[9] M. Elish and M. Al-Khiaty, "A suite of metrics for quantifying
historical changes to predict future change-prone classes in object-
oriented software," Journal of Software: Evolution and Process,
vol. 25, no. 5, pp. 407-437, 2013.

[10] M. Elish and D. Rine, "Investigation of Metrics for Object-
Oriented Design Logical Stability," in 7th IEEE European
Conference on Software Maintenance and Reengineering, pp.
193-200, 2003.

[11] R. Ferenc, A. Besze´des, M. Tarkiainen, and T. Gyimo´thy,
"Columbus—reverse engineering tool and schema for C++," in
IEEE International Conference on Software Maintenance, pp.
172–181, 2002.

[12] G. Gui and P. Scott, "Ranking reusability of software components
using coupling metrics," Journal of Systems and Software, vol. 80,
pp. 1450-1459, 2007.

[13] T. Gyimothy, R. Ferenc, and I. Siket, "Empirical Validation of
Object-Oriented Metrics on Open Source Software for Fault
Prediction," IEEE Transactions on Software Engineering, vol. 31,
no. 10, pp. 897-910, Oct. 2005 2005.

[14] A. Koru and H. Liu, "Identifying and characterizing change-prone
classes in two large-scale open-source products," Journal of
Systems and Software, vol. 80, pp. 63-73, 2007.

[15] W. Li and S. Henry, "Object-Oriented Metrics that Predict
Maintainability," Journal of Systems and Software, vol. 23, no. 2,
pp. 111-122, 1993.

[16] H. Olague, L. Etzkorn, S. Gholston, and S. Quattlebaum,
"Empirical Validation of Three Software Metrics Suites to Predict
Fault-Proneness of Object-Oriented Classes Developed Using
Highly Iterative or Agile Software Development Processes," IEEE
Transactions on Software Engineering, vol. 33, no. 6, pp. 402-
419, 2007.

[17] N. Tsantalis, A. Chatzigeorgiou, and G. Stephanides, "Predicting
the Probability of Change in Object-Oriented Systems," IEEE
Transactions on Software Engineering, vol. 31, no. 7, pp. 601-
614, 2005.

[18] F. Wilkie and B. Kitchenham, "An Investigation of Coupling,
reuse and Maintenance in a Commercial C++ Application,"
Information and Software Technology, vol. 43, pp. 801-812, 2001.

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

50 Int'l Conf. Software Eng. Research and Practice | SERP'14 |

Effective Representation of Object-oriented Program:

the key to change impact analysis

Isong Bassey

Department of Computer Science

North-West University

Mafikeng, South Africa

24073008@nwu.ac.za

Obeten Ekabua

Department Of Computer Science

North-West University

Mafikeng, South Africa

obeten.ekabua@nwu.ac.za

Abstract— Today, object-oriented (OO) technology has gained

worldwide popularity in software development and several OO

software applications are currently in use. It is imperative that these
systems are effectively and efficiently maintained. However, OO

software components have different complex dependencies which

often make it difficult to anticipate and identify ripple-effects of a

change when faced with change proposal. In the perspective of

Software Engineering Education at the undergraduate level, software
maintenance stands a software development phase where much has

not been done to induct students into the act. The existing software

change impact analysis (CIA) approaches seems complex for students

at the undergraduate level. Thus, these students have to be taught

how to maintain OO software system since they are the future
software developers and any representation of OOS that is effec tive

would aid program comprehension and facilitate CIA process at this

level of study. In this paper, we have proposed an approach called

OOComDN for representing OO software using complex networks.

The goal is to facilitate CIA and assist learners to comprehend OO
program for onward maintenance. OOComDN provides a good

representation of the system characteristics and is practicable for

impact analysis of OOS systems as well as the quantification of the

structural complexity of the software. We evaluated the approach and

the results obtained were significant.

Keywords: Impact Analysis, Software Change, Complex Network,

Students

I. INTRODUCTION

Change is an indispensable property of software. Software

during development or its life-t ime have to undergo changes in

order to continue to remain useful and meets its operational

requirements. Drivers of software change on existing systems

include defects fixing, new features introduction to meet

customers changing requirements, environmental adaptation or

internal quality enhancement [1]. However, all these changes

have possible risk in them due to unanticipated side effects

elsewhere in the system. This is exacerbated especially, when

the program structure or dependencies is neglected.

In such cases, impact analysis is the technique that is used as

leverage. It tries to identify or estimate the consequences of

the proposed change impact from the analysis of software

product [2]. Software change impact analysis (CIA) is used to

quantify the potential consequences of a given change or

evaluates what needs to be changed to realize a change in the

software with respect to time and effort [2]. In th is case, CIA

is serves the purposes of assisting engineers to take

appropriate actions with respect to change decision, schedule

plans, cost, resource and efforts estimates and so on [1][2]. In

the literature today, several CIA approaches exist: static

[3][4][5], dynamic [6][7][8] or hybrid approaches [9].

However, the current or existing CIA techniques are not

explicit enough and seem complex for “novice” like

undergraduate students in terms of understanding and usage

during maintenance task. One reason for this is that, the

teaching and learning of software engineering at the

undergraduate level only p laces much emphasis on the

development aspect and the maintenance aspect are not taken

seriously. Therefore, these students have to be taught early

how to maintain software systems, object-oriented software

(OOS) in particular which is becoming a de facto in software

development today. This is important because they are the

future software developers and some of these students will be

maintaining OOS when they start work in the industry.

Based on the above issue, in this paper we developed an

approach that will assist beginners to perform CIA effect ively

in order to be successful in the maintenance of OOS. In this

case, we proposed the use of complex networks to build an

intermediate presentation (IR) o f the entire OOS in order to

make exp licit, its implicit structures and dependencies. The

approach is geared towards enhancing static CIA approach.

Thus, the research question we want to answer in this paper is:

How can we represent OOS such that it is effective,

aid program comprehension and facilitate CIA at the

undergraduate level?

The answer to the above question is provided in this study. We

believe that if OOS especial s mall or medium scale systems at

the undergraduate level is effectively represented, it would

create a huge impact for students in learning how to perform

CIA successfully while preserving the quality of the software

with less cost in terms of time and effort.

The rest of this paper is organized as follows: Section II gives

the background information, III d iscusses the intermediate

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

Int'l Conf. Software Eng. Research and Practice | SERP'14 | 51

representation of OOS, and IV discusses the OOComDN, V is

the empirical evaluation of the IR, VI is the study discussion

while VII is the paper conclusion.

II. STUDY BACKGROUND

Change to a software system is inevitable and software

engineers would be making changes in the dark if they don’t

understand what, how and where of the changes they are to

perform. CIA is an important technique that will assist them to

determine the consequences of such software changes. As an

important property of software, change is necessary in

software either in requirements, design or source codes. In

addition, existing approaches of CIA centered on static and

dynamic approaches or hybrid approach [11]. In the

perspective of static CIA approach, the static representation of

the software are used to reveal its structural dependencies

from the source code while in the dynamic approach, analysis

on the source code is based on program event traces and

execution [10].

Figure 1. OOS component dependencies

In OOS source code point of view, these entities are known as

software components which are fields, methods/functions,

classes and packages. In particular, fields, methods and classes

are usually the components that are used at granular level for

analysis. When changes are considered on a component, the

task of CIA technique is to find the in itial change component

and other components that will be tru ly affected by the

change. However, OOS are embedded with complex

dependencies that often make it difficult to identify the ripple -

effects of changes [10]. The drivers of this complexity are the

features such as encapsulation, inheritance, polymorphism and

dynamic binding that distinguishes it from structured-oriented

paradigm [10]. (See Fig. 1) In this case, a change in one

component may affect others in a manner not anticipated.

In addition, the teaching and learning of software engineering

at the undergraduate level have long been centered on

software development, in particular coding. Th is is evident in

several students’ course projects both published and

unpublished. This shows that much has not been done on the

area of software maintenance which is a crucial area in

software engineering. What needs to be known is that software

engineering students at the undergraduate level are the future

of the software development and many will be involved in the

maintenance of software systems, OOS in part icular, which is

becoming the mainstream in today’s software development.

Thus, they have to be taught how to maintain a system

alongside its development at the undergraduate level in o rder

to be better equipped with the necessary core competencies

and technical skills expected of every software engineer when

they graduate. In addition, several OOS CIA approaches exist

today [8][9][10]11], and due to their complex nature, they

seems not suitable in terms of use at the undergraduate level.

Thus, a simple approach that will assist the students at their

level to understand OOS and carry out maintenance

successfully is indispensable. That is, any approach that will

effectively represent OOS to expose its characteristics would

definitely facilitate CIA task and aid comprehension of the

entire OO program at the undergraduate study level. Hence, in

order to facilitate CIA and support beginners to carry out

maintenance effectively, we propose the use of an IR of OOS

using the complex networks. Details of the proposed approach

are given in subsequent sections.

III. PROPOSED INTERMEDIATE REPRESENTATION OF

OBJECT -ORIENTED SOFTWARE

This section discusses the proposed IR of OOS that will assist

engineers in facilitating program understanding and CIA. The

approach is the extension of the work by [11] and [12]. In this

case, we used the idea of complex networks to model OOS

system’s structure.

A. Complex Networks in Software Systems

Complex networks in recent decades have gained increasing

momentum and software system is not an exception due to its

topological structure [12][13]. In this state of affairs, a

software system can be modeled as complex networks where

software components are represented as nodes and their

interactions as edges. This is made possible because the design

structure of OOS can better be exp lained by its structural

properties in terms of components and the relationships among

them. In that case, the components are the fields, methods,

classes and packages, while their interactions are the different

dependencies that exist between these components. Thus, the

structure of OOS can effectively be represented using complex

network idea of graph theory.

The importance of this IR is that today, software systems

especially OOS has increased in complexity and size with

structure becoming more complicated such that a change or

fault in one component often requires changes/faults to several

other parts in a way not anticipated. In addit ion, the complex

structure makes it difficult to quantify the overall quality of

the final software products. Therefore, analyzing OOS

system’s structure using complex network will help the

maintainer to achieve the following objectives:

1) To visualize the software components and their

complex dependencies. This will help the maintainer

to have an understanding of which components will

be impacted by a change when a change request is

considered on a component.

OBJECT
CLASS C1

CLASS
FIELD

CLASS
METHOD

OBJECT
CLASS C2

Use

Member

Member

Use

Use

Inherit,

Use,

Implement

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

52 Int'l Conf. Software Eng. Research and Practice | SERP'14 |

2) To quantitatively analyze the quality of the entire

OOS structure. That is, measuring the degree of

component in terms of coupling and fault propagation

from one component to another either directly o r

indirectly. In this case, analyzing software structure

quantitatively would help software maintainer to

know before hand, the quality of the system and the

risk of fault propagation from one component to the

other. This is necessary to take mit igating actions

where necessary, in order to reduce the risk o f

software failure after implementing the actual change.

IV. OO COMPONENT DEPENDENCY NETWORKS

The IR proposed in this paper is called the OOComDN. This is

used to represent components and their relationships in OOS

system. Consequently, OOS components are nodes and the

interaction between every pair of the components is a directed

“weighted” edge with an edge type indicating the probability

that a change or fault in one component may propagate to the

other. OOComDN will be considered in two perspectives:

change and fault diffusion networks.

A. Change Diffusion Network s

In change diffusion network (CDN), we represent OOS system

using a “weighted” direction graph, G where components are

the vertices and the dependencies among the components are

the edges taking both the semantics and syntactic structure

into consideration. CDN is used to represent the software

components and their relationships for onward maintenance

task, perhaps, CIA. It exp licit ly represents the structure of the

OOS source code and assists the software maintainer in

quantifying which components will be truly affected by a

change. In other words, the representation is basically used to

discover the evolution mechanism of the software system.

In this study, we identified four types of dependencies , D
Type

that exist in OOS: inheritance (H), usage (U), invocation (V),

and membership (M) [11]. These dependencies are non-

numeric weight assigned on the edges of the OOComDN-1

and constitutes the links by which a change or fau lt propagates

from one component to other once a change is consider on a

specific component. Based on the CDN and the D
Type

 the

following definitions of OOComDN are considered:

OOComDN-1 and OOComDN-2.

Definition 1: [OOComDN -1]

Given OOS, program, P let G = <(N,D
E

), D
Type

 > represent

OOComDN given by:

OOComDN-1 = < (N, D
E
), D

Type
 >

Where N = NP
k
 + N

C
 + N

M
 + N

F
 are the nodes and D

E
 =

N×N×D
Type

 represents the set of various edges with

dependencies types, D
Type

. We referred to D
Type

 as the weight

of the graph and NP
k
, N

C
, N

M
and N

F
 represent the set of

packages, classes, member methods and fields respectively.

Each component is represented by only one node and the

weighted-directed edge between two nodes indicates that a

component is in, or uses a member of or invokes or inherits

other components .

B. Typical Illustration

A typical illustration of the OOComDN is captured in Fig. 3

using the program, P written in Java as shown in Fig. 2. The
various shapes used to represent each component in the

OOComDN-1 are also captured in Fig. 3.

Figure 2. Java program

Figure 3. OOComDN of the java program in Figure 2

In Figure 3 we represent OOS system captured in Fig. 2. On

the OOComDN-1 A, B, C and D are the classes in P. In this
case, if a component says D uses or inherits or invokes a class

say A, there will be an edge emanating from the node D to

d
A()

M2()

M1()

M M

M

M

U V

B()

q
a

M6()

M4()

M3()

M
M

M

M

U

U

V

M5()

C()

B k

M

M

M

U

H H

D()
M

M

M

U

V

U

V

V

A C

DB

U

M

U

V

H

MEMBER

INVOCATION

INHERITANCE

USE

Component

Dependencies

FIELD

METHOD

CLASS

P1 P2

PACKAGE

package p2;

import p1.*;

public class C {

 public C(){};

 private p1.B k;

public void M5()

{ k.M4(); }}

class D extends C {

public D() {};

private String q;

public void M6()

{ q="Boy!";

B j ; j.M4();

A p; p.M1(); }}

package p1;

public class A {

public A(){};

private int d;

public void M1()

{ d=2; }

public int M2(int x)

{ M1();

x= d + 10;

return x; }}

public class B

extends A {

public B() {};

private int a;

public void M3()

{ a=5; }

public int M4(int b)

{ M3();

int c = a+b+10;

return c; }}

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

Int'l Conf. Software Eng. Research and Practice | SERP'14 | 53

node A. Furthermore, the multiplicities of these dependencies

are taken into account based on the type of change to be
performed on a given node in the OOComDN-1. The weight of

each directed edge will indicate the probability that a change in
A may impact D.

C. Degree of OOComDN-1

 After the construction of the OOS as OOComDN-1, we can

compute its degree, Z. Z of a node in an OOComDN is the

number of dependencies a component has against other

components connected to it or it is connected to. Two types of

Z exist: in-degree and the out-degree. The computation of the

Z is used to identify the nature of coupling of each component

in the program as well as the structural complexity of the

software at the class level. (see Fig. 4) It g ives an insight into

how components are related to one another in terms of

coupling and what need to be done to accomplish a change

when a change is consider on one component. Degree

computation is done at the class level and in order to compute

it, we have to prune OOComDN-1 to include only classes and

their dependency types as shown in Fig. 4.

Figure 4. Class level OOComDN-1

Definition 2: [Degree of OOComDN-1]

Given, OOComDN, < (N, D

E
), D

Type
>, with an adjacency

matrix Aij, the degree of a vertex, Zi, we defined the out-degree

of an OOS component as the number of edges or connections

originating from that component. It is given by |Z
out

(ni)| which
is the sum of the i

th
 column of the Aji.

 ∑

 ……………………………………………...1

While in-degree of an OOS component, ni is the total number

of edges or connections onto that node and it is given by
|Z

in
(ni)| which is the sum of the i

th
 row of the Aij.

 ∑

 ……………………….……………….……...2

Z
tot

(ni) is the total number of directed edges into and out of

the node, ni ЄN. It is simply the sum of

.

 ……………………………….3

In other words, Z
in

(ni) indicates the number of classes that has

dependency on class nj ЄN and Z
out

(ni) the number of classes

on which class n i ЄN depends on. The in -degree and out-

degree for the program shown in Fig. 2 is captured in Table I.

TABLE I. IN-DEGREE AND OUT-DEGREE IN OOCOMDN-I OF

FIGURE 4

Node, ni

A (B,A) = 1, (D,A) = 1 - 2

B (C,B) = 1, (D,B) = 1 (B,A) = 1 3

C (D,C) = 1 (C,B) = 1 2

D (D,A) = 1, (D,B) = 1
(D,C) = 1

- 3

As can be seen in Table I, class A has one in-degree for the

ordered paired (B,A) and (D,A) and no out-degree. This

clearly shows the nature of coupling in A which will assist a

maintainer to know the complexity of the class at hand before

making a change. In addition, the complex relationships

among a very large number of software components in OOS

would often result to the structural complexity of software

system. Thus, the degree of a class, Z being similar to CK’s

CBO metric, in a software network actually shows the degree

to which each class depends on other classes. In the context of

this study, Z is used to measure software degree of coupling in

a small or medium sized system.

D. Fault Diffusion Network

Fault diffusion network (FDN) is similar to the one proposed

by [12] and is represented just as CDN. The only difference is

that the semantics of the relat ionship is neglected and every

relationship has the same importance. In the context o f this

paper, FDN is used to characterize the risks a component

poses on others due to the direct or indirect dependency

existing between them. The rationale is that, though it is

believed that a fault in one component will propagate to other

components that depend on it, it is not always true with respect

to OOS systems. The intuition is that, OOS class is composed

of several fields and methods and a class is considered faulty

if it has at least one fault emanating from either itself or its

members. In this case, members of another class that depends

on such faulty class do not all connect to the faulty member

directly or indirectly. Hence, the propagation of fau lt from one

component to another is based on probability. The definition

below is important:

Definition 3: [OOComDN-2]

In FDN the nodes represent the classes and a class is

represented by only one node in the entire OOComDN -2.

Interactions between classes are represented by directed

weighted edges.

Thus, OOComDN-2 can be described as:

OOComDN-2 = <NC, DC, Pb>

A C

B D

H HU

U

U

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

54 Int'l Conf. Software Eng. Research and Practice | SERP'14 |

Where NC is the set of classes, DC is the set of edges linking

one class to another and Pb is the probability that a fau lt in a

class will propagate to another.

The interaction is based on the principle that, if members in

class, say A use class members of B, an edge will originate

from the node of the member in class A to the node in B, and

vice versa. For simplicity, we consider the existence of

dependency and ignore the D
Type

 as well as the multip licity of

dependencies irrespective of how many times A depend on B

and so on. Furthermore, the weight of each DC represents the

probability that a fault in class B will impact or spread to class

A. We captured this in Fig. 5.

Definition 4: [Fault Propagation Probability]

Let P be an OO program having class i and class j, where

class j depends on class i. We therefore, define the probability

of fault propagating from class i to class j as Pb (i,j). In this

paper, we defined it as follows:

 ………………………………………….4

Where CM(i,j) is the set of members in class j whose faults

will propagate to the members in class i, which they are

directly or indirectly linked to thereby rendering class faulty.

While MTj is the total number of class members present in

class j.

CM(D,A) = {M1()} and MTA = {d, A(), M1(), M2()}

CM(D,B) = {M4()} and MTB = {a, B(), M3(), M4()}

Figure 5. Class fault propagation probability

In Fig. 5 we captured the fau lt propagation probability in a

class. The edges of all members in a class are denoted by

1which indicates the probability of one member of the class

being faulty due to the dependency it has with a faulty

member is 1. For inter-class dependency, the case is not

always true. This is the rationale for this approach. For

instance, as shown in Fig. 5, it is clear that class D depends on

class A and B as follows:

 (D.M6(),A) = {M1()} = D.M6() → A.M1()

 (D.M6(),B) = {M4()} =D.M6() → B.M4()

Therefore,

 = 0.25, and

 = 0.25

The above computation is based on eqn(4) where Pb(D, A) =

Pb (D, B) = 0.25, 25%. This denotes that, since M6() in class D

depends on class A and B, the probability that a fault in class

A or B will have impact on class D is 25%. In this case the

higher the probability, the higher the risk of fault propagation.

For dependency of inheritance type, probability can’t be

quantified because members in the classes are not connected

directly. The approach discussed in this paper can be used for

quantitative measurement of the structural quality of the

software as well as its risk assessments. This is important to

allow the maintainer know which components has higher risk

probability of propagating faults to its neighbors during the

course of maintenance such that mit igating actions could be

taken on time. In the same vein, a s maller risk value signifies

that a fault in the measured component poses no serious

impact on the other components and modification can be

performed hitch-free.

V. EMPIRICAL EVALUATION

A. Study Subject, Setting and Maintenace Tasks

To assess the effectiveness and significance of the approach,

IR of OOS proposed in this paper, we performed a controlled

experiment using small-size systems developed by students in

their projects. The subjects were only undergraduate Computer

Science students of our department and the study was in

fulfillment of the Software Engineering curriculum with a

focus on software maintenance techniques. The subjects in

their third year of study were div ided into nine groups (A, B,

C, D, E, F, G, H and I) of five students each and each student

had comparable levels of education and experience in software

development and java programming in part icular. For each

team selection, strict measures were taken to blend the team

with the required skills needed. In order to be effective in

carrying out maintenance, subjects had a week of theoretical

knowledge on software maintenance, the basic knowledge

needed for CIA using IR of OO program and others. The goal

of the controlled experiment was to demonstrate whether a

good and effective representation of OO program can increase

the understandability of the maintainer to perform

modification tasks successfully. In this case, to be ab le to

maintain and change a system efficiently and correctly, the

maintainer has to have an in-depth understanding of the

systems’ structure (source code). By efficiency, we mean the

minimum t ime taken to carry out the change while correctness

is the intended functionality and less side-effects of the

change.

d
A()

M2()

M1()

1 1

1

1

1 V

B()

q
a

M6()

M4()

M3()

1
1

1

1

1

1

V

H

D()
1

1

1

1

0.25

0.25

A

DB

1

P1 P2

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

Int'l Conf. Software Eng. Research and Practice | SERP'14 | 55

The characteristics of the system collected from the subjects

include Team A, D, F, H, and I system’s had five class each

while team B, C, E, and G six classes each. The maintenance

task was to perform modification task on other team’s system.

In this case, there were four maintenance tasks the subjects

performed during the course of the experiment: MTask1 - one

class change, MTask2 - one class change, MTask3 - two

methods change, and MTask4 - one field change. The changes

were based on the different change types applicable for OO

program. The overview of the experiment design is captured in

Fig. 6.

Figure 6. Experimental design overview

B. Experimental Variables

During the course of the experiment, the variables that were of

importance at each phase of the maintenance task are the

change duration, program correctness, the number of errors the

change introduced and the task phase. For change duration

(CD), we took the starting and finishing time of the

modification task. Also for the program correctness (PC), each

team was graded between 0-100% based the outcome of the

tasks and the correct program execution while for the number

of errors (NoE), we computed NoE introduce by the

modification task after the changes were made v ia recompiling

the program. In this case, NoE were computed based on the

number of lines affected as indicated on the development IDE

used. These were all performed by the supervisor and the team

members. Lastly, for the TaskPhase, two variables were

important: modification without IR o r modification with IR

(MTask1- MTask4). (See Fig.6)

Due to the programming skills of the subjects, we first

assessed the each team’s program for actual amount and

complexity of classes that would be impacted by each change

and the approximate time required to carry out the tasks. This

was necessary in order to quantify the degree of d ifficulty of

the change tasks. However, the results we obtained from the

experiment put forward that this approach was adequately

appropriate in this regard.

C. Hypothesis

We tested hypotheses in the experiment to assess the

significance of the IR to CIA during the maintenance task.

Thus, the null hypotheses of the experiment were as follows:

Impact of TaskPhase on Change Duration (CD):

H01: The time taken to perform maintenance task is equal

for modification without IR and modification with IR.

Impact of TaskPhase on Program_Correctness (PC):

H02: The correctness of the program after maintenance task is

the same for both modification without IR and modification

with IR.

Impact of TaskPhase on Number of Error Introduced:

H03: The number of error introduced in a changed program is

equal for modification without IR and modification with IR.

For the effect on duration (CD), the test was to evaluate if

using IR constitutes a time wastage or not on the part of the

maintainer while the effect on correctness (PC) would be to

evaluate if using IR during maintenance contributes to

program understanding or not. In this case, if correctness is

equal for both, then it is not useful for CIA. However, if the

program correctness is more for modification with IR than

modification without IR, then it is useful for CIA and aids

comprehension of the program as well. Furthermore, for NoE,

the task would be to test if the number of errors introduced

after modification is equal in both case or not. If it is lower

with the TaskPhase, modification with IR, then it is useful,

otherwise not useful for CIA. The statistical techniques use is

the dependent T-test.

D. Results

The main results based on the task phases: modification

without IR and modification with IR for MTask1 – Mtask4 are

visualized in Fig.7 and Fig.8 respectively. The change

duration, % program correctness and a count of error are

shown on the Y-axis, while the project group is shown on the

X-axis. As can be seen, there are some clear indications that

TaskPhase affect CD, PC and NoE in the two phases . For

instance, a small amount of time was utilized to implement a

change on a program when IR was used in phase II than in

phase I. Accordingly, the program correctness was better when

IR was used in the maintenance task and the same result is

applicable to NoE introduced in both phase. However, for

practical importance, it is essential to see if these differences

are significant by testing the above specified hypotheses.

Figure 7: Effect of TaskPhase on CD, PC and NoE

Experiment

MTask 1 MTask 2 MTask 3 MTask N

MTask 1 MTask 2 MTask 3 MTask N

Modification_without_IR

Modification_with_ IR

PC(%), 29

NoE, 19

CD(Min),
56

0

10

20

30

40

50

60

A B C D E F G H I

Modification_withou_IR

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

56 Int'l Conf. Software Eng. Research and Practice | SERP'14 |

In this case, we employed the paired-sample T-test to test the

hypothesis. The results of the hypotheses regarding CD, PC

and NoE for the maintenance tasks (MTask1-MTask4) in both

Task phases are captured in Table I. The results indicate that

TaskPhase does have a significant effect on the p rogram

correctness, change duration and number of errors introduced.

The hypothesis was tested at a significance of p ≤ 0.05.

TABLE II. DEPENDENT T-TEST RESULTS FOR CD, PC AND

NOE

Paired variable T DF P-value Sig.

CD - CDII -8.541 8 0.000

NoE - NoEII 10.509 8 0.000

PC - PCII 5.646 8 0.000

Figure 8: The effects of TaskPhase on CDII, PCII and NoEII

The summary of the results of the hypothesis tests is as

follows: (1) For the impact of TaskPhase on CD, we rejected

H01 since p-value ≈ 0.00 ≤ 0.05. (2) For the impact of NoE

introduced, we rejected H02 since p-value ≈ 0.00 ≤ 0.05, and

lastly, (3) For the impact of TaskPhase on PC, we rejected H03

since p-value ≈ 0.00 ≤ 0.05. In conclusion, at the α = 0.05

level of significance, there exists enough evidence that there is

a huge difference in mean CD, PC and NoE of both phases of

the of maintenance tasks (modification without IR and

modification with IR). These results thus, prove that the IR of

OOS is effective and useful in facilitating CIA.

VI. DISCUSSION

The results of the experiment seem very interesting in terms of

duration, program correctness and the number errors introduce

after change were implemented for phase II. As captured in

Fig. 7 and Fig. 8 respectively, we can see that time taken by

the subjects to perform the maintenance task in phase II (36

min maximum) were significantly s maller than the

modification duration of phase I (56 min maximum).

Accordingly, the correctness of the maintenance task (correct

solutions) was significantly higher for phase II (56%

minimum) than for the phase I (51% min imum). Moreover,

the number of errors introduced after the changes were made

was significantly lower for phase II (6 maximum) when the

modification with IR was used as opposed to modification

without IR (19 minimum).

The results suggest the effectiveness of the IR for CIA. In this

case, using IR of OOS will actually reduce the time needed to

make changes, the correctness of the solution and the number

of errors that will be introduced after the change. However, the

interpretation of these results requires care. Th is is because,

though we took good time to b lend each team with skillfu l and

experienced subjects, the experiment actually d id not took care

of such experiences and skills in term of the team. In this case,

the level of skill and experience of each team differs and could

affect the maintenance task in terms of efficiency and

comprehension. Factor that could also affects the results are

the system’s structural properties such as coupling, cohesion

and inheritance. Naturally, a good design involves having low

coupling and high cohesion in a system for maintenance to

effective. Unfortunately, the reverse of these design properties

(high coupling and low cohesion) is known to have negative

effect on change propagation across systems. Consequently,

much time could be spent by each team on comprehending and

performing changes correctly. In addition, while some errors

still remained in most of the team’s program after changes

were made could be as a result of either undiscovered indirect

impacts resulting from the system’s structural properties or the

programming experience of the subjects.

VII. CONCLUSION

In this paper, we have proposed an effective approach to

represent OOS such that it can aid program comprehension

and onward software maintenance. The OOComDN

constructed is quite simple, easy and do not analyze deeply

into method body. All the dependencies are clearly revealed.

Unlike other dependency graphs, OOComDN is not complex

and the components involved are countable. In this case,

OOComDN can be used to teach beginners such as

undergraduate to understand the structure of OOS and perform

CIA effectively during maintenance. In addition, it can be

used to quantify the structural complexity of the system

especially for small or medium-size systems without using OO

design metrics. To ascertain the significance of the IR, we

performed empirical evaluation of the approach and the results

obtained were significant. In general, the representation is

effective and practicable for impact analysis of OOS systems.

However, the limitation of the study is that, we used small size

systems to evaluate the IR. In addition, the part icipants

involved were students and are not as skillful as professionals.

We believe these will affects the results reported here.

However, we took strict measures to ensure quality in the

experiments and the results presented are valid.

REFERENCES

[1] Bohner, S. A. and Amold, R. S., "Software Change Impact Analysis,"

IEEE Computer Society Tutorial, IEEE Computer Society Press,1996

PCII(%), 51

NoEII, 6

CDII(Min),
36

0

20

40

60

80

100

A B C D E F G H I

Modification_with_IR

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

Int'l Conf. Software Eng. Research and Practice | SERP'14 | 57

[2] Bohner, S. A., "A Graph Traceability Approach to Software Change
Impact Analysis," Ph.D. Dissertation George Mason University, Fairfax,

VA, 1995

[3] X. Sun, B. Li, C. Tao, W. Wen, and S. Zhang. “Change Impact Analysis
Based on a Taxonomy of Change Types” 2010 IEEE Proceedings of

34th Annual Computer Software and Applications Conference
(COMPSAC 2010), 2010. pp.373-82

[4] L. Badri, M. Badri, and S. D. Yves. Supporting predictive change impact
analysis: a control call graph based technique. In Proceedings of Asia-
Pacific Software Engineering Conference, 2005

[5] S. Zhang, Z. Gu, Y. Lin, and J. J. Zhao. Change impact analysis for
AspectJ programs. In Proceedings of International Conference on
Software Maintenance, pages 87 – 96, 2008

[6] Law, J., Rothermel, G., “Whole program path-based dynamic impact
analysis”, The Intl Conf. on Software Engineering, 2003.

[7] J. Law and G. Rothermel. Incremental dynamic impact analysis for
evolving software systems. In Proceedings of International Symposium
on Software Reliability Engineering, 2003

[8] T. Apiwattanapong, A. Orso, and M. J. Harrold. Efficient and precise
dynamic impact analysis using execute after sequences. In Proceedings

of International Conference on Software Engineering, pages 432 – 441,
2005.

[9] M. Oliveira et al: “The Hybrid Technique for Object -Oriented Software
Change Impact, Analysis” Proceedings of the 14th European Conference
on Software Maintenance and Reengineering (CSMR 2010), IEEE Press,

2010, pp.252-255

[10] Lee, M. et al.: “Algorithmic analysis of the impacts of changes to object -

oriented software” 34th International Conference on Technology of
Object Oriented Languages and Systems. pp. 61-70, (August 2000)

[11] Sun,X., Li, B., Tao, C. Wen, W. and Zhang, S.: “Change Impact

Analysis Based on a Taxonomy of Change Types” 2010 IEEE
Proceedings of 34th Annual Computer Software and Applications
Conference (COMPSAC 2010), pp.373-82, 2010

[12] Pan, W.F., Li B, Ma Y.T. et al: Measuring structural quality of object -
oriented software via bug propagation analysis on weighted software
networks. Journal of Computer Science and Technology, 25(6): 1202–

1213 Nov. 2010. DOI 10.1007/s11390-010-1095-2

[13] Liu, J., Lu, J., He, K. and Li, B.: Characterizing the structural quality of
general Complex software networks. International Journal of Bifurcation

and Chaos, Vol. 18, No. 2 (2008) 605–613

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

58 Int'l Conf. Software Eng. Research and Practice | SERP'14 |

Web Based Automated Workflow System for

Employees’ Welfare and Loan Scheme Using

Lightweight Methodology

Okonigene Robert E1., John-Otumu M. A2., John Samuel N3., Ojieabu Clement E4.

1,4
Department of Electrical and Electronics Engineering, Ambrose Alli University, Ekpoma, Edo State, Nigeria.

2
Department of Banking & Finance Ambrose Alli University, Ekpoma, Edo State, Nigeria.

3
Department of Electrical and Information Engineering, Covenant University, Ota, Ogun State, Nigeria

Abstract - This paper addresses the daily challenges

encountered by employees as it relates to their voluntary

contributory welfare scheme in most established institutions,

establishments or organizations in Nigeria. We critically

examined the challenges of joining as member, amount to

save, dividends sharing, assets and liabilities, and also the

loan scheme using Ambrose Alli University, Ekpoma, Edo

State, Nigeria as our study center. A Web Based Automated

Workflow System for Employees Welfare and Loan Scheme

was developed, which captured the employees’ monthly

contributory savings, and other parameters through an

interface. Employees’ can interact with the system from the

comfort of their homes and from anywhere in the world via

Internet connectivity. The application is web based and

enables functions like online application for loan facilities,

checking of total contributions, tracking of loan application

status and other services rendered by the respective welfare

scheme. The Web Based Automated Workflow System was

developed based on light-weight methodology. Hypertext

Markup Language (HTML), Hypertext Preprocessor (PHP),

Javascript, Dreamweaver and MySQL were used to realize

the interface and Web Based solutions for the Automated

Workflow System for Employees Welfare and Loan Scheme.

However, the security built into the scheme was not discussed

in this paper.

Keywords: Web-Based, Automated Workflow, Service

Oriented Architecture, Employees Welfare

1 Introduction

 In some Nigerian Universities, employees voluntarily join

any of the different workers union welfare and loan schemes

or associations available based on their job classification on

assumption of duty. In Ambrose Alli University, Ekpoma,

specifically, there are two unions, that is, the Academic Staff

Union of Universities (ASUU) which has the Teaching or

Academic staff as members and the Non-Academic Staff

Union (NASU) which has the Junior Non-teaching staff as

members. The university also has two Associations and a

cooperative society. The Senior Staff Association of Nigerian

Universities (SSANU) has the Senior Non-Teaching staff as

members and the National Association of Academic

Technologist (NAAT). The Ambrose Alli University (AAU)

Multipurpose cooperative society has as its members all

fulltime staff of the University who followed the due process

to register as a member. Equally, non staff of the University

can also be registered under separate conditions. These

bodies have their various welfare and loan schemes, in which

members saves certain amount of money monthly in any of

the welfare scheme, from their monthly salaries. Each

welfare scheme, through elected representatives, may use part

of the money saved by members to do business of different

kinds in order to realize some level of profit which is then

shared as dividend to its registered members. Often,

employees of the University are attracted to their union or

association welfare and loan scheme or other union’s welfare

and loan scheme or cooperative society for financial

assistance or loan facilities due to the union’s or cooperative

society reduced interest rates and short queue on loan

applications. This is preferable rather than going to banks for

such loan facilities with higher interest rates to solve their

immediate needs like payment of house rent in order to avoid

quarrels with landlords or caretakers; payment of children’s

school fees; poor dietary intake that might result to

malnourishment; inaccessibility to adequate medical care;

inability to meet with social clubs financial obligations, and

so on. Employees’ and their respective welfare and loan

schemes and cooperative society are faced with different

challenges on the day-to-day operations of the scheme; this is

due to the manual workflow system of operations. Some of

the major problems are as follows:

i. The delay in the end-to-end processing of loan /

commodity application forms submitted.

ii. The errors sometimes made due to manual

computations.

iii. Improper records keeping due to human nature.

iv. The inability for an employee who is a member of

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

Int'l Conf. Software Eng. Research and Practice | SERP'14 | 59

welfare scheme to check the amount he or she has

saved with the scheme at real time and at will.

v. The inability for members to apply for loan or other

facilities from the comfort of their homes and track

the status of their application at any time and from

anywhere in the world without physically going the

welfare scheme office.

However, the major businesses done by these bodies are

granting of loan facilities at moderate interest rate to its

members and stand as surety in procuring of commodity

items for their members. The daily operations of the various

welfare and loan schemes are governed by set of business

processes, in which there is interaction between humans and

manual information system (paper based). Conventionally,

these processes have been supported by the exchange of

information recorded on paper. This paper work enables the

sharing, computation and archival of information as work is

transferred from one desk to another until the process is fully

executed. These tasks are executed when the relevant office

receives a request containing the relevant information to be

treated in a paper trail during office hours. For example, an

employee requesting for loan facility to take care of his or her

pressing needs from his / her union’s welfare and loan

scheme will have to apply officially by filling a form. The

application forms ideally involve team working

collaboratively for documentation, recommendations, and

approval of the applicant intent during office hours no matter

the urgency of the applicant’s challenges. Therefore, this

mode of processing takes a longer time to complete the given

task. Thus, the paper-based process is somewhat slow due to

the time it takes to move information from one desk to the

other. Therefore, we decided to develop a Web Based

Automated Workflow System for Employees’ Welfare and

Loan Scheme Using Lightweight Methodology. Welfare is a

corporate attitude or commitment reflected in the expressed

care for employees at all levels, underpinning their work and

the environment in which it is performed [1]. Employee

welfare is a comprehensive term including various services

benefits and facilitates offered to employees by employer.

Employee welfare includes providing staff and workers’

canteens, providing savings schemes; pension funds and

leave grants, making loans on hardship cases; providing

assistance to staff transferred to another area and providing

fringe benefits [2]. Job satisfaction is generally recognized as

a multifaceted construct that includes employee feelings

about a variety of both intrinsic and extrinsic job elements.

Welfare schemes are a means to improve the productivity

and efficiency of the employees. Employee benefits are the

elements of remuneration given in addition to various forms

of cash pay [3]. The benefits contribute to a competitive total

remuneration package that both attracts and retains high

quality employees. The cost of employee benefits has been

rising in developing world [4]. The various types of

employee benefits includes pension schemes, personal

security, financial assistance, personal needs, subsidized

meals, clothing allowance, mobile phone credit, company car

and petrol allowance among others [5]. Employee benefits

are provided with the understanding there is a return to the

organization in terms of improved employee commitment

and productivity [6]. The implementation of employee

benefits requires significant amount of financial, physical

and human resources [7]. The government can intervene

with a policy to obligate employers to provide certain benefits

to employees [8]. Workflow concept has evolved from the

notion of process in manufacturing and in the office [9].

Such processes have existed since industrialization, and are

product of a search to increase efficiency by concentrating on

the routine aspects of work activities. They typically separate

work activities into well-defined tasks, roles, and procedures

which regulate most of the work in manufacturing and the

office. Initially, processes were carried out entirely by

humans who manipulated physical objects. With the

introduction of information technology, processes in the

work place are fast becoming automated by information

systems, that is, computer programs performing tasks and

enforcing rules which were previously implemented

manually. Processes in an organization are categorized into

material processes, information processes, and business

processes [9]. The scope of a material process is to assemble

physical components and deliver physical products. That is,

material processes relate human tasks that are rooted in the

physical world. Such tasks include, moving, storing,

transforming, measuring, and assembling physical objects.

Information processes relate to automated tasks (that is, tasks

performed by programs) and partially automated tasks (that

is, tasks performed by humans interacting with computers)

that create, process, manage, and provide information.

Typically an information process is rooted in an

organization’s structure and/or the existing environment of

information systems. Database, transaction processing, and

distributed systems technologies provide the basic

infrastructure for supporting information processes. Business

processes are market-centered descriptions of an

organization’s activities, implemented as information

processes and/or material processes. That is, a business

process is engineered to fulfill a business contract or satisfy a

specific customer’s need. Thus, the notion of a business

process is conceptually at a higher level than the notion of

information or material process. Business process

reengineering involves explicit reconsideration and redesign

of the business process. It is performed before information

systems and computers are used for automating these

processes. Information process reengineering is a

complementary activity of business process reengineering. It

involves determining how to use legacy and new information

systems and computers to automate the reengineered

business processes. The two activities can be performed

iteratively to provide mutual feedback. While business

process redesign can explicitly address the issues of customer

satisfaction, the information process reengineering can

address the issues of information system efficiency and cost,

and take advantage of advancements in technology.

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

60 Int'l Conf. Software Eng. Research and Practice | SERP'14 |

2 Using the Light Weight Methodologies

 The method employed in this research work included, data

collection, Engineering software development suites, light

weight methodology, design and web development

tools/Internet programming language. We used the sources

below to collect data about the various Welfare and Loan

Schemes, including the Cooperative Society available in the

University.

 (i) Archival Records

(ii) Observations

(iii) Interviews of stake holders.

Light weight development methodologies embrace practices

that allow programmers to build solutions more quickly and

efficiently, with better responsiveness to changes in business

requirements [10]. Light weight methodology mainly focuses

on development based on shirt life cycles. Some popular light

weight development methodologies are Agile Process Model,

Extreme Programming (XP), Prototype Model, Scrum, Rapid

Application Development (RAD) Model. In this research

work we applied the Rapid Application Development (RAD)

Model.

2.1 Rapid Application Development (RAD)

Model

 Rapid Application Development (RAD) is an incremental

software development process model that emphasizes a very

short development cycle and encourages constant feedback

from customers throughout the software development life-

cycle. The main objective of Rapid Application Development

is to avoid extensive pre-planning, generally allowing

software to be written much faster and making it easier to

change environments. Figure 1 is a typical RAD Protype

Model.

Figure 1. RAD Prototype Model adopted from [11]

The following are the advantages of RAD Model

1. Time to deliver is less

2. Quick development results in saving of time as well as cost.

3. Productivity with fewer people in short time.

4. Progress can be measured.

2.2 Software Architecture Design

 Software architecture intuitively denotes the high level

structures of a software system. It can be defined as the set of

structures needed to reason about the software system, which

comprise the software elements, the relations between them,

and the properties of both elements and relations [12].

Software architecture also denotes the set of practices used to

select, define or design software. Figure 2 depicts the

software architecture of our developed system.

Figure 2. Software architecture of the developed system

3 Test results: Users Interaction with the

proposed system

Step 1: The Office Clerk establish a connection to the

Internet through an Internet Service Provider (ISP),

open up a web browser and enter the web site address

at the uniform resource locator (URL) to make a

request for the Site’s home page. The client device can

be a Laptop, Smart phone, Desktop computer, PDA, or

Tablet.

Step 2: The Office Clerk login through the home page.

Step 3: At this stage, the Office Clerk can now view his

desktop profile or control panel, in order to perform

his full function like capture old and new members,

edit member records, post and view monthly

contributions, view and process various forms of loan

application forms, post loan repayment, generate

different types of reports, etc on the developed system.

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

Int'l Conf. Software Eng. Research and Practice | SERP'14 | 61

3.1 Registered Member

Step 1: The registered member establishes a connection to the

Internet through an Internet Service Provider (ISP),

open up a web browser and enter the web site address

at the uniform resource locator (URL) and then make

intended request from the Site’s home page.

Step 2: The Member then login following displayed

instructions.

Step 3: The Member then proceed to view his/her desktop

profile, in order to perform his/her functions like changing of

password, view operation procedures, view contribution

details, apply for loan, track loan status, etc on the developed

system.

3.2 Use Case Diagram

A Use Case diagram is a representation of a user’s

interactions with the system. A Use Case diagram can portray

the different types of users of a system and the various ways

that they interact with the system. The Use Case diagram,

shown in Figure 3, depict the Employee user and Office clerk

or Office Administrator interaction with the system

Figure 3 Use case diagram showing Employee user and Office Admin or Clerk

3.3 Automated Workflow Process between users

and the developed system for Loan

Application and Approval

 Step 1: The Employee user(s) logs on to the developed

web application, views his or her total savings with the

welfare scheme online, applies for loan facility and

then submit the application online. In this step, the

internal process moves in this order: Login Monitor

handler Monitor table Event handler

Automated Workflow System Engine (AWfs Engine).

From the AWfs Engine, the event is committed to the

database, while the system also puts the event to queue

for the next action.

 Step 2: The Office Clerk/Admin login in order the

view the processes or events on queue waiting for

attention. The events are stacked and programmed

using the order of First Come, First Serve (FCFS)

Algorithm. He pulls the first event from the queue and

treats; after treating he submits the process.

Submitting involves the event to move to the next

phase i.e. the committee members. The process flow is

in this order in the software architecture: Awfs engine

 Event handler Queue of Events Dispatcher

 Results Dispatcher Handler

 Step 3: The Committee user(s) at this stage, will also

view the events as they come in queue. They also

process each event by approving or denying the events.

4 Conclusion

 We have achieved our objective in developing the software

architectural design using light weight methodology to build

up a web based automated workflow system for employees

welfare and loan scheme in Ambrose Alli University,

Ekpoma, Nigeria to solve their local problems. The light

weight software process model or methodology we used was

Rapid Application Development (RAD) because of its

peculiar advantages. The developed system is also

client/server based. The web based automated workflow

system for employees’ welfare and loan scheme using light

weight methodology provided new software architecture with

single solution platform for any welfare and loan scheme

administrators within the University system. Test results

revel that the automated workflow system carefully eradicated

the delay in the end-to-end processing of loan and commodity

application forms submitted. The automated workflow system

also eradicated the errors made due to manual computations.

The automated workflow system was able to store, retrieve,

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

62 Int'l Conf. Software Eng. Research and Practice | SERP'14 |

and secure records more effectively and efficiently. The

employees who are members of the welfare scheme were able

to check their savings with the scheme in real time.

Employees members of the welfare scheme were also able to

apply for loan or other facilities from the comfort of their

homes and track the status of their application online any

time and from anywhere in the world without physically

going the welfare scheme office. The proposed system was

able to eradicate most of the challenges faced by employees

and their employees’ welfare and loan scheme.

5 References

[1]. Coventry, W. F. and Barker, J. K. (1988).

Management. International Edition: Heinemann

Professional Publishing.

[2]. Cowling, A. and Mailer, C. (1992). Managing

Human Resources. 2nd Edition. London: Edward

Arnold.

[3]. Armstrong, M. (2010). Handbook of Human

Resource Management Practice, Keagan Page,

London.

[4]. Mortocchio, J. J. (2001). Strategic Compensation,

Prentice Hall, USA.

[5]. Chung , H. (2006). Human Resource Management

Theory and Practice, 3rd Edition, Palgrave

MacMillan, London UK.

[6]. Nzuve S. N. (2010). Management of Human

Resources, Basic Modern Management Consultants,

Nairobi, Kenya.

[7]. (Armstrong 2010). Handbook of Human Resource

Management Practice, Keagan Page, London.

[8]. Medina-Mora, R.; Winograd, T.; and Flores, R.

(1993). “ActionWorkflow as the Enterprise

Integration Technology,” Bulletin of the Technical

Committee on Data Engineering, IEEE Computer

Society, Vol. 16, No.2.

[9]. Medina-Mora, R.; Winograd, T.; and Flores, R.

(1993). “ActionWorkflow as the Enterprise

Integration Technology,” Bulletin of the Technical

Committee on Data Engineering, IEEE Computer

Society, Vol. 16, No.2.

[10]. Khan, A. I., Qurashi, R. J. and Khan, U. A. (2011).

A Comprehensive Study of Commonly Practiced

Heavy and Light Weight Software Mothodologies.

Internation Journal of Computer Science Issues, Vol.

8, Issu 4, No. 2

[11]. Sommerville, I. (2004). Software Engineering, UK:

Addison Wesley.

[12]. Paul, C; Bachmann, F; Bass, L; Garlan, D; Ivers, J;

Little, R; Merson, P; Nord, R; Stafford, J (2010).

Documenting Software Architectures: Views and

Beyond, Second Edition. Boston: Addison Wesley.

ISBN 0-321-55268-7.

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

Int'l Conf. Software Eng. Research and Practice | SERP'14 | 63

http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikipedia.org/wiki/Special:BookSources/0-321-55268-7

Towards a Formal Framework for Hybrid

Analysis of Composite Web Services

May Haydar

Computer Science Department /DIRO

Fahad Bin Sultan University /Université de Montréal

Tabuk, Saudi Arabia /Montreal, QC

mhaidar@fbsu.edu.sa

Hesham Hallal

Electrical Engineering Department

Fahad Bin Sultan University

Tabuk, KSA

hhallal@fbsu.edu.sa

Abstract— In this work, we propose to develop an

integrated formal framework where both static and

dynamic analysis techniques complement each other in

enhancing the verification process of an existing web

services based application. The proposed framework

consists of the following main components. The first

component is a Library of Property Patterns which we

intend to build on existing work [2, 14] and compile a

library and a classification of web services properties

(patterns and antipatterns [13]). These would include

BPEL4WS and WISCI requirements in the form of

property patterns which can be instantiated in different

contexts and for different purposes like verifying

correctness, security, and performance related issues. The

property library will be based on an easy to use template

that depicts mainly the type, formal model, and example of

a property. The second component is the development of

Static Analysis Techniques that include direct code

inspection, abstraction based techniques, and model based

techniques. The third component is the development of

dynamic analysis techniques that include extracting

behavioral models of applications from observed

executions and verifying them (mainly using model

checking) against behavioral properties. These properties

specify defects that cannot be detected using static analysis

techniques. A set of tools (prototype) are to be

implemented to realize the proposed approaches for static

analysis, modeling, and dynamic verification of the

applications under test.

Static Analysis, Dynamic Analysis, Property Patterns, Web

Services

I. INTRODUCTION

Businesses are increasingly adopting service

orientation to shape the architecture of their

enterprise solutions and to increase the efficiency of

their software applications. At the foundation of this

ever more popular paradigm, web services are

heavily used to enhance decentralization and cross

platform and language portability. The power of

services resides mainly in the high degree of

dynamism and flexibility they exhibit throughout

their lifecycle: publication, discovery, and binding

are all dynamic activities that make a service an

evolving entity capable of adapting to continuously

changing and new requirements. In addition,

compositions of services, which can also be

dynamic, have added to the power of services in

building larger enterprise solutions for

heterogeneous businesses. However, the fast paced

growth of service implementation and deployment

in various contexts has resulted in a growing gap

between the development and verification of service

based applications. On one hand, static analysis

techniques [1, 13] remain insufficient to detect

behavioral flaws and defects that are exhibited only

when services, especially composite ones, are

executed. In particular, such techniques face two

major problems: difficulty of generating executable

models that can be used in the analysis, and limited

coverage of defects that are exhibited only during

runtime, e.g., concurrency incurred problems. On

the other hand, dynamic and runtime techniques,

which depend mainly on monitoring, can only claim

to detect errors and flaws in the observable behavior

of a service, or a dynamic composition of services.

In the meantime, formal methods have become a

viable option to automate the verification process

and increase its efficiency in modeling, testing, and

error detection. Formal verification techniques are

currently used in several domains including

communications systems, software and program

analysis [13], and web based applications [2, 14].

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

64 Int'l Conf. Software Eng. Research and Practice | SERP'14 |

mailto:mhaidar@fbsu.edu.sa

II. FORMAL FRAMEWORK

We develop an integrated formal framework as

illustrated in Figure 1, where both static and

dynamic analysis techniques complement each other

in enhancing the verification process of an existing

web services based application. The proposed

framework consists of the following main

components.

A. Library of Property Patterns

Patterns have long been used in the development of

software applications, and service oriented

architectures as well, since they introduce clever

and insightful ways to solve common problems.

Along with patterns, which are intended to facilitate

the design and development processes, the term

antipattern is defined. An antipattern is simply a

solution to a problem that does not work correctly.

Communicating Automata
Based Model

Library of
Patterns /

Antipatterns

Quality
Requirements

Execution
Traces

Web
Services

Code

Automated Formal
Models Extraction

Model Checking

Tool

Fo
rm

al

Sp
e

ci
fi

ca
ti

o
n

s

Property
Results:
1. Satisfied
2. Counter
Example

Library of Formal
Specifications

Formal Verification

Static an
d

 D
yn

am
ic

M
o

d
e

lin
g

Figure 1. Formal Framework for Service

Composition Analysis

Following the definition, efforts exist to document

antipatterns in catalogs (similar to design patterns)

so that they can be avoided. In the proposed

framework, we intend to build on existing work

[7,8,13,16,17] and compile a library and a

classification of web services properties (patterns

and antipatterns). The classification of properties

will be hierarchical: static/dynamic,

correctness/functional, style/performance, etc. Such

classifications should help developers identify the

antipatterns to better avoid them, and testers detect

them in the application using the appropriate

techniques. On the other hand, documented

properties, which would include BPEL4WS and

WISCI requirements in the form of property

patterns, can be instantiated in different contexts

and for different purposes like verifying correctness,

security, and performance related issues. The

property library will be based on an easy to use

template that depicts mainly the type, formal model,

and example of a property.

For example, in our previous work [16,17], we have

defined a pattern template and identified 119

patterns and property specification for the

verification Web applications (WAs). Figure 2 is an

example of such patterns. Each pattern is specified

in LTL which makes it easy to use in model

checking.

B. Static Analysis Techniques

In general, static techniques for software, mainly

based on analysis of (compiled) code (existing

specifications or textual descriptions), are

independent of specific input data sets or individual

execution paths. They are usually classified into:

1. Direct code inspection, where suspicious code

segments are directly identified in the code

(through linear scanning for example).

2. Abstraction based techniques, where code

representations (class diagrams, call graphs,

etc.) are used to match the exhibition of certain

predefined patterns (or antipatterns).

3. Model based techniques, where an executable

model (often formal) is extracted from the code

and verified against predefined properties using

techniques like model checking or theorem

proving.

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

Int'l Conf. Software Eng. Research and Practice | SERP'14 | 65

ID FGS6

Pattern
description

Banking information is entered no

more than once before submitting
form

Category Functional – General – Security and

Authentication

Page
Attributes

Banking_info: Boolean identifying

the presence of fields for banking
information
Submit: identification of page where

form submit action exists

LTL
Mapping

PrecedenceGlobally ((
(banking_info) W (banking_info W

(G (banking_info)))), submit)

Comments

Source Newly introduced

Figure 2. Web Specification Pattern

In the case of web services based applications; such

techniques would be applied to the available

documents containing the descriptions of individual

and composite services. However, some complex

faults cannot be detected with these approaches or

only at a high cost (like deadlocks). Another

disadvantage is false warnings (mainly false

positives) that can be produced as results. This

justifies the need for the third component, a set of

dynamic analysis techniques.

C. Dynamic Analysis Techniques

These techniques have emerged as complementary

to static analysis techniques, especially when

concurrency and large architectural structures of

applications make the latter inefficient and rather

incomplete. Dynamic analysis techniques do not

necessarily rely on existing specifications or textual

descriptions of the applications under test. Instead,

they are applied to executable behavioral models

that are derived from the application’s observed

executions (traces or logfiles). This solution is

particularly efficient in the case of web services

based applications, often characterized by their

readiness to compose web services, especially

dynamically. Although many standards have been

introduced to address the problem of web service

composition, including BPEL4WS (Business

Process Execution Language for Web Services) and

WSCI (Web Service Choreography Interface), they

address mainly the description and execution of

workflow specifications for web service

compositions. Yet, they are not sufficient to support

automated verification techniques based on static

analysis. The proposed techniques include

extracting behavioral models of applications from

observed executions and verifying them (mainly

using model checking) against behavioral properties

specifying defects that cannot be detected using

static analysis techniques. The known techniques in

the field include:

1. offline (postmortem) techniques, where

recorded executions of an application are

stored and later used in modeling and

verifying the application under test.

2. Online (runtime) techniques, where an

application under test is analyzed as the

executions are generated.

In our previous work [14,16], we designed a

framework for formal modeling and verification of

web applications. We intercepted http

requests/responses that depict the behavior of web

applications and extracted communicating automata

models translated into Promela. We verified

properties of WAs using Spin model checker.

Results were promising and properties of concurrent

behavior were verified, which could not be verified

using other methods. Concurrent behavior of WAs

represented behavior of WAs with multiple displays

(windows/frames).

We use a similar approach for model extractions

from behavioral executions of composite Web

services. Collected traces are analyzed and

abstracted as communicating automata models.

Each automata depicts the behavior of one service

where requests are modeled as events and responses

as states. Events will be distinguished as local and

common. Common events (rendezvous) represent

service communications with each other.

III. IMPLEMENTATION

The implementation of the proposed framework

includes the following main tasks:

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

66 Int'l Conf. Software Eng. Research and Practice | SERP'14 |

1. Surveying the literature and common practices of

various developers of web services based

applications to compile a set of most frequently

encountered properties (patterns and antipatterns).

2. Formulation of properties in specification

languages that can be used in both static and

dynamic analysis techniques.

3. Identifying proper static analysis techniques for

each class of properties and evaluating their

efficiency and robustness. In particular, this task

includes identifying the proper abstractions, along

with methods to extract them, to be used in

detecting corresponding antipatterns in the code.

4. Record execution traces from the applications

under test. This task includes studying the

instrumentation based and interception based

techniques.

5. Extracting models from monitored executions.

This includes extracting models from completed

traces and incremental models in the case of

runtime analysis that can be used in known model

checking tools.

6. Integrating the compiled library and developed

tools in a user friendly toolset which masks the

details of the underlying analysis techniques form

the users and makes the dissemination of the

produced framework easier.

The proposed framework is implemented using

Spin model checker [18]. The automata models

are represented using Promela language and the

patterns/antipatterns are represented in LTL. We

use the Java Eclipse environment for the toolset

implementation. The complete toolset will

include integrated components as follows:

a. A library of compiled patterns/antipatterns

translated in LTL.

b. A monitoring tool that intercepts Web services

communications and logs the intercepted

behavior.

c. An analysis module that analyzes and abstracts

the intercepted communication (online or

offline) and extracts a communicating automata

model represented in XML.

d. A model translator that translates the XML

extracted model into Promela, the modeling

language of Spin.

e. A verification module that uses the Spin Model

checker to verify patterns (from the library) on

the extracted Web services automata model.

f. A graphical user interface that coordinates the

user command on the toolset.

Figure 3 illustrates our initial toolset prototype for

the dynamic modeling of Web services.

Figure 3. Prototype Tool for Web Services

Monitoring and Modeling

IV. RELATED WORK

Run time verification of software applications has

grown as a major field covering major activities

related to the development of software. At the same

time, webbed, and web service-based, applications

have gained a lot of attention in many research

activities both in academia and in the industry given

the role such applications have in the shaping of

today’s economy based on e-commerce and e-

services.

Our related work that is closely connected to this

new proposed work is published in [8,14,16,18]. We

have implemented an integrated formal framework

for run-time verification of web applications.

Results were interesting and we were able to verify

properties that could not be verified using other

approaches.

Recently, a large body of research has been

produced with a focus on formal modeling of web

services based applications in order to induce

automation in the analysis of the developed

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

Int'l Conf. Software Eng. Research and Practice | SERP'14 | 67

applications against some predefined properties

specified from the description and requirements

texts. Derived models are often generated from

textual descriptions of applications (BPEL,

BPEL4WS, and WSCI), and can be used mainly to

check static properties that relate to the structure

and content of the application, usually described as

a composition of services. Examples of such

research include the work of Foster et al. [1,2],

which models BPEL descriptions as Finite State

Process models, which can be verified against

properties that are mainly derived from design

specifications written in UML notations like the

Message Sequence Chart (MSC) or activity

diagrams. Properties sought for verification include

mostly semantic failures and difficulties in

providing necessary compensation handling

sequences that are tough to detect directly in

common workflow languages like BPEL. Other

attempts have been described in the literature as

well including the work of Breugel and Koshkina

[3, 4] who introduce the BPE-calculus to capture

control flow in BPEL descriptions and programs.

The service descriptions in the proposed language

allow for checking against properties like dead path

elimination and control cycles. The verification,

mainly formal model checking, is performed in the

toolset Concurrency Workbench (CWB). However,

as discussed in Section 1, proposed verification

approaches based mainly on the static analysis of an

existing source code, where different types of

models like EFA, Promela, and communicating

FSMs [11, 12] are used, have their limitations and

impracticalities. Consequently, more efforts are

being spent on performing run-time verification of

web service applications based on monitoring and

model extraction. Also, [5] address the run-time

monitoring of functional characteristics of

composed Web services, as well as for individual

services [6].

V. CONCLUSIONS

In this paper, we proposed an integrated formal

framework for the analysis and verification of Web

services composition. We propose a hybrid of both

static and dynamic analysis techniques which

complement each other. We also intend to develop a

library of patterns and antipatterns of interesting

specifications of web services. These specifications

will be automatically translatable to a formal

specification language namely LTL.

Based on our previous experience and the initial

results obtained in the use of our formal approach

for run-time verification, we believe that results of

this proposed work are very promising.

REFERENCES

[1] Foster, H. (2008). Tool Support for Safety Analysis of

Service Composition and Deployment Models.

Proceedings of the 2008 IEEE International Conference

on Web Services, pp. 716-723. IEEE Computer Society.

[2] Foster, H., Uchitel, S., Magee, J., & Kramer, J. (2003).

Model-based Verification of Web Service Compositions.

Proc. of 18th IEEE International Conference on

Automated Software Engineering, pp. 152-161.

Montreal, Canada.

[3] Koshkina, M., & van Breugel, F. (2004). Modeling and
verifying web service orchestration by means of the

concurrency workbench. SIGSOFT Software

Engineering Notes, 29(5):1-10. ACM.

[4] Van Breugel, F., & Koshkina, M. (2005). Dead-Path-

Elimination in BPEL4WS. Proceedings of the 5th

International Conference on Application of Concurrency

to System Design, pp. 192-201. IEEE Computer Society.

[5] Kallel, S., Char_, A., Dinkelaker, T., Mezini, M., Jmaiel,

M.: Specifying and Monitoring Temporal Properties in

Web services Compositions. Proceedings of the 7th IEEE

European Conference on Web Services (ECOWS).

(2009).
[6] Simmonds, J., Gan, Y., Chechik, M., Nejati, S., O'Farrell,

B., Litani, E., Waterhouse, J.: Runtime Monitoring of

Web Service Conversations. IEEE Transactions on

Services Computing. 99, 223-244 (2009).

[7] May Haydar, Sergiy Boroday, Alexandre Petrenko, and

Houari Sahraoui . "Properties and Scopes in Web Model

Checking". In Proc. of 20th IEEE/ACM International

Conference on Automated Software Engineering (ASE

05). Long Beach, California, USA, November 2005.

[8] May Haydar, Sergiy Boroday, Alexandre Petrenko, and

Houari Sahraoui. "Propositional Scopes in Lenear
Temporal Logic". In Proc. of 5th International

Conference on New Technologies of Distributed Systems

(NOTERE 05). Gatineau, Quebec, Canada, August 2005.

[9] Dwyer M, Avrunin GS, Corbett JC. Patterns in Property

Specifications for Finite-state Verification. 21st Int.

Conference on Software Engineering, May, 1999.

[10] X. Fu et al, Analysis of interacting BPEL web services.

13th Int. World Wide Web Conference, 2004.

[11] Nakajima, S. (2006, May). Model-Checking Behavioral

Specification of BPEL Applications. Proceedings of the

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

68 Int'l Conf. Software Eng. Research and Practice | SERP'14 |

International Workshop on Web Languages and Formal

Methods, 2(151):89-105.ENTCS.

[12] Fu, X., Bultan, T., & Su, J. (2004). Analysis of

interacting BPEL Web Services. Proceedings of the 13th

International World Wide Web Conference, pp. 621-630.

ACM Press.
[13] H. H. Hallal, E. Alikacem, W. P. Tunney, S. Boroday, A.

Petrenko,(2004) "Antipattern-Based Detection of

Deficiencies in Java Multithreaded Software," qsic,

pp.258-267, Quality Software, Fourth International

Conference on (QSIC'04).

[14] Haydar, M., Petrenko, A. and Sahraoui, H. (2004)

"Formal Verification of Web Applications Modeled by

Communicating Automata" In Proceedings of 24th IFIP

WG 6.1 IFIP International Conference on Formal

Techniques for Networked and Distributed Systems

(FORTE 2004), pp. 115-132. Madrid, Spain. [LNCS, vol.

3235]

[15] Boroday, S., Petrenko, A., Sing, J. and Hallal, H. (2005)

"Dynamic Analysis of Java Applications for

MultiThreaded Antipatterns" In Proceedings of the Third

International Workshops on Dynamics Analysis (WODA

2005). St-Louis, MI, USA.

[16] May Haydar. A Formal Framework for Run-Time
Verification of Web Applications: An Approach

Supported by Scope Extended Linear Temporal Logic.

VDM Verlag, Germany, September 2009. ISBN: 978-3-

639-18943-8.

[17] May Haydar, Houari Sahraoui, and Alexandre Petrenko.

"Specification Patterns for Formal Web Verification". In

Proc. of 8th International Conference on Web

Engineering (ICWE 08). Yorktown Heights, New York,

USA, July 2008.

[18] Gerarld Holzmann. The SPIN Model Checker: Primer

and Reference Manual. ISBN-10: 0321228626.

Addison-Wesley, Sptember 2003.

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

Int'l Conf. Software Eng. Research and Practice | SERP'14 | 69

Application of a Fuzzy Inference System to Measure

Maintainability of Object-Oriented Software

Nasib Singh Gill and Meenakshi Sharma
Department of Computer Science & Applications

Maharshi Dayanand University, Rohtak-124001

Haryana, India

Abstract - In the software development life cycle,

maintenance is the most costly activity because it requires more

effort compared to other activities. To reduce the cost of software

maintenance, it is essential to predict software maintainability

during the early phases of software development. As a

consequence of early estimation, further corrective and

preventive actions can be performed more efficiently to improve

the maintainability of the software. Predicting maintainability of

software using fuzzy logic is gaining more attention among

researchers due to its ability to deal with uncertain, imprecise

and incomplete data. This paper develops a fuzzy logic-based

model for predicting the maintainability of a class. The given

model is based on the Mamdani’s fuzzy inference system.

Chidamber and Kemerer metrics are used as inputs to the model

and the maintainability is computed as output. Maintainability

can be used as an indicator of the quality of software at design

time.

Keywords: Maintainability, Metric, Fuzzy Inference Engine

1. Introduction

“Software maintenance in software engineering is the

modification of a software product after delivery to correct and

to improve performance or other attributes” [1]. Software

maintenance is the most important activity in the life of a

software product. The total cost of the maintenance phase is

much higher than the development cost of the software. It can

consume 40% to 90% of the cost of the entire life cycle [2,3].

There are four types of software maintenance: Corrective,

Adaptive, Preventive and Perfective. Software maintainability is

the ease with which a software system can be understood,

modified and adapted [4]. It is an important software quality

attribute. Software maintenance is a post-development activity,

but it is highly influenced by the way the software was

developed. The object-oriented software development approach

has the ability to produce highly maintainable software. The

maintainability of a software system can significantly impact

software costs. For effective management of software cost,

software maintainability must be evaluated. Many metrics have

been proposed by various researchers to evaluate the

maintainability of software. Among these metrics, the

Chidamber and Kemerer (CK) metrics suite [5] is the most

widely used metric suite for assessing the maintainability of

object-oriented software. Software maintainability is a difficult

factor to quantify [6]. In object-oriented software, the

maintainability of a class can be assessed in terms of its

complexity using design-oriented metrics. However predicting

the maintainability of a class using crisp logic is not appropriate

in the presence of fuzzy input factors. Therefore, the fuzzy logic-

based approach of measuring maintainability is being used by

many researchers.

Fuzzy logic is a generalization of classical boolean logic. It

provides a mechanism for representing linguistic constructs such

as “low,” “medium,” “high,” “very high” etc. The conventional

binary set theory describes crisp data, which is either fully true

or false. Fuzzy logic operates on the concept of degree of

membership. The degree of membership is continuous on an

interval [0,1]. A fuzzy set captures vagueness using membership

functions by assigning a degree of membership to each element

of the set. The fuzzy logic also uses a fuzzy inference engine to

manipulate imprecise, uncertain and conflicting data. The fuzzy

inference engine maps the input fuzzy set to an output fuzzy set

using a fuzzy rule base.

This paper evaluates the maintainability of object-oriented

software using Mamdani’s Fuzzy Inference System (MFIS). Six

CK metrics are used as inputs to the model. The value of each

metric is fuzzified into one of three values: Low, Medium and

High. The trapezoidal membership function is used for

fuzzification. A total of 729 fuzzy rules were developed, which

are used by the fuzzy inference engine. The maintainability

computed by MFIS is correlated with the composite complexity,

which is computed as a weighted sum of the CK metrics. The

weight that will be multiplied to each CK metric is derived from

the corresponding importance factor given by Jubair et al. [7].

The rest of the paper is divided into three sections. Section 2

describes the MFIS along with inputs, outputs, membership

functions and rules. Section 3 applies the given model to 15

classes and correlates the composite complexity of each class

with its maintainability. Finally, the conclusions of paper and the

future directions are given in section 4.

2. 2. Model Adopted
3.

This paper uses the MFIS proposed in 1975 by Ebrahim

Mamdani [8]. The main components of the MFIS are a fuzzy

rule base, dictionary and reasoning mechanism. A fuzzy rule

base is a collection of fuzzy rules obtained from experts. Fuzzy

rules are linguistic statements, which describe how the fuzzy

inference system should make a decision regarding classifying

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

70 Int'l Conf. Software Eng. Research and Practice | SERP'14 |

an input or controlling an output [9]. The general format of a

fuzzy rule is if (input-1 is membership function-

1) and/or (input-2 is membership function-2) and/or …… (input-

n is membership function-n) then (output is output membership-

function). The dictionary defines all the membership functions

used in the fuzzy rules. The fuzzy reasoning mechanism

performs the inference procedure. The input to the FIS can be

either fuzzy or crisp. If the input is a crisp value, it can be

converted to a fuzzy value using a fuzzification process.

Generally the output produced by MFIS is fuzzy; however if

crisp output is required it can be converted into crisp form using

a defuzzification process. This model uses the following steps to

compute the output [10].

1. Design a set of fuzzy rules.

2. Convert the input into fuzzy form.

3. Combine the fuzzified inputs according to the fuzzy rules

for establishing rule strength.

4. Determine the consequent of the rules for establishing rule

strength and the output membership function.

5. Combine all consequents to get an output distribution.

6. Defuzzify the output distribution.

2.1 Inputs and Output of Model

Software maintainability is an important attribute of software

quality. It can not be measured directly. It can be measured

indirectly using measures of design structures such as class

diagram. For object-oriented software, Chidamber and

Kemerer proposed a metrics suite consisting of six metrics

that can be used to measure the complexity, reusability,

coupling and cohesion of a class [11]. These metrics are

further correlated with the maintainability of a class. This

paper uses the CK metrics suite as input for the adopted

model. The CK metrics suite includes the following six

metrics.

2.1.1 Weighted Methods Per Class (WMC)

WMC is the sum of the complexities of all the methods of a

class. It is one the predictors of class maintainability. A

higher value of WMC indicates a lower maintainability of the

class.

2.1.2 Depth of Inheritance Tree (DIT)
The DIT of a class is its maximum depth from the root node

in the inheritance hierarchy. An empirical study by Daly et al.

[12] indicates that a class with DIT 3 is easier to maintain

compared to a class with no inheritance.

2.1.3 Number of Children (NOC)

The NOC of a class is the total number of immediate sub-

classes of that class. A class with higher NOC requires more

testing efforts.

2.1.4 Coupling Between Object Classes (CBO)

The CBO of a class is the total number of other classes with

which it is coupled. A higher value of CBO indicates lower

maintainability of a class due to higher sensitivity to changes

in the other classes.

2.1.5 Response For a Class (RFC)

The RFC of a class is the total number of methods that can be

executed in response to a message received by an object of that

class. It is the sum of the methods defined in the class and the

methods that are directly invoked by methods of the class. A

higher value of RFC indicates a higher complexity of the class,

therefore less maintainability.

2.1.6 Lack of Cohesion in Methods (LCOM)

The LCOM of a class is the difference between the number of

pairs of methods that have no common attribute and the number

of pairs of methods that have common attributes. It measures the

dissimilarity of methods in a class on the basis of attributes used

by methods of the class. A positive value of LCOM for the class

indicates that the class is less cohesive. For good quality design

a positive value of LCOM is not desirable. Low cohesion is an

indicator of higher complexity.

Figure 1: Mamdani’s Fuzzy Inference System

The output of the model is the maintainability of the class, which

measures how easily we can understand and modify the class.

The lower values of input complexity parameters indicate better

maintainability of the class.

2.2 Membership Functions for Inputs and Output
All inputs and outputs are represented using three fuzzy values -

Low, Medium and High. The trapezoidal membership function is

used for representing fuzzy values. The trapezoidal function

depends upon four scalar parameters - a, b, c and d.

Different threshold values of CK metrics are given by various

researchers [13,14,15,16]. This paper designs three membership

functions (LOW, MEDIUM and HIGH) for each input and

output. Details of all inputs (Input1 to Input6) and output

(Output1) along with their graphics representations are as

follows. MF and trapmf stand for membership function and

trapezoidal membership function respectively. Each membership

function is defined in terms of four parameters.

[Input1]

Name='WMC'

Range=[0 30]

NumMFs=3

MF1='LOW':'trapmf',[0 0 5 10]

MF2='MEDIUM':'trapmf',[5 10 15 20]

MF3='HIGH':'trapmf',[15 20 30 30]

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

Int'l Conf. Software Eng. Research and Practice | SERP'14 | 71

Figure 2: Membership functions of WMC

[Input2]

Name='DIT'

Range=[0 10]

NumMFs=3

MF1='LOW':'trapmf',[0 0 1 3]

MF2='MEDIUM':'trapmf',[1 3 4 6]

MF3='HIGH':'trapmf',[4 6 10 10]

Figure 3: Membership functions of DIT

[Input3]

Name='NOC'

Range=[0 12]

NumMFs=3

MF1='LOW':'trapmf',[0 0 2 4]

MF2='MEDIUM':'trapmf',[2 4 6 8]

MF3='HIGH':'trapmf',[6 8 12 12]

Figure 4: Membership functions of NOC

[Input4]

Name='RFC'

Range=[0 60]

NumMFs=3

MF1='LOW':'trapmf',[0 0 10 20]

MF2='MEDIUM':'trapmf',[10 20 30 40]

MF3='HIGH':'trapmf',[30 40 60 60]

Figure 5: Membership functions of RFC

[Input5]

Name='CBO'

Range=[0 10]

NumMFs=3

MF1='LOW':'trapmf',[0 0 2 4]

MF2='MEDIUM':'trapmf',[2 4 5 7]

MF3='HIGH':'trapmf',[5 7 10 10]

Figure 6: Membership functions of CBO

 [Input6]

Name='LCOM'

Range=[0 10]

NumMFs=3

MF1='LOW':'trapmf',[0 0 1 3]

MF2='MEDIUM':'trapmf',[1 3 4 6]

MF3='HIGH':'trapmf',[4 6 10 10]

Figure 7: Membership functions of LCOM

[Output1]

Name='Maintainability'

Range=[0 1]

NumMFs=3

MF1='LOW':'trapmf',[0 0 0.2 0.4]

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

72 Int'l Conf. Software Eng. Research and Practice | SERP'14 |

MF2='MEDIUM':'trapmf',[0.2 0.4 0.6 0.8]

MF3='HIGH':'trapmf',[0.6 0.8 1 1]

Figure 8: Membership functions of Maintainability

2.3 Rule Base
In general with n inputs and m membership functions, m

n

rules can be generated. In this model, six inputs are used and

for each input three membership functions are used; as a

result 729 rules are designed. The format of a rule is as

follows.

If (WMC is LOW/MEDIUM/HIGH) and (DIT is

LOW/MEDIUM/HIGH) and (NOC is

LOW/MEDIUM/HIGH) and (RFC is

LOW/MEDIUM/HIGH) and (CBO is

LOW/MEDIUM/HIGH) and (LCOM is

LOW/MEDIUM/HIGH) then (Maintainability is

LOW/MEDIUM/HIGH). For example If (WMC is LOW)

and (DIT is LOW) and (NOC is LOW) and (RFC is LOW)

and (CBO is LOW) and (LCOM is LOW) then

(Maintainability is HIGH). The following snapshot displays a

graphical representation of the rules.

Figure 9: Graphical Representation of Rules

3. Measuring Class Complexity and

Maintainability
The given model was applied to 15 classes and the results are

shown in Table 1.

Table 1: Maintainability of classes

Jubair et al. [7] suggested an importance factor for each CK

metric, which is represented by LOW(1), MEDIUM(2) and

HIGH(3). The importance factor reflects the importance of the

metric in determining the software quality. WMC, DIT, NOC,

CBO, RFC and LCOM are assigned importance factors 2, 2, 1,

3, 3 and 2 respectively [7]. On the basis of the normalized values

(0.08 for Low, 0.15 for Medium and 0.23 for High) of the

importance factors, a weight is assigned to each CK metric.

WMC, DIT, NOC, CBO, RFC and LCOM are assigned the

weights 0.15, 0.15, 0.08, 0.23, 0.23 and 0.15 respectively. Using

these weights, the composite complexity is computed. The

coefficient of correlation between the composite complexity and

the maintainability of the class is -0.92, which indicates that a

higher value of class complexity lowers the maintainability of

class.

4. Conclusion and Future Directions

This paper presents the application of MFIS for computing the

maintainability of a class in object-oriented software. The results

produced by the MFIS satisfy the relationship between

complexity and maintainability i.e. higher complexity leads to

lower maintainability. However, the given model was applied to

small academic-level classes and the same study can be

replicated with larger industrial projects.

Class WMC DIT NOC RFC CBO LCOM

Composite

Complexity

Maintainability

(Mamdani

Model)

C1 17 0 0 9 0 5 5.37 0.83

C2 21 3 0 32 5 5 12.86 0.44

C3 28 7 0 36 0 0 13.53 0.34

C4 6 3 1 12 3 4 5.48 0.63

C5 6 0 0 7 1 0 2.74 0.84

C6 25 7 0 46 0 5 16.13 0.17

C7 8 3 1 12 1 0 4.72 0.72

C8 9 5 0 8 1 2 4.47 0.63

C9 12 0 1 18 1 0 6.25 0.84

C10 7 0 0 5 1 0 2.43 0.83

C11 12 0 0 6 0 0 3.18 0.85

C12 26 4 0 30 0 0 11.4 0.5

C13 3 0 0 9 3 0 3.21 0.83

C14 27 4 2 50 6 1 17.84 0.38

C15 15 2 0 25 6 5 10.43 0.5

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

Int'l Conf. Software Eng. Research and Practice | SERP'14 | 73

5. References

[1] ISO/IEC 14764:2006 Software Engineering — Software

Life Cycle Processes — Maintenance.

http://www.iso.org/iso/catalogue_detail.htm?csnumber=390

64

[2] Yunsik Ahn, Jungseok Suh, Seungryeol Kim and Hyunsoo

Kim 2003. The Software Maintenance Project Effort

Estimation Model Based on Function Points. Journal of

Software Maintenance and Evolution: Research and

Practice, 15:71–85.

[3] How to Save on Software Maintenance Costs. Omnext

white paper, March 2010.

http://www.omnext.net/downloads/Whitepaper_Omnext.pdf

[4] Pressman, R, Software Engineering. A Practitioner‘s

Approach, Fourth Edition, McGraw Hill, ISBN: 0-07-

709411-5, 1997.

[5] S.R. Chidamber, C.F. Kemerer, A Metrics Suite for Object

Oriented Design. IEEE Transactions on Software

Engineering, Vol. 20, No.6, pp. 476-492, 1994.

[6] Dimitris Stavrinoudis, Michalis Xenos and Dimitris

Christodoulakis 1999 “Relation Between Software Metrics

And Maintainability. Proceedings of the FESMA99

International Conference, Federation of European Software

Measurement Associations, Amsterdam, The Netherlands,

pp. 465-476.

[7] Jubair Al-Ja’afer and Khair Eddin Sabri, 2004. Chidamber-

Kemerer (CK) and Lorenze-Kidd (LK) Metrics to Assess

Java Programs. International Workshop on Software System

(IWSS’04) Turkey.

[8] Mamdani, E.H. and S. Assilian 1975. An experiment in

Linguistic Synthesis with a Fuzzy Logic Controller.

International Journal of Man-Machine Studies, Vol. 7, No.

1, pp. 1-13.

[9] http://www.cs.princeton.edu/courses/archive/fall07/cos436/

HIDDEN/Knapp/fuzzy004.htm

[10] Jyh-Shing Roger Jang, Chuen-Tsai Sun and Eiji

Mizutani, Neuro-Fuzzy and Soft Computing: A

Computational Approach to Learning and Machine

Intelligence, PHI Learning Private Limited.

[11] Sandeep Srivastava, 2012. Software Metrics and

Maintainability Relationship with CK Matrix. International

Journal of Innovations in Engineering and Technology

(IJIET) Vol. 1 Issue 2.

[12] Daly J., Brooks A., Miller J., Roper M. and Wood M. 1996.

An Empirical Study Evaluating Depth of Inheritance on

Maintainability of Object-Oriented Software. Empirical

Software Engineering”, Vol. 1, No. 2, pp. 109-132.

[13] Zhou Yuming and Hareton Leung, 2006. Empirical

Analysis of Object-Oriented Design Metrics for Predicting

High and Low Severity Faults. IEEE Trans. Softw.

Eng.,32(10):771-789.

[14] Edith Linda P and E. Chandra, 2010. Class Break Point

Determination Using CK Metrics Thresholds. Global

Journal of Computer Science and Technology, 73 Vol. 10

Issue 14 (Ver. 1.0).

[15] Mago Jagmohan and Kaur Parwinder, 2012. Analysis of

Quality of the Design of the Object Oriented Software using

Fuzzy Logic, iRAFIT, p 21- 25.

[16] Camrazo Cruz Ana Erika,2008. Chidamber & Kemerer suite

of Metrics. Thesis submitted to Japan Advanced Institute of

Science and Technology.

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

74 Int'l Conf. Software Eng. Research and Practice | SERP'14 |

SESSION

SOFTWARE ENGINEERING AND MANAGEMENT
+ DIVERSITY ISSUES

Chair(s)

TBA

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

Int'l Conf. Software Eng. Research and Practice | SERP'14 | 75

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

76 Int'l Conf. Software Eng. Research and Practice | SERP'14 |

Females in Software Engineering Teams: A Social

Sensitivity Perspective
Sourabh Khosla

1
, Lisa L. Bender

2
, Gursimran S. Walia

3
, Kendall Nygard

4

North Dakota State University
134

, University of Houston – Clear Lake
2

Department of Computer Science

Fargo, ND 58108
134

; Houston, Texas, USA
2

{sourabh.khosla
1
, gursimran.walia

3
, Kendall.Nygard

4
} @ ndsu.edu; bender@uhcl.edu

2

Abstract— Software Development is a complex and time-

demanding task which requires a group of individuals working

effectively as a team for long durations of times. Achieving

effectiveness in productivity and quality of work is a challenging

task that needs investment and commitment. A recent study

conducted at MIT established that teams with greater social

sensitivity (SS) tend to perform better when completing a variety

of specific collaborative tasks. SS is an empathic ability to

correctly understand feelings and perspective of others, and is

clearly measureable. However their study was based only on set

of generic tasks carried for a short period of time which required

only hours to finish. Software development projects require

teams to work collaboratively for much longer durations and

more complicated tasks. Our goal is to determine if previous

research that validated that adding more women to the team

improves the team’s social intelligence, which was not focused on

students or professionals in scientific or technical fields, is

germane for people in computing disciplines. This paper reports

the results that investigate the presence of females in the teams,

and how the “female factor” effects the average team social

sensitivity, team performance activities and the satisfaction

achieved during the tenure of team projects.

I. INTRODUCTION

Software development is a complex activity that requires a
group of individuals working effectively as a team [1]. Since
the success rate of software development projects is low (32%
of all projects succeeding), it is important to understand the
factors of software development teams that can have a
significant influence on their performance [29]. In the domain
of Software Development, projects are complex and teamwork
comes into play, as it is not suffice to be done by one person
alone. Software development projects are not only difficult
because of the complexity of the technologies involved, but
also due to complexity of social interactions between the
project team members.

Team projects play a central role in the education of
engineers. The objective of any good curriculum design is to
prepare the graduates for their envisaged professional careers
by providing them with appropriate education [27]. In software
engineering, software developers develop and maintain
software of such a complexity that these tasks cannot be
handled at individual level [27]. Various researchers assert that
the ability to use soft skills to navigate interpersonal
relationships and negotiate social interaction is very crucial to
team success [30, 31]. With the current academic syllabus and
course of study, many students graduate with the technical,
hard skills (i.e., the ability to perform a certain type of task or

activity) however they lack the essential soft skills (e.g., their
interpersonal abilities to interact effectively with the team
members and customers). An employer survey conducted by a
staffing company Adecco, turns up similar results; “44% of
respondents cited soft skills, such as communication, critical
thinking, and collaboration, as areas with biggest gap” [3].

A recent survey conducted by the Workforce Solutions
Group at St. Louis Community College found that more than
60 percent of employers said applicants lack “communication
and interpersonal skills” [28]. Recent studies indicate that
employers consistently rate these skills as deficient in their
incoming hires. Skills such as communication, teamwork,
leadership and adaptability are commonly ranked as deficient.
The National Association of Colleges and Employers surveyed
more than 200 employers about their top 10 priorities in new
hires. Overwhelmingly, they wanted candidates who are team
players, problem solvers and who can plan, organize and
prioritize their work; Technical and computer-related know-
how placed much further down the list [28]. Research
conducted by Begel, et al. also identified that recently hired
software developers often struggle to adequately communicate
when they were in need of assistance or struggling with a
problem [15]. Scott, et al. indicated that the ability to work as
part of a cross-disciplinary team was necessary in industry [16].
A recent study by Radermacher et al. identified various areas of
personal skills and professional ethics such as communication,
teamwork, ethics etc. that the graduating students lack when
beginning their job in industry but are expected to have by
employers [17]. Begel also presented results which signify the
importance of communication and collaboration techniques
that recent graduates lack [18].

Therefore, there is a need to measure and evaluate the
impact of soft skills in order to make sure that the teams are
performing at the higher level. Researchers like Carnegie
Mellon’s Anita Williams Woolley and MIT’s Thomas Malone
have been successful so far in figuring out three main factors
that can have most impact on the team collaboration and
collective intelligence [5]. Their study measured Social
Sensitivity factor using “Reading the Mind in the Eyes” test
which was created and validated by Baron-Cohen et al. [11].
This test gauges the accuracy of individuals in judging
someone‘s emotional state by looking at their eyes.

A subject is presented with a series of 36 photographs of
the eye-area of actors. For each photograph, the subjects are
asked to choose which one of four adjectives best describes
how the person in the photograph is feeling. This study

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

Int'l Conf. Software Eng. Research and Practice | SERP'14 | 77

conducted by Wolley et al., established three main factors that
have the most effect on team performance and collective
intelligence viz. 1) Social Sensitivity which is basically the
ability to correctly understand the feelings, 2) Turn-taking
behavior is giving everyone the chance to speak up during a
conversation and 3) proportion of females in the group, which
is number of females in a group [5]. The results from the
previous studies show that the teams whose members had
higher levels of Social Sensitivity score were collectively more
intelligent. This study also states that the groups with higher
number of females tend to perform better.

The above study was based on generic tasks such as solving
visual puzzles, brainstorming, making collective moral
judgments, and negotiating over limited resources. Our study
is aimed at finding how the group behavior and team
performance are affected by Social Sensitivity and particularly
presence of female team member. We had previously evaluated
the impact of Social Sensitivity (SS) in the context of student
teams enrolled at North Dakota State University (NDSU) on a
semester long technical project [9]. The results from the study
showed that the average SS of teams had a positive and
significant correlation with the team performance. That is, the
higher the average SS of team (calculated by averaging the
individual SS scores of team members), the better the team
performed. Furthermore, the individual SS scores were also
correlated with the individual performance of the subjects.
Thus, there is evidence that the SS of individuals and team
members impact the team performance.

This research goes back to the original study findings by
Woolley et al., which had showed that the “proportion of
females” can have a significant impact on the team
performance [5]. Also, a study by Snodgrass, Sara E. [4]
showed that the females are known to be more socially
sensitive than men. Yet again, these studies were not conducted
with software professionals or in the context of software
engineering domain. Therefore, this research attempts to
analyze if including more women in a group would
significantly impact the performance of the software
engineering teams in the context of students enrolled in the
computer science classes at NDSU.

Similar to the research plan of validating SS findings in the
context of software engineering team projects [9], this research
analyzes the impact of the number of females on the team
performance in the context of SS studies at NDSU. To perform
this analysis, this research utilizes the SS data from a large
number of Computer Science (CS), Software Engineering (SE),
and Management of Information Science (MIS) students
enrolled in the computer science department at NDSU. The
students in teams worked on the semester long projects and
their performance was recorded. This paper evaluates the
impact of the number of females on their team’s average SS
values and the team performance by varying the number of
females from 0 to 4 (i.e., no female to all females in a team of 4
individuals). For all team sizes (with 0 to 4 females), virtual
teams were formed and their SS values along with team
performance was compared. The qualitative evaluation of the
peer reviews were also performed to provide insights into the
results and help researchers better understand the results.

II. BACKGROUND

 This section outlines the motivation for evaluating the
impact of SS and the number of females on the performance of
software development teams and describes relevant
background work to help provide context for the research
presented in the remaining sections of this document.

A. Motivation

Successful teamwork relies upon synergism existing
between all team members creating an environment where they
are all willing to contribute and participate in order to promote
and nurture a positive, effective team environment. Team
members must be flexible enough to adapt to cooperative
working environments where goals are achieved through
collaboration and social interdependence rather than
individualized, competitive goals (Luca & Tarricone, 2001)
Also, Cohen and Ledford examining more than eighty self-
managing teams at an American telecommunications company,
found that self-managing teams had significantly better job
performance and higher employee job satisfaction than
tradition working groups or departments [19].

Therefore, it is important to understand the factors that can
impact the performance of teams. It is an obvious fact that,
“Together, everyone accomplishes more” (Michael Lembach,
2005). When it comes to teamwork, most people will consider
teamwork in terms of being part of a baseball, basketball, or
football team. In contrast, a team is “really just a group of
people who use their skills, experience, and knowledge to work
toward a common goal” (Beverly K. Bachel, 2007) [20].
Although sacrificing individuality for the advancement of a
team’s interest or goals is difficult for some, teamwork is “truly
greater than the sum of its parts” (Paul F. Levy, 2005) [20].
Therefore, working with a group, and thinking as a team can
have greater advantages [20]. As a team, “you see different
points of view and learn new ways of solving problems”
(Beverly K. Bachel, 2007) [20].

 Researchers have identified that there are two main
measures of team effectiveness: task performance and team
member effectiveness (e.g. satisfaction, participation, and
willingness to work together) [22, 23]. Much research has been
presented on the subjects of team composition and factors
effecting team effectiveness as well, but no single attribute
stands out as a key to greater performance. Intriguing questions
were raised by a recent study, stating that team success has less
to do with smartness of individual team members but more on
team dynamics, comprising how well team communicates and
collaborates [5]. Our previous study found that Social
Sensitivity [9], was the largest contributing factor to a team’s
collective intelligence and was the central predictor of the team
effectiveness and performance [5].

B. Related Work on Role of SS in Teamwork

Social Sensitivity (SS) is the ability to correctly understand

the feelings and viewpoints of people [25], which in layman

terms is often known as “social” or “soft” skills. Social

sensitivity also includes knowledge of social norms, roles and

scripts. Possessing emotional and social skills is also associated

with higher quality social relationships and more supportive

social support systems [26]. Social skills that are key

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

78 Int'l Conf. Software Eng. Research and Practice | SERP'14 |

components of social intelligence include the following: the

ability to express oneself in social interactions, the ability to

“read” and understand different social situations, knowledge of

social roles, norms, and scripts, interpersonal problem-solving

skills, and social role-playing skills [26].

Our research is motivated by two studies viz. Woolley et al.

[5]; a study on social sensitivity that established a correlation

between social sensitivity and effective teamwork and by our

previous investigation [9]; on role of social sensitivity and

classroom team projects. The following paragraphs discuss the

major findings from these two studies (by Woolley et al., at

MIT and at NDSU) and how it motivated the research

presented in this paper.

In the first study, Wolley et al. [5] established a correlation

between SS and effective teamwork. During this study, the

researchers first randomly assigned 699 individuals to groups

of two to five. They then employed social psychologist Joseph

E. McGrath’s team-task taxonomy to measure how the groups

performed in a series of exercises involving brainstorming,

physical coordination and even moral reasoning. They found

that neither the intelligence of the smartest member nor the

average intelligence of the group played much role in the team

performance. SS score was measured using “Reading the mind

in the eyes” test, in which a subject is presented with a series

of 36 photographs of the eye-area of actors. For each

photograph, the subjects are asked to choose which of four

adjectives best-describes how the person in the photograph is

feeling. This study presented three main interesting findings

which directly relate to team performance and team dynamics:

1) Social Sensitivity 2) Turn-taking 3) proportion of females;

with all three of these factors directly relating to increase in

team performance.

The above study was based on generic tasks such as solving

visual puzzles, brainstorming, making collective moral

judgments, and negotiating over limited resources which

ranged from few hours to few days of time-frame. Therefore,

it was important to evaluate whether the SS results would hold

true in the context of longer projects with software

professionals. We had earlier performed a study on the group

of 76 students enrolled at NDSU [9]. The results showed that

SS is correlated with the team performance and member

satisfaction even when applied on semester long project.

Our current study is aimed at finding the relationship

between having more females in a team and the team

performance activities, as well as satisfaction gained during

the tenure of projects. The main motivation of this research

comes from the study conducted by Wolley et al., at MIT

which stated that adding more women; makes team smarter

[5]. We wanted to analyze validity of this claim in computing

discipline.

III. EXPERIMENT DESIGN

This study was designed to analyze the relationship between

the social sensitivity of student teams in context of the number

of female members within each team and the quality of work in

computer science team projects. It entails analyzing the SS and

team performance data collected during previous studies,

which would allow us to evaluate and validate the impact of SS

on the quality of student projects. To understand the impact of

the number of females, we created all possible combinations of

teams (of size 4) with the number of females ranging from 0

(i.e., a team of all males) to 4 (i.e., team with all females) and

everything in between.

The study was performed on one hundred and fifty seven

subjects (76 in one study {Males: 59, Females: 17} and 81 in

its replication in a different year {Males: 76, Females: 5})

enrolled in the Social Implications of Computing course at

NDSU. These studies used a randomized experimental design

in which participants were tested to determine their SS scores

and were then randomly assigned to virtual teams of four

participants each. The students worked within their assigned

team and completed a semester long project that dealt with an

ethical topic in Information technology. The students produced

different deliverables throughout the semester and their

performance was recorded on each deliverable in order to

compute the overall score on the group project.

To evaluate the impact of varying number of females in a

team of 4 individuals (varying from no female to all females),

we created five virtual team groups viz. MMMM, MMMF,

MMFF, MFFF, FFFF. For each of these five virtual groups, all

possible combinations were created using all possible

combinations. We call these virtual groups, because we

combined their SS scores to compute their average SS scores

and the members did not actually worked together. We just

combined their individual performance and their individual SS

data for the purpose of evaluation.

A post Study Survey was evaluated to perform the

qualitative analysis of satisfaction and feedback; evaluation

was primarily constructed on the terms of satisfaction achieved

based on gender and to evaluate how male and female

members evaluate their Team-mates.

A. Research Questions and Hypotheses

RQ 1: How the proportion of females is correlated with the
performance of student teams on large semester-long projects?

Related hypothesis: Adding more women significantly
improves the team performance

Recent studies suggest that adding more women to a team
can make them collectively smarter as women are generally
found to be better (than men) at reading and responding to
other peoples’ emotions [5]. But, these researches were
conducted via very generic tasks and that too for really short
period of duration so it cannot really be confirmed that the
adding women would really help in increasing team
performance in software industry.

RQ 2: Do females report greater job satisfaction than males
even in the same work environment?

Related hypothesis: Female attitude towards jobs are more
favorable than males

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

Int'l Conf. Software Eng. Research and Practice | SERP'14 | 79

There have been various studies representing the notion that
females report equal or greater job satisfaction than men [32].
Again, these studies were not performed in the context of
software development, and it is hoped that the answer to this
question will improve our understanding of team composition
in software industry and computer science classroom.

B. Independent and Dependent Variables

The experiment manipulated the following independent
variable:

a) Social Sensitivity Score: Each participant completed
the ―Reading the Mind in the Eyes [11] test in order to
determine their individual social sensitivity score.

The following dependent variable was measured:

a) Average Team Social Sensitivity: Team performance
and the Team Average Social Sensitivity would be measured
via forming Virtual Teams and averaging the individual SS of
members that make up each team.

C. Experiment Procedure

This study used a randomized experimental design in which
participants were tested to determine their SS scores and then
randomly were assigned into a team. Fig. 1 illustrates the study
design overview. After conducting the SS test, the team
projects were started and after the completion of the study a
Post-study Satisfaction survey was conducted.

Step 1: Pre-Study Social Sensitivity test - SS (social
sensitivity) survey was conducted using Reading the Mind in
the Eyes [11] test, so that we can utilize the SS scores. A
glossary that contained definition and a sample sentence was
provided to make sure, that the subjects had a clear
understanding of the adjectives used in the test. The students
were advised to read through the glossary thoroughly and refer
to, if need be during the survey.

Step 2: Team formation - Virtual Teams are formed with
each group have four subjects; an automated script was used to
form the Virtual Teams from the set of enrolled subjects
forming teams into groups viz. MMMM, MMMF, MMFF,
MFFF, FFFF.

a. MMMM: All four members are male in the team.
b. MMMF: One of the members is female, and the rest

three are males.
c. MMFF: Half of the members are male and other half

are female.
d. MFFF: One of the members is male, and the rest three

are females.
e. FFFF: All four members are female in the team.

While forming Virtual Teams, extra efforts were put in
order to maintain the consistency along the lines that no
individual is counted twice for the same Team formation. In
simple terms, for example Person A cannot be in one
generation of the formation (MMMM) and also again in the
other generation of the same formation (MMMM). Though
same person could be in different formations viz. Person A
could be in (MMMM) and (MMFF), to better evaluate the
effect of his/her presence in different possible formations.

The reason behind this kind of Virtual group formation was
to understand and evaluate the effect of having female team
members in a group; and how the presence of female
participants effect the Average Team Social Sensitivity which
would eventually effect the Team Performance based on many
recent studies [9] [4].

Step 3: Project Actualization - With progress of the
semester, the projects are distributed and it marks the start of
the project phase. The project includes producing a project
proposal, an interim report, a final report, and a final
presentation. The proposal required them to articulate ethical
questions that they planned to investigate, justify the question’s
importance, identify major stakeholders and ethical values,
specify their research methods, and plan the project. Half way
through the semester, each team submitted an interim progress
report that described the project goal, objectives, and scope,
employed research methods, used evidence to support ethical
viewpoints, and evaluated potential stakeholder actions. Near
the semester end, each team gave an oral presentation on their
project and submitted a final written report.

Step 4: Team performance evaluation - As the Team
Performance directly relates to the Average Team Social
Sensitivity [4] [9], the team performance is evaluated based on
the Team Average Social Sensitivity. As for now, this research
would aim at evaluating the Average Team Social Sensitivity
and also the impact of female proportion in the teams.

Step 5: Peer and Self Evaluation - After each deliverable,
the subjects completed an evaluation of each of their team
members as well as themselves. The following ten candidate
characteristics of an effective team member were included:
focusing on the tasks, being dependable, responsibility sharing,
listening, questioning, discussing, research and information
sharing, individual performance, brainstorming, and group
teamwork. Subjects rated each of the ten attributes on a 5-point
Likert scale and provided comments. These results were
captured to help researchers better understand the results.

Step 6: Post-study survey - A nineteen-question survey
was administered to the students at the end of the semester. The
post-study survey collected data regarding the self-perceived
effectiveness of each team, including whether members felt
valued; if the team cooperated, communicated, and interacted
well; if effective feedback occurred among team members; if

Fig. 1: Study Design Overview

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

80 Int'l Conf. Software Eng. Research and Practice | SERP'14 |

conflict existed and how it was resolved; and what the quality
was of the team work environment overall.

D. Data Collection

From Social Sensitivity test, Social Sensitivity scores were
collected via Reading the Mind in the Eyes [11] which were
used to evaluate the SS values as per female participation.

Teams were divided into 5 groups by varying the number of
females. To maintain the consistency we added the constraint
of that no individual is counted twice for the same team
formation. Table I shows the number of possible combinations
(virtual teams) belonging to each group. For example, there
were 56 teams made of all males, so that no male was part of
two teams. Similarly, 68 virtual teams included at least one
female and so on.

Team’s average social sensitivity scores for each of the 193

teams formed by varying number of females are shown in Fig.
2. The social sensitivity (SS) scores range from a minimum of
9 to a maximum of 32, with most teams scoring in the range of
19 to 25. It can be seen in Fig. 2, that the SS score of teams is
centered around the value (mean = 22.07), a normal
distribution. The horizontal axis signifies the average scores for
each team and the vertical axis signifies the frequency of SS
scores for each team.

A summary of the Social Sensitivity data for all the team

groups is shown in Table II.

As mentioned earlier, we investigated the peer evaluation

data to analyze if there exists any relation between the SS score
and the satisfaction achieved and also the dynamics of female
factor in the different team groups. As there are many different
kinds of team activities which can impact the performance and
dynamics of the group we carefully analyzed the ten question
survey to understand the effects of the presence of females and
subjects with high SS score. The survey questions were
designed mainly on the tasks of brainstorming, sharing
responsibility and other team activities described below.

a. Focusing on the Tasks: How well does the team member
stay focused on the task and does what needs to be done?

b. Being Dependable: How good is the team member at
being punctual for meetings?

c. Sharing Responsibility: How good is the team member at
doing their fair share of the work?

d. Listening: How good is the team member at listening
respectfully to all members of the team during discussions
and at considering others opinions?

e. Questioning: How well does the team member
respectfully pose questions to all the team members?

f. Discussing: How well does the team member respectfully
interact and discuss issues with all team members?

g. Research and Information-sharing: How well does the
team member gather research, share useful ideas and
defend/ rethink ideas relating to the group’s project goals?

h. Individual Performance: What is quality of the team
member’s work?

i. Brainstorming: How often does the team member
originate, seek and develop ideas and solutions
collaboratively with others?

j. Group Teamwork: How good is the team member at
consistently collaborating, cooperating and compromising
as necessary to achieve goals?

This peer evaluation questionnaire survey provided the data
regarding team satisfaction and team cohesion, which would be
discussed in the results sections.

IV. RESEARCH RESULTS

 This section provides analysis of the quantitative and
qualitative data that includes average team social sensitivity
scores and the feedback (peer evaluation) respectively. Because
each team (virtual) consisted of four subjects and the SS data
was for each individual, the individual SS scores were
combined into one team score based on the Team Formation
strategy. The SS score of each team was calculated by
averaging the individual team member’s SS scores.

Fig. 3 shows the average social sensitivity of virtual teams
within each group. The horizontal axis in Fig. 3 depicts the no.
of virtual teams belonging to team types viz. MMMM,
MMMF, MMFF, MFFF, FFFF and the vertical axis show the
average Social Sensitivity score for all the teams of particular
team type. The result in Fig. 3 shows that the teams with higher
number of females did not have higher SS score in comparison
to the teams with fewer or no females.

To further test our hypothesis 1, One-way ANOVA test was
performed to test whether the mean of SS score differs between
the five team types. Via unpaired t test, we also analyzed the

Fig. 2: Social Sensitivity Scores

TABLE II SOCIAL SENSITIVITY SUMMARY DATA FOR EACG GROUP

Team Group Average Team SS

Score

Variance(σ2) Range

MMMM 23.17 11.28 9.7 (28.5-18.7)
MMMF 22.70 5.41 8.2 (27-18.7)

MMFF 20.81 5.55 7.2 (24-16.7)

MFFF 20.31 1.79 4.9 (23.6-18.7)
FFFF 20.31 4.29 4.5 (22.5-18.5)

TABLE I NUMBER OF VIRTUAL TEAMS FOR EACH TEAM GROUP

Team Group Number of teams

MMMM – All Males 56

MMMF – 3 males, 1 female 68

MMFF – 2 males, 2 females 32

MFFF – 1 male, 3 females 21

FFFF- All Females 16

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

Int'l Conf. Software Eng. Research and Practice | SERP'14 | 81

statistical significance for the difference in the team group’s
social sensitivity score, which is shown in the Table III below.

Based on the results shown in Table III, it is evident that
adding a female to all male group did not significantly
improved the SS of the group (MMMM vs. MMMF had a non-
significant value of p = 0.36). On the contrary, a team of all
males (MMMM) were significantly more socially sensitive (on
average) when compared with the teams with 2 females
(MMFF), three females (MFFF), and all females (FFFF). The
p-values were less than 0.05 for these three comparisons.

For the next part of the study, we analyzed the 10 question
peer evaluation survey conducted at the completion of the
project to understand how does the team activities relate to
people with high social score and presence of females. We
analyzed whether the team cohesion and peer evaluation was
dependent on the gender.

Post study peer evaluation survey was conducted using 10
questions based on team process activities which highly
impacted the team effectiveness: Brainstorming, Dependability,
Discussing, Task focus, Listening, Performance, Questioning,
information sharing, responsibility and teamwork. Survey
questionnaire was handed out to every student in the class to
evaluate his team members. We used 5 point Likert scale (0-4)
to evaluate the survey responses, and the average scores for
both the genders are shown in the table below (Table 4).

Table IV shows the results of the 10 question survey
conducted in the class after the team projects were completed.
Average scores received by both the genders, in each category
is shown, where 28 responses were received for females, while
88 responses were received for males. The results show that
average female scores for all of the project process activities
was similar in comparison to males; and there was no
significant difference. Though it does not directly align with
Woolley et al., at MIT [5] findings that women tend be much
more collaborative and increases the collective intelligence; it
is highly possible that Woolley’s claims are not valid for
women in computing disciplines.

For evaluating the notion of females being more satisfied at
work in comparison to males, we stressed on the list of
‘buzzwords’ that showed extreme emotions such as
‘exceptional’, ‘distracted’, ‘expressed’ and used these
buzzwords in evaluating the satisfaction level achieved based
on gender differences.

While Evaluating Post Study Survey, the results showed
various instances where Male subjects seemed to be unsatisfied
with the team members such as “Person X doesn’t actively
participate in group discussions” and “Person X’s research for
the first few assignments wasn’t very thorough” while female
subject were generally extremely satisfied with other Team
member performance and efforts.

V. DISCUSSION OF RESULTS

 Our fundamental finding is that the proportion of females is
not highly correlated with the performance of student teams, on
large semester-long projects. Average social sensitivity score of
teams with high number of female members was significantly
lower in comparison to teams with fewer numbers of females.
Our initial hypothesis, “Adding more women can significantly
improve the team performance” does not hold true. The
presence of females did not have any effect on the Team
performance activities such as Brainstorming, Research and
Information Sharing, Teamwork to name a few. We averaged
scores for each performance activity based on the gender, and
found that females on average had a similar score in
comparison to males on all of the team performance activities.

One other important finding in our study is that it supports the
recent study by PayScale, Inc. which shows that women tend to
be more satisfied with their jobs as compared to men [12][13].
While analyzing the Post Study and Peer evaluation survey’s
open ended questions, it as seen that females tended to be more
satisfied with the team performance and team dynamics. This
finding asserts our hypothesis that “Female attitude towards
jobs are more favorable than males” holds true even in the
fields of Computing. Our key finding also supports new global
research [33] from Accenture, which has found that a greater
number of women (40%) are satisfied with their current job

TABLE IV PEER EVALUATION STUDY RESULTS

TABLE III PAIR WISE COMPARISON BETWEEN SS OF TEAMS

Team Groups Statistical Significance

MMMM – MMMF p-value = 0.3617(Not statistically significant)

MMMM – MMFF p-value = 0.0007(statistically significant)

MMMM – MFFF p-value = 0.0007(statistically significant)

MMMM – FFFF p-value = 0.0019(statistically significant)

MMMF – MMFF p-value = 0.0003(statistically significant)

MMMF - MFFF p-value = 0.0001(statistically significant)

MMMF - FFFF p-value = 0.0003(statistically significant)

MMFF – MFFF p-value = 0.3867(Not statistically significant)

MMFF - FFFF p-value = 0.4751(Not statistically significant)

MFFF – FFFF p-value = 0.9935(Not statistically significant)

Fig. 3: Average Social Sensitivity Score Comparison

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

82 Int'l Conf. Software Eng. Research and Practice | SERP'14 |

and are not looking for new job opportunities as compared to
men (28%). Research across various nations across Europe,
also assert the fact that females show a significantly higher
level of job satisfaction [34].

VI. CONCLUSION AND FUTURE WORK

 Our initial belief that the effect of including female members
would be exhaustive and wide-spread, not only in terms of
achieving higher team performance but also would lead to
higher team satisfaction and constructive growth with less
interpersonal challenges, proved to be a negative hypothesis in
terms of increase in average social sensitivity. Also, the results
showed that female presence did not have any subtle
contribution in the team process activities essential for a project
to succeed. Through the qualitative analysis of data, it is
suggested that females tend to have a more favorable attitude
towards job and report more satisfaction than males even in the
same work environment. Research study published by
Accenture [33], also has found that a greater number of women
(40%) are satisfied with their current job and are not looking
for new job opportunities as compared to men (28%). Authors
such as Randy Hodson from Indiana University at
Bloomington have also suggested that women’s attitudes
toward their jobs are often more favorable than men’s [32]

REFERENCES

[1] Sarmasik, G. ; Demirors, O. . The role of teamwork in software
development: Microsoft case study. EUROMICRO 97. New Frontiers of

Information Technology.

[2] M.Anderson. Add Women, Get Smarter: What’s the Deal with Social
Sensitivity. Retrieved August 25th , 2011 from:

http://www.theglasshammer.com/news/2011/08/25/add-women-get-

smarter-whats-the-deal-with-social-sensitivity/
[3] M.White. The Real Reason New College Grads Can’t Get Hired.

Retrieved Nov 10th,2013 from: http://business.time.com/2013/11/10/the-

real-reason-new-college-grads-cant-get-hired/?iid=biz-article-mostpop1
[4] Snodgrass, Sara E., Women's intuition: The effect of subordinate role on

interpersonal sensitivity. Journal of Personality and Social Psychology,

Vol 49(1), Jul 1985, 146-155.
[5] Anita Williams Woolley, Christopher F. Chabris, Alex Pentland, Nada

Hashmi, Thomas W. Malone. Evidence for a Collective Intelligence

Factor in the Performance of Human Groups
[6] J. Hsu. Good Decision- Making Groups Need More Women, Not

Geniuses. Retrieved September 30th, 2010 from:

http://www.livescience.com/10755-good-decision-making-groups-
women-geniuses.html

[7] M.Garber. MIT management professor Tom Malone on collective

intelligence and the “genetic” structure of groups. Retrieved May 4th,
2011 from: http://www.niemanlab.org/2011/05/mit-management-

professor-tom-malone-on-collective-intelligence-and-the-genetic-
structure-of-groups/

[8] Thomas W. Malone, Robert Laubacher, Chrysanthos Dellarocas.

MITSloan Management Review: The Collective Intelligence Genome,

Spring 2012, Vol.51 No.3

[9] Lisa Bender, Gursimran Walia, Krishna Kambhampaty, Kendall E.

Nygard, Travis E. Nygard. Social sensitivity and classroom team
projects: an empirical investigation. SIGCSE '12 Proceedings of the 43rd

ACM technical symposium on Computer Science Education

[10] http://news.nationalgeographic.com/news/2010/09/100930-collective-
intelligence-groups-teams-women-sensitive-health-science/

[11] S. Baron-Cohen, S. Wheelwright, J. Hill, Y. Raste, I. Plumb, J. Child

Psychol. Psychiatry 42, 241 (2001).
[12] Daily Mail UK. Women happier at work than men. Retrieved from:

http://www.dailymail.co.uk/news/article-7356/Women-happier-work-

men.html
[13] C. Rampell. Women May Earn Less, but They Find Their Work More

Meaningful. Retrieved February 16th, 2012 from:

http://economix.blogs.nytimes.com/2012/02/16/women-may-earn-less-

but-they-find-their-work-more-meaningful/
[14] Glenn, Taylor, and Weaver 1977; Penley and Hawkins 1980; Quinn,

Staines, and McCullough 1974

[15] A. Begel and B. Simon. Novice software developers, all over again. In
Proceedings of the Fourth international Workshop on Computing

Education Research, ICER '08, pages 3 - 14,New York, NY, USA, 2008.

ACM.
[16] G. Scott and D. N. Wilson. Tracking and profiling successful it

graduates: An exploratory study. In Proceedings of the 13th Australasian

Conference on Information Systems, ACIS '02 , pages 1185 - 1195, 2002
.

[17] A.Radermacher and G.Walia. Gaps Between Industry Expectations and

the Abilities of Graduates: Systematic Literature Review Findings.
SIGCSE’13, Colorado, USA.

[18] A. Begel and B. Simon. Struggles of New College Graduates in their

First Software Development Job. SIGCSE’08, Orgeon, USA, 2008.
ACM.

[19] D.Gallie, Y. Zhou, A. Felstead, and F.Green. Teamwork, Productive

Potential and Employee Welfare. SKOPE Research Paper No.84 May
2009.

[20] (2008, 03). Teamwork. StudyMode.com. Retrieved 03, 2008, from

http://www.studymode.com/essays/Teamwork-137596.html
[21] Teamwork. Anti Essays. Retrieved March 22, 2014, from the World

Wide Web: http://www.antiessays.com/free-essays/101425.html

[22] Cohen, S.G. and Bailey, D.E. 1997. What Makes Teams Work: Group
Effectiveness Research from the Shop Floor to the Executive Suite.

Journal of Management. 23, 3, 239-290.
[23] Hackman, J.R. 1983. A Normative Model of Work Team Effectiveness,

Technical Report #2, Research Program on Group Effectiveness, Yale

School of Organization and Management, November, 1983.
[24] P. Tarricone and J. Luca. Successful teamwork: A case study. HERDSA

2002, from http://www.deakin.edu.au/itl/assets/resources/pd/tl-

modules/teaching-approach/group-assignments/case-studies/case-study-
edith-cowan-university.pdf

[25] Greenspan, S. 1981. Defining childhood social competence. Advances in

Special Education. 3, 1-39.
[26] R. Riggio and R.Reichard. The emotional and social intelligences of

effective leadership – An emotional and social skill approach. Kravis

Leadership Institue, Claremount McKenna College, California, USA.
[27] M.Bielikova and P. Navrat. Experiences with Designing a Team Project

Module for Teaching Teamwork to Students.

[28] E. Plannin. The Surprising Reason College Grads Can’t Get a Job. Jan
29th, 2014 Retrieved from:

http://www.thefiscaltimes.com/Articles/2014/01/29/Surprising-Reason-

College-Grads-Can-t-Get-Job#sthash.qoG7wvSb.dpuf
[29] The Standish Group International. CHAOS Summary 2009 Report.

Retrieved from:

http://emphasysbrokeroffice.com/files/2013/04/Standish-Group-
CHAOS-Summary-2009.pdf

[30] C.Chan, J. Jiang and G. Klein 2008. Team Task Skills as a Faciltator for

Application and Development Skills. IEEE Transactions On Engineering
Management, Aug 2008.

[31] M. Ikonen and J. Kurhila 2009. Discovering High-Impact Success

Factors in Capstone Software Projects. SIGITE ’09.
[32] R. Hodson 1989. Gender Differences in Job Satisfaction: Why Aren’t

Women More Dissatisfied? The Sociological Quarterly, Volume 30.

1989

[33] The Path Forward (Accenture Inc.), 2012. Retrieved from:

http://www.accenture.com/SiteCollectionDocuments/PDF/Accenture-

IWD-Research-Deck-2012-FINAL.pdf
[34] L. Kaiser 2005. Gender-Job Satisfaction Differences across Europe: An

Indicator for Labor Market Modernization. Institute for the Study of

Labor, December 2005.
[35] S. Cohen, S. Wheelwright, J. Hill, Y. Raste, I. Plumb 2001. The

“Reading the Mind in the Eyes” Test Revised Version: A Study with

Normal Adults, and Adults with Asperger Syndrome or High-
functioning Autism. J. Child Psychol. Psychiat. Vol. 42, No. 2, pp.

241±251, 2001 Cambridge University Press (2001 Association for Child

Psychology and Psychiatry)

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

Int'l Conf. Software Eng. Research and Practice | SERP'14 | 83

Relational Metrics Model for Software

 Configuration Management

Charles Donald Carson, Jr.

 Hassan Pournaghshband

Department of Computer Science and Software Engineering

Southern Polytechnic State University

Abstract - Changes during a software products life

cycle are inevitable. These changes can correct or

enhance software functionality and/or reduce costs

associated with the software product. However,

changes can also introduce added risks and unknowns

during a software products life cycle and can result in

unpredictable software behavior. Software

configuration management (SCM) is a part of

configuration management (CM) which supports a

complex framework for monitoring, managing, and

controlling changes to a software products

configuration during its life cycle. In this paper, we

introduce the development of a relational metrics

model as a possible means for better managing and

controlling software configuration change during a

software products life cycle from the SCM activities,

software engineering measures, and any available

CM metrics. This relational approach to managing

changes within a software product life cycle will

result in a more effective means of validating change

configurations by envisioning change from a unified

quantifiable view instead of by individual change

artifacts and components within the SCM framework.

1. Introduction

 Software Configuration Management (SCM) is a

software change management framework for

managing any configuration changes during the

development of a software product. A software

configuration can include existing, functional and

physical attributes of a software system as well as

combinations of software systems [1.] “Software

Configuration Management is an umbrella activity

that is applied throughout the software process.

Because software configuration change can occur at

any time, SCM activities are developed to (1) identify

change, (2) control change, (3) ensures that change is

being properly implemented, and (4) report changes

to others who may have an interest” [2.] Changes to a

software product's configuration can typically result

in revised software characteristics, and by derivation,

affect the metrics that report on the software product

itself. Though changes to a software product are

intended to enhance its performance, and/or reduce

costs, they can also introduce added risks. Software

systems can comprise of multitudes of individual

change artifacts and components. Furthermore, each

of these change artifacts and components can involve

individual dependencies and constraints.

Documentation of changes in these systems can be

inconsistent, incomplete, and may or may not

adequately cover the individual changes in each of

the change artifacts and components as a whole. It is

difficult to control the software configuration change

process solely by visualizing individual change

artifacts and components with the expectation of

accurately and consistently controlling any resulting

new software configuration behavior. In this paper,

we propose a relational approach to help in managing

software configuration changes throughout the life

cycle of a software product.

 Also we will investigate the development of

relations between entities and attributes derived from

the various activities within the SCM framework

along with the available software engineering

measures and associated CM metrics.

2. Our Approach

 In developing our relational metrics model, the

primary functional elements of SCM, that is,

configuration identification, configuration change

control, configuration status accounting, and

configuration audit were analyzed. Possible entities

and attributes from activities within these functional

elements of SCM are then derived, as well as

resulting software engineering product, process, and

project measures.

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

84 Int'l Conf. Software Eng. Research and Practice | SERP'14 |

 Primary elements of SCM activities and any

resulting software engineering measures were used in

establishing the data requirements of the relational

metrics model as listed below in Table 1;

 Table 1

SCM Activity/Software Engineering Measures Description

 Configuration identification Identification of software configuration items.

 Configuration control activity Change process, control, and release process.

 Configuration status accounting Reports based on any configuration management data.

 Configuration accounting audit Recording and reporting the status of change

requests/components in the software product.

 Product measure metrics Indirect and or direct measurements of software related

activities.

 Process measures metrics Deliverables involving artifacts and or documents

resulting from process activities.

 Project measures metrics Production of items used by processes in order to

produce their outputs.

 Through the use of an Entity Relation Diagram

(ERD), we represent our established data

requirements as relationships between the individual

configuration item entities undergoing the actual

configuration change, as well as the SCM process

activities and any resulting software metrics that are

expressed as attributes of these [3.] Subsequently, the

ERD will then be converted into the relational

metrics model itself.

 In Figure 1, we have illustrated placing

configuration items (CI’s) that are typical in the

development of a software product, such as software

component, related requirements, and associated test

cases under SCM control. During particular points of

the CI’s life cycle, the CI’s undergoing any

configuration change is represented as versions as

reflected through the various entities illustrated in the

diagram. The attributes of these entities are the actual

representations of the activities and resulting

software engineering metrics within the functional

elements of the SCM process. In the example entity,

Configuration Item Version, changes to a CI are

represented as change attributes; the individual

change activities within the functional elements of

SCM and any artifacts from these activities. The

resulting metrics are represented as attributes of that

entity. An actual abstraction of the SCM process; its

activities and metrics produced within each of the

functional elements is essentially represented

throughout the ER diagram.

 We have organized any metrics produced from

the various activities within the SCM process into the

respective areas of the software engineering

measurements. From this type of organization, a

better understanding can be realized regarding the

measurements produced from the various activities

within the functional activities of the SCM process

and how these impact the software product and the

SCM process itself.

 Typical metrics within configuration

management can be correlated with each of the

software engineering measures based on the product,

process, and project measurement types and what

these might represent. Correlation of CM metrics and

these software engineering measures are discussed in

[1.] From the analysis of the individual activities

derived from functional elements of SCM process

and the correlation of the CM metrics with its

respective software engineering measures, we have

established an understanding of the SCM process as a

whole.

 Through correlating the entities and their

respective attributes we have indicated that the

conceptual model provides a sufficient representation

of the overall activities within the functional elements

of the SCM process.

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

Int'l Conf. Software Eng. Research and Practice | SERP'14 | 85

Figure 1 - ER Diagram of Relational Metrics Model

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

86 Int'l Conf. Software Eng. Research and Practice | SERP'14 |

 Furthermore, the activities within the functional

elements of the SCM process provides a means of

identifying what CI’s in the various software

configuration baselines are undergoing changes at

various points in time. The conceptual relation

metrics model through the use of relations provides

an overall view of the SCM process by envisioning

change from a unified quantifiable view instead of by

individual change artifacts and components within

the SCM framework [1.] Figure 2 shows the relation

metrics data model resulting from the conversion of

each entity and its respective attributes represented in

the ER diagram into individual relations.

3. Traditional SCM Approach and

the Relational Metrics Model

 We have found that the traditional approach to

SCM consists mainly of individually managing the

individual change artifacts and components within a

software products lifecycle. However, this presents a

level of difficulty, possible inconstancies, and is

susceptible to being error prone. Furthermore, it is

difficult to control the software configuration change

process solely by visualizing individual change

artifacts and components with the expectation of

accurately and consistently controlling any resulting

new software configuration behavior. Though various

SCM tools exist, these tools can tend to focus only on

the SCM aspect and does not fully integrate any

software engineering measures which can be crucial

in providing any important SCM activity metrics.

 Software engineering metrics which consists of

product, process, and project measures can be derived

from any of the various SCM activities. These

measures can help in quantifying change within the

SCM activity framework and help drive any

necessary improvements in the SCM process as well

of improvements to individual artifacts of the

software project and the software project itself.

 Lastly, in comparing the proposed Relational

Metrics Model to traditional SCM approaches, we

believe there exits an advantage to managing change

configuration from a unified view perspective

through interrelations of the SCM activities and the

software engineering metrics rather than by

individual change artifacts and components as

presented by traditional SCM approaches and tools.

Although change activities within traditional SCM

approaches track changes and any artifacts affected,

however questions arise in quantifying the various

areas of change in order to identify, correlate, and

prioritize changes. Through an abstracted view of

software products change activities and related

metrics, software project managers for example, can

anticipate and project issues and establish a

“preemptive” approach rather than a “reactive”

approach which is a prevailing factor in many

software projects presently.

4. Conclusions

 In this study, we proposed the development of a

relational model as a possible means for managing

and controlling software configuration change during

a software products life-cycle from the SCM

activities and the available software engineering

metrics. Current approaches to SCM focus primarily

on individually managing the individual change

artifacts and components within a software products

lifecycle which is susceptible to errors as well as not

providing an abstracted view of a software products

change activities. We demonstrated that our relational

approach to managing changes within a software

product lifecycle will result in a more effective

means of validating change configurations by

visualizing change from a unified quantifiable view

rather than by individual change artifacts and

components within the SCM framework.

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

Int'l Conf. Software Eng. Research and Practice | SERP'14 | 87

Figure 2- Relation Metrics Data Model

References

[1].J.Keyes, “Software Configuration

Management,” Auerbach Publications, 2004.

[2]. R.Pressman, “Software Engineering-A

Practitioner's Approach,” Seventh

Edition, McGraw-Hill, 2010.

[3]. Gornik, D. (2003). Enity Relationship

Modeling With UML. Retrieved from

www.ibm.com/developerworks/rational/libr

ary/content/03July/2500/27

5/2785_uml.pdf

[4].Software Metrics

(http://www.cs.ucl.ac.uk/staff/A.Finkelstein/

advmsc/11.pdf)

[5]. Harrington, J. (2002). Relational

Database Design, San Diego, California:

Morgan Kaufmann Publishers

[6]. IEEE Standards: "IEEE 828-2012:

STANDARD FOR CONFIGURATION

MANAGEMENT IN SYSTEMS ANS

SOFTWARE ENGINEERING."

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

88 Int'l Conf. Software Eng. Research and Practice | SERP'14 |

http://www.cs.ucl.ac.uk/staff/A.Finkelstein/advmsc/11.pdf
http://www.cs.ucl.ac.uk/staff/A.Finkelstein/advmsc/11.pdf

Modeling and Self-Configuring SaaS Application

Nadir K.Salih, Tianyi Zang
School of Computer Science and Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, China

Abstract - The main objectives of SaaS application are to

make the management and control of software easier and take

the management strain away from consumers. However, it

also leads to software services available globally and this has

been realized in our paper by designing a new model for SaaS

application. The three levels we have classified in our model

easy adapted to workflow and services. From the application

layers meat-model description we discovered a new algorithm

for the self-configuration of SaaS application. We used a

feature model to define the variation of our model’s

management levels. The Xml file obtained from the feature

model gave interactive communication between three levels

and our new self-configuration algorithm. That increased the

performance by selecting from the web a suitable

configuration for every level. We have explained all the

processes by an online booking example. Finally we present a

conclusion and future work.

Keywords: SaaS application, Modeling, meta-model, Self-

configuration, Feature model

1 Introduction

 Modeling SaaS application is very important field and

building a SaaS by leveraging existing technology is a

challenging issue and needs brand new software technology

[1]. It is useful for both business and educational purposes,

such as businesses can be easily adopted in several domains,

like healthcare, education and OA (Office Automation) for

this to be modeled, the SaaS application [2] [3] demands new

requirements. In this paper we have drawn a new model [4]

[5] of SaaS application. We have summarized our

contributions as follows:

� Built new model for SaaS application.

� By meta-model defined four layers to compose the

system and showed the associations and dependencies of

the layer elements.

� Demonstrated the relationship between the three levels

in our model by a workflow as a business process layer

� We observed the necessity of sharing the workflow (can

share other things, e.g. software components, SLA/QoS,

etc) in each level and how it can improve efficiency and

better control customer service.

� We have classified services of SaaS application

according to three levels. Some services are done by the

user; others are by the tenant and some by the provider.

� Increased the quality of system by showing it has

different levels of services which can serve by order of

importance. The service of the provider it is more

important than the service of the tenant and tenant

services are more important than user services.

� Self-configuration of the algorithm to dynamically

configure SaaS components.

� Commonality and variability are indicators for

components costs.

We organized this paper by beginning with the design of

the new general architecture for SaaS application in section 2.

Depending on the model driven development we derive SaaS

meta-model layers in section 3. That classifies the SaaS

application management in three levels. To demonstrate this

new opinion we take online booking SaaS application as

running example in section 4. In section 5 we have described

the service architecture for SaaS application. We realized

self-configuration of the model by a new algorithm in section

6. Section 7 described the related work. Finally, we present

the conclusion and point to future work.

2 Architecture of SaaS Application

 System modeling is a very important issue in software

engineering, because it has great importance in system

development. Thus, we have defined our architecture of SaaS

application, and described our model by using the meta-

model concept to show we could easy achieve management

by the new model. Application architecture specifies that

technologies are to implement one or more information

systems in terms of data, process, and interface, and that these

components interact across a network [6]. Architecture is a

transferable abstraction of a system [7]. As we study from

recent researches architecture development of SaaS is a large

part of the application. Our novelty here is to create a

conceptual model for SaaS application as depicted in figure 1.

Fig 1 Architecture of SaaS Application

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

Int'l Conf. Software Eng. Research and Practice | SERP'14 | 89

This architecture includes main three parts:

• Application layers contain four layers beginning from

the graphic user interface (GI) that uses the web page and

navigation bar to communicate to the user and SaaS

application. The second layer is the business process (BP) to

show the workflow for business by defining some roles and

actors activities. In the service layer service (S) process is

determined by the dispatch manner and catalog. In addition

the service level agreement has been defined for some

services like billing, monitoring, QA, metering, and security.

The final layer is the database (DB) layer which shares the

common data and isolates variable data.

• The hardware infrastructure includes all hardware

resources working in SaaS application servers, storages,

network, etc. The allocation and placement algorithm is used

to optimize these resources.

• The autonomic management manages all management

in SaaS application and will be self-managed in the three

levels of provider, tenant and user. This will be applied in the

application layers to manage the processes (configuration,

customization, security, validation, commonality, and

variability).

Adapting the same application in the case of multiple users to

somewhat different and specific needs of a certain user is

important therefore creating a new architecture suitable for

development is needed. The new concept in our proposed

architecture of SaaS application is the base in three levels

adapting to develop SaaS by adjusting to the tenant’s instant

functions from the provider level. We have looked to adaptive

to different instances for all users from the tenant level. Also,

adjusting user requirements from the user level are controlled.

The goals of modeling are:

• Develop architecture for SaaS approach based on

three levels to realize organization and user requirements.

• Configuration and adaptation of SaaS applications

must be performed.

• Customized adaptation for every level to ease

management of SaaS application.

3 Meta-Model of SaaS Application

 Looking at the proposed model for SaaS application

three management levels have been classified that are

depicted in figure 2. According to the kind of service SaaS

system can determine the level of management. The

reasonability of this classification is a variation [8] of the

application layers from level to level.

Fig 2 Three Management Levels for SaaS Application

All application layers can be variables in the provider level

for different tenant requirements. Likewise, in the tenant level

all application layers are changeable for different user

requirements. However in the user level we observed it is the

same as in GUI, BP, and S, but DB it different from user to

user. The general meta-model [9] of these layers are depicted

in figure 3 below.

 Fig 3 Meta-model of SaaS Layers

4 Demonstrate SaaS Meta-Model

 As we mention our SaaS model has three levels of

management including the provider, tenant and user. Every

level has different managements for the application layers,

which are defined in the upper meta-model of SaaS layers. We

can take an on-line hotel booking example to demonstrate this

model as seen in figure 4. The provider is a highly

configurable service that travel agencies can use for booking

hotels on behalf of their customers. For that we can say the

provider is the administrator for all travel agencies. The travel

agencies look like tenants and customers are users that want to

book a travel service.

Fig 4 SaaS Application of on-line Booking

Depending on the meta-model layers we describe our own

model of SaaS application. At first, the provider is the

administrator of all the travel agencies to management the

activities that appeared through the layers:

• The Graphic User Interface(GUI) has different style for

the GUI layer which has various types like standard menu and

tree menu to display page or plug ins as requirement the from

tenant.

• In the Business Process (BP) the provider puts the

business logic in a formula. It can be a variable from agency

to agency. And the workflow defined by a sequence, branch

and return according to the agencies requirements. In addition

the status is used to show that the software is open or closed in

each different status.

• Services (S), can be different for the service dispatcher

and service catalog between agencies. For example if the

agency categorizes the services as and VIP they will be

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

90 Int'l Conf. Software Eng. Research and Practice | SERP'14 |

dispatched differently and then cataloged which means the

sending, indexing services from provider to tenant are not the

same. However the variation in the service level agreement

for many services billing, metric, and security can be

according to agency requirements.

• Data Base (DB), in this layer we should define as any

agency by a unique identifier. And attributes of the data will

normally be different from one agency to another. However,

the mappings that describe the relationship between different

entities vary in the data.

The second level is the tenant that corresponds to the travel

agency, and in our example to the management of all users’

activities inside the layers:

• The Graphic User Interface (GUI) is the job of the

travel agency to show a suitable style interface for the users as

a classification for the user as a normal or VIP user.

• In the Business Process (BP), the business logic can be

different from user to user so that travel agency can use a

different formula according to the type of user. The workflow

can be a variable in this system like low season is different

from high season booking. However it defines the status of the

system as open or close in various cases.

• In the Service layer the travel agency sending and

indexing the services depends on the type of user, and the

classification of the service for different costs. This will then

be applied according to the service level agreement between

the agency and customers.

• In the Data Base the travel agency defines any user by

an identifier because it is unique for every user, and attributes

data can be different from user to user. In addition, the

mapping that describes the relationship between entities will

vary.

The third level is user that can communicate with on-line

travel agency for hotel booking. In this level the management

for SaaS application layers is defined as:

• The variation in graphic user Interface is defined by the

tenant or travel agency and it needs management if the user

uses a different machine such as the Windows client program

running in a PC with the resolution of 1680×1050, a

smartphone application with the resolution of 640×480, and a

tablet application with the resolution of 1024×768. Moreover,

in the business process the logic and workflow is the same put

forward by the travel agency. However, in the service layer

introductions from travel agency are according to user

requirements. While the data base layer needs management

because it is different from user to user in the identifier,

attributes and mapping relationships for different entities.

In the relationship between the three levels we can

consider the workflow in our example of online booking with

the hotel as the provider level and is managed at the tenant

level or by the travel agencies. Figure 5 shows the process of

booking when the request reaches the travel agencies. Then,

they can begin to display the information that is filled out by

the customer as they have an office to check this data and

submit it to be accepted or rejected. This sequence is the same

in the two travel agencies, but the second travel agency has a

difference in workflow due to the manager check. Here the

provider can share a customizable workflow for multiple

travel agencies using the assembled workflow.

 Fig 5 Share Customizable Workflow on the Provider

Level

Here the relationship between the provider level and

tenant level is a sharing customizable workflow. This can be

managed and controlled by many travel agencies in a process

by which it shares the same sequences. Our model realized the

benefit for a business process by minimizing the many

workflow processes in sharing a one workflow process. The

relationship between the tenant level and user level can define

by the booking process from customer to travel agency. For

example, customers in one travel agency web begin by

browsing and searching for bookings and payments to finish

the transaction. Another travel agency after searching and

booking lets the customers to make another search to see new

options for booking as depicted in figure 6.

Fig 6 Share Workflow on the Tenant Level

Share workflow can eliminate many unnecessary steps that

lead to increased efficiency more than other strategies [10]. It

also improved consistency and control result for better

customer service. From this relationship between the tenant

level and user level we can obviously see our model easily

manages and adapts to SaaS application.

5 Service Architecture in SaaS Application

To adapt and manage SaaS application we should

understand the service architecture represented in our model.

Then the feasibility will be clear of our novelty in classifying

our model in the three levels of management. The online

booking hotel running example will illustrate this principle.

Though the web service SaaS application provides different

services as defined in our model as a variable from level to

level. From figure 7 we classified our concrete service in CSi=

{spi,spi…spn, sti,sti…stn, sui,sui…sun} ,1≤ i ≤m, sp, st, su are

provider service, tenant service, and user service, respectively.

These concrete services obtain the same abstract services as

from a functional view, which can be defined by the

application layer in formal methods.

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

Int'l Conf. Software Eng. Research and Practice | SERP'14 | 91

Fig 7 Service Architecture in SaaS Application

To explain this we return to our example of the online

hotel booking and see the workflow of this system as

appeared in the activity diagram below in figure 8.

Fig 8 Activity Diagram of Online Hotel Booking SaaS

System

Looking at this workflow diagram we start executing as

soon as user visits the hotel administrator web side and

submits a user ID and password. The SaaS application

validates this data and if it is invalid it automatically

terminates the process. Here, because the data is valid, it will

go on to make the diction from our three levels of

management. This user is the customer of the SaaS

application and then will provide two services as the different

workflow booking are available. The user is the tenant or

administrator of the hotel and looks like the travel agencies.

This level has services managed by the system display in the

form of a customer, submits the information, modifies the

tariff, and generates the required report for the customer. The

user can be the last level of our model management and is the

provider that administrates for all travel agencies here the

SaaS application which will provide services to management

agencies like reporting for all events and modifying (delete,

update, add) the travel agencies data. The SaaS online

booking hotel system associates the following abstract

services:

• Available booking, which lets the customers book a

hotel.

• Canceling booking prevents customer from booking

the hotel.

• Modify tariff, the price may change in low season of

booking.

• Generate customer report; display some reports to

the customer.

• Modify travel agency data, update, delete and add

travel agency data by the provider.

• Reporting travel agency displays payment, resources

and all management activities of the travel agencies

from the provider.

We define two abstract services from each level as

follows:

 asu1 = Available booking

 asu2 = Canceling booking

 ast3 = Modify tariff

 ast4 = Generate customer report

 asp5 = Modify travel agency data

 asp6 = Reporting travel agency

6 Self-Configuration SaaS Application

By Self-Configuration Algorithm SAAS application

(SCAS) and the model driven development approach can be

used to implement self-management for SaaS application. The

autonomic diagnosis, failures and performance

reconfiguration that is required for repair can occur in every

layer. The constraint model to check the data conformance

has been used in the meta-model to specify constraints. We

defined the monitoring model to the instrumentation for

collecting data about system behavior. It is very important to

reference the architectural entities in reconfiguration or what

should happen in any given condition, for what is suitable in

the meta-model for monitoring requirements for the

environmental and constraint model. We defined the meta-

model for the runtime model to reduce the managing

complexity during runtime. The prediction method is used to

select a suitable configuration [11].To realize self-

configuration for SaaS application we should monitor the

requirements and environmental conditions. The model

systems can be revised and used to generate new codes

automatically. The model and meta-model can be control by

some constraints. We have used the feature model to define

the variation for all meta-model layers in three levels.

Simply, we take the provider configuration from the provider

to the tenant as an example seen in figure 9. This feature

model shows the variations of the configurations for every

layer according to constraints that defines the features.

Fig 9 Feature Model for SaaS Meta-model Layers

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

92 Int'l Conf. Software Eng. Research and Practice | SERP'14 |

6.1 Logic of SCAS Algorithm

To simplify understand this variation we represent this

feature model in a hyper-arc,e, with a multiplicity value,

where mv = [min…max], whose tail (feature) is selected, no

less than the min and no more than the max features of the

hyper-arc’s head (child features) should also be presented in

the configuration.

 H = (V, E), where V = {v1,v2,v3, …. ,vn} is the finite set of

vertices (or nodes)

 E = {E1,E2,E3, …. ,Em} / Ei V i = 1,…,m is the set of

hyper-edges.

 Ei = (T(Ei),H(Ei)) = T(Ei) V H(Ei) V

 Ei is a directed hyper-edge , where T(Ei) is the set of tail

nodes and H(Ei) is the set of head nodes of Ei .

When |H(e)| = 1 (children’s cardinality set is one):

 - If min = 1 = max, the feature is mandatory, and should

be present if the parent, or it is a required constraint and then

the child should also be present [1..1].

 - If min = 0, max = 1, the feature is optional [0..1]

When |H(e)|>1(children’s cardinality set is more than 1):

 - if min = 1 = max, it is a XOR alternative feature group,

and only one child should be present at most if the parent is

present.

 - if min = 0, max = 1, it is an optional feature group, and

the child features can be present or not as long as its parent

is present, or it is a mutex constraint and at most one of the

child’s features can be present

 - if 1 min max |H(e)|, it is a OR feature group, and no

more than the max and no less than the min child features can

be present if the parent feature is present. Figure 10 shows the

hyper-arc diagram for the feature model.

Fig 10 Hyper-arc Diagram for the Feature Model

Formula of variation and commonality:

 We can represent the variability and commonality of each

layer of SaaS application by formula 1 and 2, respectively.

 ����������� 	

���
… … … … … �1�

k: is number of products

n: is number of all features

Variability increase the number of tenants and cost

 ����������� 	
������� �

… … . . … �2�

 Sharednode: number of appeared nodes in all products

Node in provider diagram as input:

 {0(0.SaaS_APP); 1(1.Provider); 2(2. PGUI); 3(3.pBP);

4(4.PS);5(5.PDB);6(6.page);7(7.menu);8(8.plugin);9(9.formul

a);10(10.folow);11(11.dismatch)

;12(12.catalog);13(13.SLA);14(14.pEntity);15(15.pCoding);1

6(16.type);

17(17.color);18(18.flag);19(19.tree);20(20.standard);21(21.rol

e);22(22.constraint);23(23.sequence);24(24.branch);25(25.ret

urn);26(26.billing);27(27.metric);28(28.security);29(29.pIdent

ifier);30(30.pAttribute);31(31.pMapping);32(32.share);

33(33.isolate) };

 6.2 Provider Level Hyper-arcs

We described the vertices and edges for all models. Also

we showed the relationship between the vertices and

determined all groups belonging to any vertices in table 1.

Hyperarcs: From[mult]H{To}: as input

Table 1 Inputs of Vertexes and Relationship

Node Relation Childs

Group

Node Relation Childs

Group

0 [1,1] {1} 5 [1,1] {14 }

1 [1,1] {2 } 5 [1,1] {15}

1 [1,1] {3 } 5 [1,1] {16 }

1 [1,1] {4 } 6 [0,1] {17,18 }

1 [1,1] {5 } 7 [0,1] {19,20}

2 [1,1] {6 } 9 [0,1] {21,22 }

2 [0,1] {7 } 10 [1,1] {23,24,25}

2 [0,1] {8 } 13 [1,1] {26}

3 [0,1] {9} 13 [1,1] {27}

3 [0,1] {10} 13 [1,1] {28}

4 [0,1] {11,12

}

14 [1,1] {29,30,31}

4 [1,1] {13 } 16 [1,1] {32,33}

From our description of the configuration for the provider

level we have observed that there are many variations. Those

will help SaaS application to give multiple choices and

provide many tenants. We should input the data as the system

can make self-configuration by table 2.

Table 2 SCAS Algorithm of SaaS Application Layers

Algorithm Name: SCAS

Inputs: n : nodes of all model, Relation: Relationship

between nodes, Group :all item belong to any

nodes. L: application layers(GUI, BP, S, DB)

 Outputs: All configurations for layers

 1 For each l Є L

 2 // children’s cardinality set is more than one

 3 While H(e) > 1 do

 4 // alternative constraint.

 5 if min = 1 and max=1 Then only one node

 6 // optional or mutex constraint

 7 if min = 0 and max= 1 Then in configuration

can select or not

 8 // OR constraint

 9 if 1 min max |H(e)| Then will select all or a

part of nodes

 10 end if

 11 end if

 12 end if

 13 // children’s cardinality is one

 14 While H(e) = 1 do

 15 // mandatory or require constraint

≤ ≤ ≤

⊆

⊆⊆ ∧

≤ ≤ ≤

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

Int'l Conf. Software Eng. Research and Practice | SERP'14 | 93

 16 if min = 1 and max= 1 then must select in

configuration

 17 // optional constraint

 18 if min = 0 and max= 1 then may select or not

 19 end if

 20 end if

 21 configure(l)

 22 // return number of SaaS Layer configurations

 23 k = count configuration (l)

 24 // return number of all nodes in full configuration

 25 n=count node (l)

 26 // calculate variability of layers components

 27 " 	

���

 28 // calculate commonality of layers components

29 sharenode=count sharenode(configure(l)).

30 # 	
������� �

 31 end while

 32 end while

 33 if H(e) = 0

 34 invalid configuration

 35 end if

 36 end for each

In our running example the system needs to reconfigure

because the application exchanges from time to time and from

travel agency to travel agency and from user to user. As an

example, in high season booking will need different

configurations to realize all travel agency requirements, which

depends on the variation of customer requirements. In this

time the travel agency needs to offer various options for

booking like different rates. For that we can monitor the

variability of every layer as we mentioned above and make

decisions to best configure and realized the agency

requirements. In addition we can monitor the commonality of

any component in every layer to show the degree of sharing of

this component in different configurations.

The algorithm can dynamically configure every layer to

show all options that show the variation of the configurations

from tenant to tenant. However, to calculate the variability

and commonality they will be an indicator to monitor the

system configuration.

7 Related Work

The direction of the work is for the meta-model and

modeling for the evolution of SaaS application. In [12]

defined the criteria for designing the process model and

realized commonality and variability of modeling to maximize

the reusability. Researchers in [13] analyzed tenancy history

metadata from the graphic user interface (GUI), workflow,

service, and data layer for dynamically adjusting template

objects. In [14] provided an on-demand service-oriented

model driven architecture to develop an enterprise mashup

prototype as a practical case study. Authors in [15] regarded

PIM can be used to generate different PSMs using

transformation tools to minimize the time, cost and efforts in

developing cloud SaaS and enhance the return on investment.

They identified technical issues and proposed their effective

solution spaces in [16]. In [17] proposed a QoS model and

MCDM (Multi Criteria Decision Making) system for SaaS

ERP. They empirically examined main drivers and inhibiting

factors of SaaS-adoption for different application types in

[18]. In [19] studied forecasts effects expected when the SaaS

model will be fully applied to the library network. And they

presented functional requirements and an operation model of

SaaS-based library management systems. In [20] extensible

business component model named xBC is proposed for

describing both the structural and behavioral properties of

generic SaaS applications to minimized the amount of sources

needed to be reexamined by a transformation when the source

is changed. All development and evolution done by meta-

model, but it is not mention how to enable model-driven

development and tool support for the integration of self-

management functionality into SaaS application.

8 Conclusions

 This research is a foundation to build a new model for

SaaS application. By meta-modeling it defined four layers to

composite system and showed the associations and

dependencies of the layer elements. We have demonstrated

the relationship between three levels in our model by a

workflow model as a business process layer. We observed the

necessity of sharing the workflow in every level which can

improve efficiency and better control service to the consumer.

In our new model we could classify services of SaaS

application according to three levels. We have increased the

quality of the system by showing it has different level services

and can serve by important ordering. From meta-model layers

we have conducted the variation of the element layers and can

obtain different configuration than other methods [21]. In

addition we have described the self-configuration algorithm to

dynamically configure SaaS components.

In future work we will see the effect of our new model to

QoS in the SaaS application.

9 Acknowledgement

This work has been developed with the support under the

project with number: 2012AA02A604, 863 Program key

projects in China: The Technology and the System

Development for Smart Acquirement of Personal Healthcare

Information. And so the Key Project of NSF in China:

Methodology of Value-oriented Software Services: Theory,

Method and Application with number: 61033005

10 References

[1] L. Cui ,, T. Zhang , G. Xu , D. Yuan. A Scheduling

algorithm for Multi-Tenants Instance-Intensive Workflows.

Applied Mathematics & Information Sciences An

International Journal, 2013,pp.99-105.

[2] W. Huang, X. Wei, Y. Zhao, Z. Wang, Y. Xiao. A Multi-

tenant Software as a Service Model for Large Organization.

International Conference on Cloud and Service Computing,

IEEE,2013, pp.112-119.

[3] J. Lewandowski, A. O. Salako, A. Garcia-Perez. SaaS

Enterprise Resource Planning Systems: Challenges of their

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

94 Int'l Conf. Software Eng. Research and Practice | SERP'14 |

adoption in SMEs. International Conference on e-Business

Engineering, IEEE, 2013, pp.56-61.

[4] Y. Demchenko, C. Ngo, C. de Laat. Intercloud

Architecture Framework for Heterogeneous Cloud based

Infrastructure Services Provisioning On-Demand.

International Conference on Advanced Information

Networking and Applications Workshops. IEEE, 2013,

pp.777-784.

[5] C. Tan, K. Liu, L. Sun, C. Spence. An Evaluation

Framework for Migrating Application to the Cloud: Software

as a Service. Springer-Verlag Berlin Heidelberg, 2013,

pp.967-972.

[6] H. Yuan, X. Liu, C. Guo. A Design of Two-tier SaaS

Architecture Based on Group-tenant. International Conference

on Computer Science and Network Technology. IEEE, 2012,

pp.340-344.

[7] Ralph Hatch. SaaS Architecture, Adoption and

Monetization of SaaS Projects. The Art of Service Pty

Ltd,2008.

[8] W. Na, Z. Shidong, K. Lanju, Z. Yongqing. Dynamic

Adaptive Model of the Multi-Tenant Data Replication Based

on Queuing Theory. International Conference on Computer

Science and Network Technology,IEEE, 2012,ppt.1755-1759.

[9] Thomas Stahl, Markus Volter. Model-Driven Software

Development Technology, Engineering, Management. John

Wiley Sons & Ltd. 2006.

[10] T, Zhang, Y. Shi, M. Xu, L. Cui. A Service Provisioning

Strategy Based on SPEA2 for SaaS Applications in Cloud.

International Conference on Cloud and Green Computing,

IEEE, 2012, pp.290-295.

[11] L. Jiang, J. Cao, P. Li, Q. Zhu. AMixed Multi-tenancy

Data Model and Its Migration Approach for the SaaS

Application. Asia-Pacific Services Computing Conference,

IEEE, 2012, pp.295-300.

[12] Hyun Jung La, Soo Dong Kim. A Systematic Process for

Developing High Quality SaaS Cloud Services. Springer,

2009.

[13] R. Xiaojun, . Z. Yongqing , K. Lanju. SaaS Template

Evolution Model Based on Tenancy History. Third

International Conference on Intelligent System Design and

Engineering Applications.IEEE,2012.

[14] X. Zhang, K. He, J. Wang, J. Liu1, C. Wang1, H. Lu.On-

Demand Service-Oriented MDA Approach for SaaS and

Enterprise Mashup Application Development. International

Conference on Cloud Computing and Service

Computing.IEEE,2012.

[15] R. Sharma, M. Sood Cloud SaaS: Models and

Transformation. Springer-Verlag Berlin Heidelberg ,2011, pp.

305–314.

[16] H. J. La, S.W. Choi, . S. D. Kim. Technical Challenges

and Solution Space for Developing SaaS and Mash-up Cloud

Services. International Conference on e-Business

Engineering.IEEE,2009.

[17] J. J. H. Park , H.Y. Jeong. The QoS-based MCDM

system for SaaS ERP applications with Social Network. Super

computer journal,springer,2012, pp. 614–632.

[18] A. Benlian, T. Hess, P. Buxmann. Drivers of SaaS-

Adoption – An Empirical Study of Different Application

Types. Business & Information Systems Engineering

Journal,2009,pp.357-367.

[19] J. Cho. Study on a SaaS-based library management

system for the Korean library network. Emerald Group

Publishing Limited. Vol. 29 No. 3, 201,pp. 379-393.

[20] K. Ma, B. Yang, A. Abraham. A Template-based Model

Transformation Approach for Deriving Multi-Tenant SaaS

Applications. Acta Polytechnica Hungarica. Vol. 9, No. 2,

2012.

[21] J. Li, S. Zhang, Z. Liu2, L. Kong. A Data Rights Control

Model for a SaaS Application Delivery Platform. Springer-

Verlag Berlin Heidelberg, 2012. pp. 139–146.

Appendix – XML file of feature model
<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<featureModel chosenLayoutAlgorithm="1">

<struct> <and abstract="true" mandatory="true"

name="SaaS_APP"><and mandatory="true" name="provider"><and

mandatory="true" name="PGUI"> <and mandatory="true"

name="page"><feature name="color"/><feature name="flag"/>

</and> <and name="menu"><feature name="tree"/><feature

name="standard"/></and> <feature name="plugin"/></and> <and

mandatory="true" name="PBP"> <and name="formula">

 <feature name="role"/> <feature name="constraint"/>

 </and><or name="flow"> <feature mandatory="true"

name="sequence"/><feature mandatory="true" name="branch"/>

 <feature mandatory="true" name="return"/>

 </or></and><and mandatory="true" name="PS">

 <feature name="bispatch"/>

 <feature name="catalog"/> <and mandatory="true"

name="SLA"> <feature name="billing"/>

 <feature name="meteric"/> <feature name="security"/>

</and></and><and mandatory="true" name="PDB">

 <and mandatory="true" name="pEntity">

<feature mandatory="true" name="pIdentifier"/>

 <feature mandatory="true" name="pAttribute"/>

 <feature mandatory="true" name="pMapping"/>

 </and> <feature mandatory="true" name="pCoding"/>

 <or mandatory="true" name="type">

 <feature mandatory="true" name="share"/>

 <feature mandatory="true" name="isolate"/>

 </or></and></and><and mandatory="true"

name="tenant"> <feature mandatory="true" name="TGUI"/>

 <feature mandatory="true" name="TBP"/>

 <feature mandatory="true" name="TS"/>

 <feature mandatory="true" name="TDB"/>

 </and><and mandatory="true" name="user">

 <feature mandatory="true" name="UGUI"/>

 <feature mandatory="true" name="UBP"/>

 <feature mandatory="true" name="US"/>

 <and mandatory="true" name="UDB">

 <and mandatory="true" name="uEntity">

 <feature mandatory="true" name="uIdentifier"/>

 <feature mandatory="true" name="uAttribute"/>

 <feature mandatory="true" name="uMapping"/>

 </and>

 <feature mandatory="true" name="uCoding"/>

 </and> </and></and></struct>

<constraints/><comments/>

<featureOrder userDefined="false"/></featureModel>

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

Int'l Conf. Software Eng. Research and Practice | SERP'14 | 95

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

96 Int'l Conf. Software Eng. Research and Practice | SERP'14 |

SESSION

SOFTWARE ARCHITECTURE AND DESIGN
PATTERNS + PROCESS MINING + AUTONOMIC

COMPUTING

Chair(s)

TBA

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

Int'l Conf. Software Eng. Research and Practice | SERP'14 | 97

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

98 Int'l Conf. Software Eng. Research and Practice | SERP'14 |

A place for everything and everything in its place

Carlo Montangero Laura Semini
Dipartimento di Informatica, Università di Pisa

Abstract—The paper presents a top down transformational
approach to derive lower level multi-view designs from the
Component and Connector (C&C) architectural view. The trans-
formation goes through 3 steps. First a transformation pattern
inspired on the Distributed Proxy pattern introduces proxies for
all ports in a design C&C view. The second step adds a module
and a deployment design view. The last step has to do with quality
requirements (in the form of profiles) that are annotated on some
elements of the design C&C view and systematically propagated
to other elements in the other design views. The process alternates
steps in which the views are enriched with containers for model
elements, which are inserted in following steps. Hence, the title
of the paper.

Keywords: Software architecture and design. Patterns.

I. INTRODUCTION

Software architecture (SA) and detailed design are two key
elements in software development. SA is “a multidimensional
reality, with several intertwined facets, and some facets – or
views – of interest to only a few parties” [4]. A view is a
projection of the SA according to a given criterion. A view
considers only some concerns, e.g. it considers the structuring
of the system in terms of components, or it considers some
relationships between subsystems: The module view highlights
the code structure, the components and connectors (C&C) view
a snapshot of the system in execution in terms of components
and connectors, the allocation view the deployment of the
system on the hardware.

The problem we face here is that of SA and design
documentation. The usual practice is to focus on the C&C
view, since it is in this perspective that the architect addresses
system decomposition: it is natural to reason in terms of the
behavior of sub-systems and of their interaction at run-time. In
particular, it is easier than reasoning in terms of the structure of
the code, and in most cases the architect has no time to invest
to complete the other views. As a consequence, the module
and allocation views at the detailed design level may easily
drift away from the architect’s intent and create a mismatch
between the architecture and the design.

We intend to show that this problem can be overcome to a
large extent, since the skeleton of the three views at the design
level can be generated from the C&C view systematically, to
obtain a good code structure, which mirrors the architectural
C&C decisions and facilitates the achievement of the objectives
of portability, modifiability, and separation of concerns that a
good design must have.

The novelty of the approach is the combination of low level
design tactics and patterns with high level C&C structures.

More precisely, we introduce a transformational process
that results in detailed multi-view design of the system at hand.
Key characteristics of the resulting design are that it supplies

the structure of the code and that it keeps the implementation
of the communication and of other non functional, e.g. security,
requirements clearly separated from the implementation of
the component functionalities. So, adaptations to a different
communication/security context and changes in the functional
requirements can be dealt with independently without any
interference. Besides, it is particularly important, in distributed
applications, to have a well structured model of the target run
time architecture, to guide in the complex task of configuring
and initialize the system, taking into account all the related
requirements. The last step in our process achieves this goal
too.

The process alternates steps in which the models are
enriched with containers of model elements, which are inserted
in other steps. Hence, the title of the paper.

In Section II we revisit the views on a SA, according to [4].
In Section III we define the transformation process that leads
to the platform independent lower level multi-view designs
from the C&C architectural view. The specification of quality
requirements, and their propagation to all the generated views,
are dealt with in Section IV: as an example, we consider secure
communication between components.

II. ARCHITECTURAL VIEW TYPES

To fix the terminology and the notation we use (all the
diagrams are in UML2), we recall the three main view types
on SA, according to [4].

Components and connectors views describe the architecture
in terms of execution units (components), and their interactions
in terms of connectors (Figure 1, upper right). A component
can be an object, a process, a collection of objects, a client, a
server, a data store, etc. A connector represents communication
paths, protocols, access to shared memory,etc. Components
and connectors have an associated specification that defines
functional requirements and qualities they have to satisfy. They
are related through ports, representing component interfaces.

Module views describe the structure of the software in terms
of implementation units and the relationships among them
(Figure 1, left). An implementation unit may be, e.g., a class,
an interface, a Java package, a software layer. The relationships
define dependencies, like use and call, the decomposition of
a module into sub-modules (illustrated with containment in
the figure), and generalization/implementation relations. In this
view, our focus is in documenting the use relation: a module
uses another one if the correctness of the first depends on the
availability of a correct implementation of the second. This
relationship makes explicit the dependencies among the mod-
ules supporting the incremental development and deployment
of useful subsets of the system under development.

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

Int'l Conf. Software Eng. Research and Practice | SERP'14 | 99

Fig. 1: Architectural Views.

Allocation views describe the relationships between software
and other structures, such as hardware or organizational charts.
The most common view describes of the deployment of the
executable artifacts on the environment where they will run
(Figure 1, lower right).

III. THE DESIGN VIEWS

In this section we deal with the refinements that lead to
the platform independent design views, namely introjection
and design view generation, represented by the left and center
dependencies in Figure 2.1 The next section will take care of
some platform dependent characteristics (the third dependency
in Figure 2).

The process starts at an abstract level from an architectural
model, where the C&C view is complete, in terms of black
boxes with an associated specification, and the other views
are empty.

The first step, that we call introjection, refines the C&C
view (Figure 2, left), decomposing each component into parts,
each dealing with a different responsibility, in the C&C view at
the <<design>> level (Figure 2, center-left). This refined view
is detailed enough to entail the gross structure of the code, in
the Module view, and the implementation relations between the
modules and the parts in the C&C view. Indeed, the second
refinement, projection, i) creates the <<design>> Module
view, making (separate) space for the code of components and
connectors; ii) puts the related skeleton parts in their place; and
ii) creates the <<design>> Deployment view, for the allocation
of the system at hand in its execution environment (Figure 2,
center-right).

The focus on the SA allows enriching the model driven
approach to software development with advantages also in
dealing effectively with non functional requirements and de-
sign decisions regarding the run time platform, like the choice
of the implementation language for a component, the libraries
to be used in its implementation, the middle-ware supporting

1All the dependencies are refinements: the right side model depends on the
left one, since it adds details to it.

the communication between components, the security char-
acteristics of a connection, the execution environment for a
component.

Once the architect has introduced the relevant constraints
on the appropriate elements in the <<design>> C&C view, the
last refinement step, constraints propagation, propagates them
to the Deployment view, to be exploited by the configuration
engineer, and to the Module view, to inform the developers.

Overall, the refinements transform the architectural C&C
view into a complete design model, where the different views
are pairwise related to insure the consistency of the design,
as shown in Figure 2 (right). The intended meaning of the
stereotypes in the figure is the following: The execution
environments in the deployment view execute the artifacts that
manifest the components in the C&C view, i.e., the artifacts
behavior is the one specified for the C&C components (and
related connectors) they depend on. On the other side, the
executables are built from the code modules in the Module
view they depend on, which in turn implement the components
specified in the C&C view, that is, the code modules satisfy
both the functional requirements expressed in the C&C view
and the requirements on the execution environment propagated
to the other views.

A. Introjection: The Butterfly

The generation of the structure of the <<design>> views
is made possible by the systematical application of the Dis-
tributed Proxy (DP) pattern [10], which in turn uses the
proxy pattern [6] to decouple the communications among
distributed objects from the object specific functionalities. The
DP pattern addresses the problem of designing a distributed
application, where complexity arises from the need to deal with
the specificities of the underlying communication mechanisms,
protocols and platforms. More complexity is also due to
the fact that the communication mechanism can change in
subsequent versions or in coexistent different configurations
of the application.

In the <<design>> C&C view, the DP pattern is applied
to introduce a remote proxy for each port of the component

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

100 Int'l Conf. Software Eng. Research and Practice | SERP'14 |

Fig. 2: The refinement steps.

Fig. 3: The butterfly.

and delegating it to deal with all the aspects of the commu-
nications through the interface typing the port. The remote
proxy represents the server in the client address space (and
viceversa), and transfers data to/from the external world using
the appropriate middle-ware: they take care of establishing the
connections and transforming the data to/from the raw bytes
that transit in the communication channels. An additional part,
dubbed Logic as the middle layer in the Three-Tiers pattern, is
introduced to take the responsibility of the functionality of the
component, and it is not further decomposed by the pattern.

The resulting structure separates the concerns as required
by any good design practice. Moreover, the proxies internalize
the communications, since they act, with respect to the Logic,
as local data sources and sinks. By taking care of all the details
of the interactions with the low level communication mecha-
nisms, they permit the design and implementation of stand
alone components to be deployed independently, as required by
the component based software development paradigm (CBSD).

The resulting model, after the introjection step, is the
<<design>> C&C view: Figure 3 shows what may happen
to a component with six ports, three with provided interfaces
Ip1-Ip3 and three with required interfaces Ir1-Ir3. Despite the
introjection, we keep the delegating ports and the connectors
(not shown here), since the connectors are the natural place
to record the platform dependent requirements on the middle-
ware, as we will see in the next Section.

We refer to the systematic application of the DP pattern
in a component as the butterfly design pattern, because of the
shape shown in Figure 3, where the “wings” take care of the
communications and the “body” of the functionality.2

This step of design, which distributes the responsibilities
among the parts (the logic and the proxies) and puts them in
place in the component’s butterfly structure, that is, introjects
the interfaces of the components, is obtained by Algorithm 1.

B. Projection: Model and Deployment views

In order to generate the <<design>> Module view, we
proceed in several steps: first, we create the space for the
Logic and Proxies in the code. More precisely, we introduce
a <<component>> package for each component, to place the
implementation of the Logic, and a <<connector>> package
for each connector. The latter includes two more packages,

Algorithm 1 Birth of the butterfly
for every component C in view C&C
introduce in <<design>> view C&C
a <<structuredComponent>> C with
a part with type Logic with

for every port P of component C
a port P

for every <<provided>> interface Ip at port P
of component C

copy in <<structuredComponent>> C
interface Ip and port P

introduce in <<structuredComponent>> C
a realize relation

from port P of the Logic
to interface Ip and

a part P with type P_Proxy and
a require relation from part P

to interface Ip
for every <<required>> interface Ir at port P

of component C
copy in <<structuredComponent>> C
interface Ir and

introduce in <<structuredComponent>> C
a require relation from port P

to interface Ir and
a part R with type R_Proxy with
a realize relation from part R

to interface Ir
between every part P and port P

of <<structuredComponent>> C
introduce a delegate connection

2The nice symmetry of this suggestive image may often be lost, if the
communications are not as symmetric as suggested here.

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

Int'l Conf. Software Eng. Research and Practice | SERP'14 | 101

one per each role of the connector, to place the code for
pairs of communicating proxies. Each of these packages is
related to the package representing the component the role is
attached to. The relation is a <<use>> one, since a component
can work correctly only if there is a correct implementation
of the end-point of each channel it exploits to communicate
with its partners. The code that is found in the role packages,
once the development is over, may be anything in between a
simple delegation to a standard middle-ware and a complete
implementation of (one side) of a custom communication
protocol. This step is defined by Algorithm 2. Next, we put
in place the classes related to the component functionality: we
fill each <<component>> package with the Logic and its inter-
faces, reflecting the butterfly in the code: Algorithm 3. Finally,
Algorithm 4 puts in place the proxies in the <<connector>>
packages, together with the appropriate realize and require
relations.

The generation of the Deployment view is similar. The
algorithm in Table 5 makes use of the function image, with
the following meaning. The generation of the Module view
establishes a natural correspondence between the elements in
the <<design>> C&C view and those in the <<design>>
Module view: given an element e of the <<design>> C&C
view, image(e) the generated element in the <<design>>
Module view. For instance, the image of a component is the
homonym <<component>> package, etc. In the few cases in
which an element gives rise to more then one element, they
can be sorted out by their type. A similar argument applies
to the relation between the <<design>> C&C view and the
Deployment view, once generated.

The Deployment view is generated by reflecting each com-
ponent in an executable artifact deployed in its own execution
environment, and each connector in a communication path
between the environments of the connected components. Note
that the artifact need not be the only one actually used to
deploy the component: often it will be so, but the designer is
free to use this artifact just to configure the deployment of a
(complex) component made up of several pieces. An explicit
<<manifest>> dependency is also introduced between related
executables and components. Note also that the designer is not
constrained in the allocation of the execution environments in
the available/necessary machines, so that he can take in due
consideration also the available/necessary physical connections
where to group the required communication paths between the
components.

An example. Consider two components C and S as in
Figure 1, middle. Ports C.r and S.p are connected via the
interfaces Ir and Ip, respectively. The results of the generating
the algorithms are in Figures 4, 5, and 6.

Algorithm 2 Place for component and connector roles
for every component C in view C&C introduce

a <<component>> package C in view Module
for every connector between port R, P

of component C, S in view C&C
introduce in view Module
a <<connector>> package C-R-S-P with

a <<role>> package R and
a <<role>> package P

a <<use>> dependency between C and R and
a <<use>> dependency between S and P

Algorithm 3 Components in place
for every <<structuredComponent>> C in <<design>>

view C&C
introduce in <<component>> package C in

<<design>> view Module
a class Logic

for every interface I in
<<structuredComponent>> C

copy in <<component>> package C
interface I

for every require relation from port P of
component C to interface Ir

introduce in <<component>> package C
a require relation from class Logic to

interface Ir
for every provide relation from port P of

component C to interface Ip
introduce in <<component>> package C
a realize relation from class Logic to

interface Ip

Algorithm 4 Proxies in place
for every component C in view C&C
for every port R with <<required>> interface Ir
let Conn be the <<connector>> package whose

name includes CR and
Ro be the <<role>> package in Conn

depending from C
introduce
class R_Proxy in package Ro and
a realize relation from R_Proxy to

interface Ir
for every port P with <<provided>> interface Ip
let Conn be the <<connector>> package whose

name includes CP and
Ro be the <<role>> package in Conn

depending from C
introduce
class P_Proxy in package Ro and
a require relation from R_Proxy to

interface Ir

Algorithm 5 Place for artifacts and artifacts in place
for every component C in <<design>> view C&C
introduce in view Deployment
an <<executionEnvironment>> E with
an executable artifact C with

a <<manifest>> dependency to component C
and
a <<build>> dependency to image(C) in

view Module
for every connector in view C&C

from port R of C to port P of S
introduce in view Deployment
a communication path

from image(C) to image(S) with
role names R and P

C. More on ports and roles

Here we discuss how connectors can be actually imple-
mented on top of an actual middle-ware, to clarify the nature
of the involved objects. We use Java RMI, where the required
and provided interface across a connector must coincide, and
extend java.rmi.remote. So, the rmic compiler can
generate the classes of the objects that take care of the inter-
component communications, namely the Stub for the client
and the Skeleton for the server. These objects are precisely

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

102 Int'l Conf. Software Eng. Research and Practice | SERP'14 |

Fig. 4: The introjected scenario.

Fig. 5: The design module view of the simple scenario.

the one playing the Proxy roles in the butterflies of the pair
of components connected via the common interface, and are
created via operations rebind and lookup, respectively.

Figure 7 shows the behavior of two communicating com-
ponents, in the context of the class diagram of Figure 8. The
remote object, on the server side, has type Logic: when the
component is activated, it invokes the Build object of the P
role, which in turn invokes the rebind operation in such a way
that i) the <<skeleton>> Proxy (a subtype of the server Proxy)
object is created; ii) the remote object is registered in the
Naming service, at a well known location; iii) the <<stub>>
Proxy (a subtype of the client Proxy) code is generated and
uploaded in the Naming service, ready to be downloaded in
the client.

On the other side, the activation of the Client involves the
Build object of the R role, which performs a lookup operation
on the Naming service, to obtain a <<stub>> Proxy object,

Fig. 6: The design deployment view of the simple scenario.

Fig. 7: Proxies in RMI.

Fig. 8: <<design>> Module view for RMI.

which is passed to the client Logic, so that it can access the
remote component.

The Build classes in the connector roles can be viewed as
concrete factories of the component ports, depending on the
chosen middle-ware.

Using the butterfly pattern with RMI, the Proxy classes
of the connector need no code: they simply stand for the
types of the stub and skeleton objects, that are anonymous
types in the framework. With another middle-ware, it may be
necessary to flesh the proxy with code for themselves, may be
by identifying them with classes of the framework itself.

IV. QUALITY REQUIREMENTS

We now consider how to support recording some kinds
of non functional requirements that arise from the design, in
such a way that they can be propagated automatically to the
views where they have to be obeyed. We consider run-time
requirements on the distribution of the components and the
execution environments and requirements that affect the devel-
opment, like which programming language to use to develop
a given component. In our approach, these requirements are
quite naturally introduced in the <<design>> C&C view and
propagated to the Module view (those related to development
time) and to the Deployment view (those related to run time),
where the pertinent engineer can take them in consideration.

UML provides a natural and flexible way to express the
requirements, via its notion of Constraint, since no specific
logic language is prescribed and almost any modeling element
can be decorated with constraints.

We consider only a few kind of constraints, and a simple
encoding, since our purpose here is only to show how few
simple rules can effectively propagate the constraints. Consider
first the constraints on the implementation language: a single

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

Int'l Conf. Software Eng. Research and Practice | SERP'14 | 103

Fig. 9: Requirements in the <<design>> C&C view

one can be used for a whole component, or one for the logic
and some queer others for the proxies: attaching the constraint
to the affected element in the model naturally conveys its
scope, as shown by the constraints {language = ...} in the
<<design>> C&C view in Figure 9: Java is to be used only
for the Logic of C, the choice for R Proxy is delayed, and the
whole of S has to be coded in C++.

The next example considers the middle-ware to be used for
a given communication between two components: the natural
place where to put a constraint is the connector expressing the
need for such a communication. For instance, in Figure 9, RMI
is required for the communication between C and S.

Before considering how to propagate these constraints to
the Module and Deployment views, we need a few remarks.

First, it is reasonable to assume that the constraints are
classified with their impact, i.e., if they are relevant at de-
velopment time, run time, or both. For instance, in general
a requirement on the language must be taken into account
during the development, but it may have an impact also on the
run time environment, e.g., when a specific virtual machine is
needed. Similarly, the specification of the middle-ware used
for a connector has an impact at development time, since the
appropriate libraries must be used, but often also at run time,
namely, whenever a well known Naming service has to be
available and initialized, for the connection to take place.

Besides, we assume that a propagation function proper-
tyInducedBy(c) is defined for the constraints, so that they are
adapted to the target view of the propagation according their
classification.

Using also the image function introduced for Algorithm 5,
the schema of the propagation algorithm of the constraints is
very simple and essentially the same for both views, but for
the influence of the target view on the form of the propagated
constraint:

Algorithm 6 Constraint propagation
for every element E in view C&C

affected by constraint C
affect image(E) in view V with

propertyInducedBy(C, V)

As an example of constraints propagation from the C&C view,
consider Figure 9, where the Logic in C has to be implemented
in Java: image(Logic) in view Module is <<component>>

Fig. 10: Propagated requirements

package C, since the rest of the code pertains to the proxies,
which are placed in the <<connector>> packages. The induced
property for <<component>> package C is the use of Java, so
the constraint can be copied in the Module view, as shown in
Figure 10.3 On the other side, the use of Java for the Logic
in C affects also image(C) in view Deployment, since the
artifact built from C needs a JVM to be executed: the induced
property in this view is that the executing environment is such
a machine, as shown in Figure 10.

The connector constrained to use RMI in the C&C view
has as images the C-R-S-P <<connector>> package in the
Module view, and the connection between roles r and p in
the Deployment view, respectively: they both receive the same
constraint, meaning, also respectively, that the two <<role>>
packages in the former view must use an RMI implementation,
and that the connected <<executionEnvironment>> C and S
in the latter view must support such a protocol.

An example (cont’ed). The results of building the Deployment
views and propagating the constraints from the <<design>>
C&C view to the other two are shown in Figure 10.

A. A different concern: Security

Let us assume that the communication between ports r and
p in Figure 1, middle, needs encryption, to secure sensible
data. Security requirements may be conveniently expressed
using one of the several UML profiles for security, like
those in [8], [9]. In our case, the minimal annotation may
be a stereotype on the connector, e.g. <<secure>> on the
connector between ports r and p. The architect can decide
to implement this requirement using the secure version of
RMI based on SSL. Then, the new constraint on the connector
is propagated as discussed in the previous section. However,
the balance of the design constraints may lead to a different
solution, to exploit the fact that the Butterfly allows inserting
an intermediary between a Proxy and the Logic. For instance,
this can be an adapter [6] used to conform different interfaces:

3We remark that only the relevant elements are shown in this diagram.

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

104 Int'l Conf. Software Eng. Research and Practice | SERP'14 |

the interface of a “proxy-from-the-shelf” is likely different
from that of the logic. However, an intermediary can fulfill
other non-functional requirements, as securing communication
by symmetric encryption. In this case the intermediary will
encrypt/decrypt the message, and let the proxies deal only
with pure communication. To do that, the designer may apply
the “symmetric encryption” pattern [7], with the intermediary
acting as the sender or receiver of the pattern, according to its
role in the component.

To accommodate such an enriched structure, two packages
must be created in the Module view, to place the code for
the encryptor and the decryptor, respectively. Like it happens
for connectors, a <<use>> dependency is added, from the <
<component>> package to the new ones, and encryptor and
decryptor are placed in a common container package, which
can group all the shared auxiliary code needed to implement
the security features.

V. DISCUSSION

One of the advantages of the model-based development
process is that a change in a part (e.g., a view) of the design can
be propagated to the related parts, as advocated, e.g. in [1]. We
can imagine to extend our work to accommodate, in addition to
design generation, also propagation of subsequent changes. An
approach for change propagation among different Architecture
Description Languages has been proposed in [5], with a focus
on the C&C view, and state machines.

The Module view generated by our refinements reflects the
structure of C&C view in the package structure, making it easy
to keep trace in each piece of code of the component/connec-
tor/part it is implementing, and bridge the common gap found
between architectural concepts and code, as advocated in [2].

Like any pattern, Butterfly does not create or invent a
solution, it just organizes, unifies, and documents some good
practices. The proposed solution decouples distributed object
communication from object specific functionalities. For the
communication aspects, it generalizes the proxy [6] and the
distributed proxy [10] patterns: not only the remote commu-
nication concern is taken into account, but also other aspects,
like security, can be accommodated. Moreover, in the process
we propose, three views are considered and related which each
other.

The problem of dealing with several different concerns
as independently as possible, which is the core theme of
Section IV, is also the main concern of the Aspect Oriented
approach to software development. A thorough survey of
this line of research, at the different levels (requirements
analysis, architectural and detailed design, besides the original
programming language level) can be found in [3], [11]. Several
of the surveyed techniques use UML and consider, as we do,
multiple views at the architectural and design views: the main
difference is that they aim at taking into account the details
of the composition of the aspect as early as the architectural
level, while we focus on propagating the requirements for
the different concerns from the <<design>> C&C view to
the Module and Deployment views at the same level. We
expect that the details of aspect composition can be dealt with
effectively at this level with any of the known AO approaches,
though more work is needed to validate such a claim.

We presented a systematic design derivation process, which
starts from an architectural C&C model and creates a platform
independent design: the components are given an internal
structure in the <<design>> C&C view, and the Module and
Deployment views are created. The architect then specifies
non functional constraints on the <<design>> C&C view,
and the process propagates them to the other views. Actually,
it is seldom the case that development starts from just a
set of requirements: usually there are also other constraints,
depending on the nature of the problem, the development
environment and the general context. For instance, the run-time
support may be partially determined, e.g., because the physical
structure of the domain entails some degree of distribution,
or the implementation choices must follow the organization
of the software factory with respect to the use of languages,
libraries, etc. The extension of the process to deal also with
non functional requirements identified at the beginning of the
project, not only those identified during design is left to future
work: we envisage that the required techniques will also cater
for maintaining the view consistency in front of changes to the
architecture/design.

Acknowledgements. The work was partly supported by the
Italian MIUR PRIN project “Security Horizons”.

REFERENCES

[1] B. Brown. Model-based system engineering: Revolution or evolution?
In IBM Rational White Papers, 2011.

[2] M. Broy and R. Reussner. Architectural concepts in programming
languages. IEEE Computer, 43(10):88–91, 2010.

[3] R. Chitchyan, A. Rashid, Pete Sawyer, A. Garcia, J. Bakker, M. Pinto
Alarcon, B. Tekinerdogan, S. Clarke, and A. Jackson. Survey of aspect-
oriented analysis and design. Technical report, AOSD Europe - EU
Network of Eccellence, 2005.

[4] P. Clements, D. Garlan, L. Bass, J. Stafford, R. Nord, J. Ivers, and
R. Little. Documenting Software Architectures: Views and Beyond, 2nd
Edition. Pearson Education, 2010.

[5] R. Eramo, I. Malavolta, H. Muccini, P. Pelliccione, and A. Pierantonio.
A model-driven approach to automate the propagation of changes
among architecture description languages. Software and System Mod-
eling, 11(1):29–53, 2012.

[6] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides.
Design Patterns : Elements of Reusable Object-Oriented Software.
Addison Wesley, 1995.

[7] K. Hashizume and E.B. Fernandez. Symmetric Encryption and XML
Encryption Patterns. In PLoP’09: Proceedings of the 16th Conference
on Pattern Languages of Programs. ACM, 2009.

[8] J. Jürjens. Secure Systems Development with UML. Springer–Verlag,
2005.

[9] T. Lodderstedt, D.A. Basin, and J. Doser. Secureuml: A uml-based
modeling language for model-driven security. In Proceedings of the
5th International Conference on The Unified Modeling Language, pages
426–441, London, 2002. Springer-Verlag.

[10] A. Rito Silva, F. Assis Rosa, T. Gonçalves, and M. Antunes. Distributed
proxy: A design pattern for the incremental development of distributed
applications. In 2nd Int. Workshop on Engineering Distributed Objects
(2000), volume 1999 of LNCS, pages 165–181. Springer, 2001.

[11] B. Tekinerdogan, A. Garcia, C. Sant’Anna, E. Figueiredo, M. Pinto,
and L. Fuentes. Approach for modeling aspects in architectural views.
Technical Report d77, AOSD-Europe - EU Network of Eccellence,
2007.

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

Int'l Conf. Software Eng. Research and Practice | SERP'14 | 105

Architecture and Design of Corrosion Prediction
Software Multicorp

Arkopaul Sarkar
Institute of Corrosion and Multiphase Technologies

Ohio University
Athens, Ohio

sarkara1@ohio.edu

Dušan Šormaz
Institute of Corrosion and Multiphase Technologies

Ohio University
Athens, Ohio

sormaz@ohio.edu

Abstract: Multicorp is a corrosion prediction application based on
a simulation engine called CorrSim developed in FORTRAN.
Multicorp application is able to take information on various chemical
and environmental conditions from user through a user interface. An
underlying model called Multicorp Model is responsible for
managing, calculating, transferring data to CorrSim engine and also
reporting corrosion rate and other information. Multicorp
application also supports persistent storage and retrieval of various
corrosion prediction models as a form of XML files. In this paper, the
architecture of Multicorp application, including its data model, data
storage and retrieval strategies as well as flow of data within models
and engine and general use case demo.

Index Terms—Software, Design Pattern, Case Study, XML,
Corrosion

I. INTRODUCTION

Institute of Corrosion and Multiphase Technology (ICMT),
part of Ohio University, has been conducting research on
internal corrosion of oil wells and pipelines for more than two
decades. An industrial consortium joined by worlds twelve
leading oil and chemical companies not only supports the
entire research and facilities but also work closely with
researchers to investigate new ways to deal with corrosion in
multiple areas in refinery, rig and transportation of crude oil.

Multicorp, developed by Institute of Corrosion and
Multiphase technology researchers and developers, models
different electrochemical mathematical equations which can
predict underlying corrosion faithfully by taking information
on physic-chemical environment. Multicorp software is able to
predict corrosion rate for various environment through
numerical simulation of the chemical reactions over time and
helps user to analyze the root cause of the corrosion with an
insightful analysis dashboard.

Although the core of the simulation engine, called CorrSim,
is developed in FORTRAN, Multicorp model built in Visual
Basic .NET package is solely responsible for managing
modeling information which is basically different parameters
of physico-chemical environment. Section II describes a brief
background of Multicorp development. In section III, the
architecture of the model and its instantiation strategy is
described in detail. Multicorp implements its own file system
to store modeling data persistently. In section IV a detailed
discussion on storage and retrieval strategy of Multicorp is

presented. In section V, overall flow of the data among models
and user interface connection to CorrSim engine and build
strategy of Multicorp application is discussed. A walkthrough
of the user interface of Multicorp along with analysis of
different performance metrics of Multicorp is presented in
section VI. Before all of these, a short history of Multicorp is
presented in the next section.

II. BACKGROUND OF MULTICORP

Corrosion prediction in oil and gas pipelines is a critical
aspect of modern oil and gas exploitation [1]. Models to predict
corrosion can be classified into two groups:

Empirical models are based on experimental measurement
of corrosion rates, and regression model (or multiregression
models) to fit the experimental data. Those models tend to be
rather simple (deWard [2]) and they capture limited ranges of
independent variables (for which experiments were
performed). Some of those models have been implemented and
marketed as corrosion prediction standards (Norsok [3]) and
software [4].

Mechanistic models, which attempt to capture the electro-
chemical processes that govern corrosion formation, including
mass transport, diffusion, gas and liquid flow, and electrolyte
formations. Those models are of different levels of complexity.
Freecorp [5] uses a simplified electrochemical model of steady
state corrosion formation to predict corrosion rates. Solution to
corrosion formation has been presented in the form of a system
of partial differential equations describing both transitional and
steady state behavior [5]. Such model is usually solved by
some finite difference method in the form of dynamic
simulation

Multicorp software is based on the work by Nesic and his
collaborators at ICMT in modeling multiphase flow corrosion
mechanisms. Solution to partial differential equations is
obtained by in-house solver, which is now converted into
CorrSim solver implemented in Fortran 90. Initial versions of
Multicorp (MULTICRP V3 and MULTICORP V4) were
implemented in VB6 as preprocessor and User-interface
language. The work described in this paper relates to redesign
of those earlier systems into efficient corrosion prediction tool
using the modern software development technologies (object
oriented modeling, XML, and MVC paradigm).

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

106 Int'l Conf. Software Eng. Research and Practice | SERP'14 |

III. MULTICORP MODEL

Multicorp Model defines different types of physical and
chemical environments through different classes from a
hierarchical class model. The class model is created by taking
advantage of inheritance property of any object oriented
modeling where different sub-models inherit attributes and
properties from their parent model. The entire Multicorp Model
is depicted in the UML class diagram in figure 1. Brief
descriptions of important models in the Multicorp are given
below.

A. AbstractModel

The root of the model is an abstract class called
AbstractModel which owns all general attributes and properties
of every model in Multicorp. Two most important attributes of
AbstractModel are two collections which store parameters and
parameter groups for individual models. All other attributes
can be classified into three different categories.

Identifier attributes – Identifier attributes store model
specific identification data. ModelName stores the textual name
of the model, ModelID stores the runtime instance number of
the model, ModelType stores the type of model and
ParentModel holds the textual name of the parent model.

UI attributes – UI attributes help model to connect to the
GUI element, manages different user interaction in the model.
Few examples of these type of attributes are DisplayName
(textual name of the model shown on the UI), mInstruction
(text to store instruction for a particular model), ModelState
(state of the model at a certain time of the corrosion modeling
process) and few integer flags to identify different states of the
model during user interaction and execution.

Listener attributes – Every model registers to different
listeners in Multicorp to either respond to any user interaction
on GUI or any change in other models. Through listeners
models work in a coherent and synchronized manner in
Multicorp. All listeners are stored in a collection called
ModelListeners.

AbstractModel also has the set of most generic properties.
Most of these properties are either targeted to managing
different attributes of the model notably parameters and
parameter groups. There are a set of properties which are
designated to read and write into XML files meant for
persistent storage of data. Another set of properties perform all
types of calculation in the model based on the values of
parameters. The calculation properties are mainly overridden in
sub models and different chemical equations are implemented
which perform calculation to produce results specific to a
particular model.

B. CompositionModel

Composition model is inherited from ChemistryModel
which is in turn inherited from Abstractmodel. Chemistry
model is responsible for storing contents of different chemical
components of aqueous, gas and hydrocarbons in the system.
Numerous chemical calculation is performed in this model to
calculate the percentage of different ions in the system,

concentration of gas and other chemicals and saturation level
of pH and other hydrocarbons.

C. FlowModel

Flow model is responsible for capturing different metrics
for defining the condition of various gas and liquid flow in the
pipeline. FlowModel itself is an abstract class inherited from
AbstractModel. FlowModel is further classified by two abstract
classes such as, AbstractGasFlow for gas flow and
AbstractLiquidFlow for liquid flow. Different flow parameters
such as, viscosity, velocity, surface tension, percentage of
mixture and superficial velocity is used to calculate not only
the flow rate of the oil, water, or mixture in the pipeline but
also flow pattern, stress on the pipeline, slug deposition rate
and water wetting durations.

D. CondensationModel

CondensationModel is a special type of corrosion model
which captures environmental parameters which affects the
corrosion of the top of the pipeline. This class is inherited from
AbstractCondensationModel which in turn is inherited from
AbstractModel. CondensationModel captures pipe quality,
outside environment variable for either land, ocean or air and
insulation data. This model can calculate water and
hydrocarbon condensation rate at top of the pipeline.

E. PipeLineModel

PipeLineModel is inherited from ProtoPipeline which is an
abstract class extended from AbstractModel. PipelineModel
lets user to define pipe topography. Pipelines can be layed in
100m sections with chosen inclination and declination. Along
with the topography, every pipeline section also stores
individual properties such as, diameter, roughness, thickness of
wall, conductivity and one or more insulation layer and their
properties.

F. CorrosionModel

CorrosionModel is the most important model of Multicorp
because this model manages the simulation. As Corrsim is
packaged in a Fortran DLL file, this model also manages native
function calls to Corrsim dll. Multicorp application supports
three types of simulations, single point, parametric and line.

Corrosion at a single point is simulated over time through
PointModel, which is inherited from Abstract Model.
Parametric simulation simulates corrosion over time by varying
different parameters. Batch Model is mainly responsible for
managing this type of simulation. In the end, LineModel
manages line run, which simulates corrosion along the length
of pipeline. Both BatchModel and LineModel class are
inherited from MultiplexModel class which is inherited from
AbstractModel.

G. Parameter Model

Multicorp Models stores data in different types of
parameters. Parameters are tightly linked to user interface
elements. Every types of parameter are inherited from
AbstractParameter class (see Figure 2).

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

Int'l Conf. Software Eng. Research and Practice | SERP'14 | 107

Figure 1: Class hierarchy diagram of Multicorp Model

Figure 2: Multicorp Parameter model

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

108 Int'l Conf. Software Eng. Research and Practice | SERP'14 |

Parameter class is the most used type of parameter which
stores values of different types of chemical and physical
species and samples. It is worth to mention that Multicorp
supports multiple languages and unit conversion. Every
parameter thus also has list of units it supports along with
conversion factors. This enables user to change units of
individual parameter separately on the fly. Parameter also
stores two types of limits such as, hard limit and soft limit. For
the reason that corrosion chemistry is always valid in a certain
range of these parameters, user can be warned easily with the
help of these limits, in case any value is entered which violates
these limits.
 Every model stores several parameters from same family
under a parameter group. Parameter group class ParamGroup
is also inherited from AbstractModel giving Multicorp model
tremendous flexibility to store parameters either directly under
a model or under a parameter group. Two special types of
parameter groups are ParamTable and ParamRow, both
inherited from ParamGroup. These two special Parameter
groups are responsible for storing table data. Same principle is
applied to store PipeLine topology data in PipeLineModel
where each pipe section data is stored in individual ParamRow.

H. Multicorp Model association and dependency

Multicorp system instantiate different models to build a
complete corrosion profile, based on the options chosen. For
example, a corrosion model investigating bottom of the line
corrosion for only water flow and simulating corrosion at
single point will consist of instances of CompositionModel,
SinglePhaseFlowModel and PointModel. CorrosionCase,
inherited from AbstractModel, is also a model but it works as
composite. Following classical composition pattern, where
multiple similar objects are stored in a composite,
CorrosionCase stores multiple instances of various model
classes. As every model including CorrosionCase is inherited
from same AbstractClass, any generic operation requested to
CorrosionCase may also requested to all other objects in
CorrosionCase. This is mainly useful for least common
denominator type of operations such as, data load, calculation
and save, where this composition model provides tremendous
ease in development and object management. However, it is to
be noted that in traditional composition model, Composite
associates with its components individually by ‘has a’
relationship. In CorrosionCase, all models are stored in a
collection of type AbstractModel. These collection stores
instances of specific subtypes at runtime but CorrosionCase
can perform any least common denominator type operation on
any model stored in the collection without knowing which
subtype it is calling the operation on.

I. Multicorp factories and prototypes

Multicorp implements abstract factories to return concrete
instances of models casted into abstract parent class of the
particular model. One factory is created for each of the main
models such as; Composition, Flow, Condensation, Pipeline,
Simulation, and CorrosionCase (see Figure 3). Every factory
class is singleton and has a static function createModel,
inherited from AbstractFactory which returns the instance of

the model. Thus, user needs to know only the type of
AbstractFactory to access createModel method of any other
factory. In this way, complex conditional statements are
abstracted in the factory class and concrete model classes are
never exposed.

Figure 3: Abstract factories to instantiate Multicorp Model

Moreover, abstract factories don’t create instance of any
model directly. Instantiation process of any model is complex
and heavy of memory as it includes I/O operations and XML
query (explained in section IV). Therefore an ingenious object
oriented design pattern, called prototype, is implemented to
avoid repetitive execution of performance-heavy operations.
Prototype is a classical creational pattern often used along with
Abstract Factory. Prototype design pattern leverages on
reusability of objects and saves memory and execution time
[6]. AbstractModel class being the base class of all other model
implements a pure virtual clone which is implemented by sub-
models (See Figure 4). ProtoManager is a singleton class,
which implements a collection to store instances of every
model, which are called prototypes. When any model is
requested by the corresponding factory, ProtoManager
performs a deep clone on the prototype instance saved in the
collection and returns it. Deep clone copies every attribute
from the prototype to the clone but doesn’t store any reference
between them. Thus changes on the cloned instance doesn’t
impact prototype instances.

Figure 4: Prototype pattern in Multicorp

IV. DATA MANAGEMENT

Multicorp system models corrosion by making composite
of different models. This is explained in Section III.H. As a
desktop application Multicorp saves model data in an XML
formatted file. One big reason for choosing XML as a
formatting style is that XML is a well-formed document as
well as extremely flexible to support any user defined schema
[7]. In addition to DTD is a common practice to ensure the
validity of the document, Multicorp needs set of parameters for
each model with default values, units and limits besides just the

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

Int'l Conf. Software Eng. Research and Practice | SERP'14 | 109

structural integrity of the document. Therefore Multicorp uses
a default XML document which stores all default values,
descriptions, UI tags, units and limits for every parameter
inside a well-planned XML node hierarchy which defines the
composite structure of models. When Multicorp is asked to
save the modelling data, it creates another XML document of
type .mcinput, which follows the same node hierarchy as in
default XML document and but stores only current values for
individual parameters. As many non-changeable attributes of
the parameters are always found from default XML document,
.mcinput file doesn’t store that information, resulting in much
smaller file size.

Along with .mcinput Multicorp also saves simulation data
and some temporary files along its process. They are listed
below.

.mcorp - This is an archive file which contains other
Multicorp files , which are

 .mcinput - Stores model data
 .input - FORTRAN generated pre simulation data
 .output – FORTRAN generated simulation results
 .mccase – Multicorp generated case file to execute in

CorrSim project.
.tmpinput – A binary file of type .dat which contains object

serialized data. This is used to save state of CorrosionCase
temporarily.

The entire strategy of handling different files is explained
as a flow chart in Figure 5.

Start

Instantiate new
CorrosionCase

Create Folder with name
NewCase_<SessionID>

Create a new
Session.

C:\Users\<UserName>\AppData\
Roaming\Multicorp\temp\

Is existing file
opened?

Rename folder to
CaseName_<SessionID>YesOpen exisiting

.mcorp file

Is session
saved?

Create .mcinput

No

Save session

Save file path and case
name in CorrosionCase

Save case file
Get .output and
.input from temp
folder if available

Create .mcorp
archive and save

Get File path and
Case name from
save file dialog

Save Pipeline
Save Serialized Pipeline Model in C:\

Users\<UserName>\AppData\
Roaming\Multicorp\temp\pipeline\

YesSave Pipeline

Yes

Is the session
already saved?

Delete Temp folder from
appdataYesClose Multicorp

No

Figure 5: Multicorp file management strategy

Multicorp system is going through rapid evolution. In near
future Multicorp system is going to be available through
service APIs in near future. Moreover, work is also underway

for transforming Multicorp into multi-tier web based product.
Multicorp data architecture supports multiple types if data
sources and storage system besides XML. To facilitate this,
AbstractModel implements variable of type i. DataHandler is
an interface which contains pure virtual methods such as,
saveModel and loadModel. This interface is extended by
concrete data handlers such as, XMLHandler or
DatabaseHandler as displayed in Figure 6. Concrete handlers
implement complex data management operations specific to
the data targets. However, models don’t need to know those
specifics of data management and can simply call saveModel
or loadModel method on the handler variable to load and save
data.

Figure 6: Abstracting data handling in Multicorp

V. SYSTEM ARCHITECTURE

In this section different design aspects of the overall system
are discussed.

A. User Interface

Multicorp desktop application is built in conventional
model-view-controller architecture. Multicorp model,
discussed in section III, manages the data. Different view
element depends on various controller classes, either custom or
member of .net framework. The smooth interaction between
GUI elements and data models is established by
implementation of observer pattern, in which event raised by
any GUI element is broadcasted to all observers registered to
the event sender. For example if user changes a value of a
parameter in GUI, every model listening to the event, will
trigger the corresponding action (See Figure 7).

Figure 7: Observer pattern in Multicorp

This particular pattern lets the execution control transition
from view to model seamlessly over a loose coupling between
listener and sender [6]. The user interface of Multicorp is built
closely following Microsoft Office’s ribbon style [8].The
interface is separated in four resizable areas, such as, ribbon
area (top), process area (left), data area (middle) and trace area

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

110 Int'l Conf. Software Eng. Research and Practice | SERP'14 |

(bottom) (See Figure 8). Ribbon area contains buttons, which
triggers generic actions on Multicorp models. Every time a
new tab is selected buttons are changed depending on the tab
content. Process area shows the steps to create a corrosion
model and also displays the status of every model. Data area
displays parameters in groups, charts, tables and various other
output elements. In the end trace area displays vital messages
including warning and errors at the time of corrosion modeling.

Figure 8: Multicorp user interface

In Figure 9 the loading sequence of Multicorp user interface
components is explained in a sequence diagram. In the
sequence diagram, it is shown that MulticorpWindowApp is
the starting point of execution, which in turn instantiates and
run MulticorpForm in a separate UI thread. MulticorpForm
extends .NET library class for UI container called Form.
MulticorpForm instantiates and build different panels, namely,
RibbonArea, MiddleArea and StatusArea inside it
sequentially. MiddleArea is the container for different other
panels; such as, ProcessArea, TracePanel, and
InstructionBoard.

B. Dynamic Modeling

One of the unique features of Multicorp is to create
additional models on the fly addition to the existing models.
Every model of Multicorp, when instantiated to be part of a
corrosion case, they are stored in a hash table as key value pair,
where key is the name of the model. As explained in section

III.H, when user request an action performed on a specific
model, corresponding model is retrieved from the hash table
and subsequent operation is performed on the model. This is
possible because every generic function is owned by
AbstractModel. The most important operation to be performed
on any model is calculation of corrosion and various data.
Models are capable of calculating itself too. This calculation is
done based on the input parameters. Any new model created on
the fly needs to know its parameters. This can be achieved by
defining parameters and storing them in the parameter hash
table of the new model. Next the model need to know
implement a calculate function. The calculate method is not a
part of AbstractModel but an interface called ICalculate. When
a new model is created, a concrete implementation of
ICalculate is supplied to the model. As the new model is
extended from AbstractModel and AbstractModel has a
dependency on the ICalculate, when user requests calculate
operation on the model, the calculate method from the concrete
calculation class is called. Moreover, every model is capable of
storing multiple instances of subclass of ICalculate. At any
point of time, only one instance is set active, however, it gives
tremendous flexibility to users because alternative calculation
logic can be implemented and compared without rewriting
same block of code.

C. Multicorp build strategy

Multicorp is distributed in four different versions. They are
Standard(CC-JIP), Water-Wetting(WW-JIP), Topcorp(TLC-
JIP) and Topcorp-Water-Wetting(TLC-WW-JIP). Standard
version provides basic features with other version including
extra features on top of it. To facilitate this segregation,
Multicorp is built in different functionally segregated modules
(see Figure 10). Every module is compiled into separate DLL
file. This type of modularized development helps Multicorp to
package only required DLLs for a particular version and
distribute as installable.

Corrsim is a separate FORTRAN development and has its
own modular structure.

Figure 9: Sequence diagram of Multicorp GUI building process

InstructionBoard

Notes ProcessArea

TraceArea

RibbonArea

StatusArea

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

Int'l Conf. Software Eng. Research and Practice | SERP'14 | 111

After that compilation dependency, configured in Multicorp
solution, links Corrsim DLL to Multicorp DLLs as
reference. In that way, Multicorp function can make direct
call to Corrsim functions.

Figure 10: Package dependencies in Multicorp

Figure 11: Multicorp screen for configuring various models

Figure 12 Multicorp screen for defining the pipeline topology

Figure 13 Multicorp screen showing dynamic simulation

VI. DEMO AND PERFORMANCE ANALYSIS

Multicorp has been tested with two groups of corrosion
engineers: faculty and graduate students at ICMT (15-20
engineers), and ICMT industrial partners (25-30 engineers)
in order to finalize it GUI to correspond to the ways that
corrosion engineers would use to predict corrosion rates.
Resulting user interfaces are shown in few figures. Figure
11 shows the general input screen where user configures
various models that need to be calculated, by selecting select
corrosion, flow and simulation type. All other tabs are
dynamically generated once three selections are made. It is
to be noted that the process tree shows the all steps required
before simulation may be performed. Currently available tab
and steps possible in that tab are indicated with a red arrow
and all other tabs which are not available are marked as
locked. The screen in Figure 12 show how user defines line
topology in pipeline tab which only appears when line run is
selected as simulation type. An interactive pipeline modeler
helps user to define pipeline over an intended topology. The
screen in Figure 13 shows the simulation tab while user is
running a simulation and can monitor its progress in a
dynamic plot.

Multicorp is also tested for its computationally efficiency
and it has shown order of 10x speed up over previous
version. In addition it is continuously been validated against
experimental results obtained in ICMT labs and from its
industrial partners.

REFERENCES

[1] S. Nešić, “Key issues related to modelling of internal
corrosion of oil and gas pipelines – A review,”
Corros. Sci., vol. 49, no. 12, pp. 4308–4338, Dec.
2007.

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

112 Int'l Conf. Software Eng. Research and Practice | SERP'14 |

[2] C. de Waard, U. Lotz, and D. E. Milliams,
“Predictive Model for CO 2 Corrosion Engineering
in Wet Natural Gas Pipelines,” Corrosion, vol. 47,
no. 12, pp. 976–985, Dec. 1991.

[3] NORSOK, “M-506 CO2 corrosion rate calculation
model.” NORSOK, p. Rev. 2, 2005.

[4] Wood Group Intetech, “Electronic Corrosion
Engineer.” 2013.

[5] S. Nešić, H. Li, J. Huang, and D. Sormaz, “An open
source mechanistic model for CO2/H2S corrosion of
carbon steel,” in NACE International Corrosion
Conference & Expo, 2009.

[6] E. Gamma, R. Helm, R. Johnson, and J. Vlissides,
Design patterns: elements of reusable object-oriented
software. Pearson Education, 1994.

[7] S. Holzner, Inside XML. Indianapolis, Indiana: New
Riders Publishing, 2001.

[8] D. You, “Re-engineering of the Legacy Software
Systems by using Object-Oriented Technologies,”
Ohio University, 2013.

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

Int'l Conf. Software Eng. Research and Practice | SERP'14 | 113

A multi-step process mining approach based on the

markov transition matrix

A. Hong Li
1
, B. Kunman Li

2
, and C. Lin Liu

3
, and D. Shaowen Yao

4

1
School of Information Science and Engineering, Yunnan University, Kunming, Yunnan, China

2 School of Computing and Engineering, University of Huddersfield, Queensgate, Huddersfield
3 School of information, Yunnan Normal University, Kunming, Yunnan, China

4 National Pilot School of software, Yunnan University, Kunming, Yunnan, China

Abstract - According to the situation that many workflow

instances may deviate from the predefined model, this paper

proposed a new process mining approach based on analyzing

the workflow log to realize the workflow process

reconstruction. First, build the markov transition matrix

based on the workflow log, then design a multi-step process

mining algorithm to mine the structural relationships between

the activities, finally, this paper verifies the feasibility and

applicability of the approach through a simulation example.

Keywords: process mining; markov transition matrix;

process reconstruction

1 Introduction

 With the development of information technology, more

and more enterprises use workflow management systems

(Workflow Management System, WFMS) to realize business

process automated execution both inside and outside the

enterprise. WFMS is driven by a predefined workflow model.

Once the workflow model is been established, it usually won’t

change in a very long period of time. However, due to the
changing environment, the workflow instances which are the

actual execution processes of the workflow often change. For

example, during the process execution, companies will confer

certain privileges to add executives or skip some of the nodes,

even reset the given process transfer conditions, over time, the

actual implementation of workflow instances will deviate

from the predefined workflow model. If this change has not

been detected in the long time, and the workflow instance is

still driven by the old predefined model, then the efficiency of

enterprises must have been affected. Based on this

consideration, in order to improve the accuracy of workflow
execution, modelers must be regularly informed of the actual

implementation of the workflow, reconstruction or

recommend better workflow model which reflects the actual

needs of enterprises. In real life, each execution of the

workflow instances is recorded in the WFMS log database in

the form of workflow logs, which provide a solid data

foundation for analyzing the changes in real execution

workflow instance. In recent years, there exists a new process

modeling idea - process mining, which extracts the structural

description from the execution process collection [1]. Process

mining is a new application of data mining, which is

reproducing the real process of the business through analyzing

workflow execution logs [2].

2 Process mining algorithms

 The idea of process mining first appeared in the field of

software engineering, was proposed by Joan-than E.Cook in

1995 [3]. In 1998, Agrawal first applied process mining

technology to enterprise business process modeling [1]. Based

on the mining process, workflow model reconstruction can be

divided into single-step reconstruction and multi-step

reconstruction [4]. Single-step reconstruction method is

directly mined the workflow model based on the activities

dependencies which explicit exists in the log. The single-step
reconstruction algorithms include directed graph -based

mining methods and WF-net based α algorithms proposed by

Aalst. α algorithm is one of the classic algorithms of process

mining, the mining process is simple, and the computation

time is short, but the log noise handling capacity is insufficient,

which is not suitable for mining complex structures workflow

model such as non-free choice, loop, hidden activities and

duplication activities [5]. A lot of research has been done on

the improving of α algorithm, such as α* algorithm and β

algorithm [6-7]. Multi-step reconstruction method adds the

workflow log preprocessing or workflow model evaluation

process, which makes the mining with higher accuracy, but
the algorithm execution time is longer. Multi-step

reconstruction methods include region-based mining method,

clustering based mining method, genetic algorithm based

mining method, frequency/dependency based mining method,

multi-model mining and incremental mining methods [4,

8-15]. These algorithms all required of the integrity of the

workflow model, which means that the mined workflow

model needs to meet all the log, so the workflow model mined

by these algorithms always with lower accuracy.

 Process mining has attracted wide attention in academic

domain, but there still lack of the algorithms with strong
effectiveness for a wide range, good robustness and high

efficiency. Some of the algorithms can only identify simple

business process structure from the log due to the constraints

of formal representation capacity, and some of the mining

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

114 Int'l Conf. Software Eng. Research and Practice | SERP'14 |

algorithms have higher requirements of the log, which is

difficult to handle the incomplete information or the noise.

Consider of this situation, we designed a multi-step process

mining method that first analyzes the workflow log transition

probabilities between activities to build the Markov transition

matrix, then mines the process logic relationship by defining

a set of rules of logical relational mining, finally, we design
the process mining algorithm to establish the actual structure

relationship between the activities in order to reconstruct the

workflow. At last, we use an elevator company's standard

contract process for example to verify the feasibility and

applicability of the method.

3 Design of multi-step process mining

method

 In the enterprise business execution process, the

workflow model can be seen as a stochastic process from one

activity to another activity state which is a kind of Markov

process or Markov chain. Because of the limited activity

states, and the process activity to be performed in time “t+1”

only related with the activity state in time “t”, so it is a

finite-state Markov chain. This paper represents this process

in { () }, x(t) is the process state in time “t”, pij is the
one step transfer probability from xi to xj, and pij has no

relationship with the time “t”.

 { () | () } () (1)

 The matrix consists of all the transfer probability is

called the transition probability matrix.

 This paper puts forward a multi-step process mining

algorithm based on the Markov transition matrix, and the

algorithm process is shown in Fig.1.

The
preparation

and preprocess
of the log

The
Construction

of the Markov
Matrix

The Definition
of the Logic
Relationship
Mining Rules

Design of the
Process
Mining

Algorithm

Design of the
Formalization Process

Algorithm based on the
directed network graph

Fig.1. The main steps of the algorithm

3.1 Preparation and preprocess of the log

 Workflow log usually records the actual implementation

process of the workflow model, and the log usually made up

with the workflow instance name ‘Case_id’, activity name

‘Activity’, performer ‘Performer’ (can be specific people, or

the application program) , and execution time ‘Time’, etc.

Among these, ‘Case_id’ used to identify execute times of one

workflow, such as Case_1, Case_2, ...; ‘Activity’ used to

identify a specific activity of the workflow process, like x0,

x1, ...; ‘Performer’ and ‘Time’ are used to represent the

specific actors and execution time of the activity.

 Because of the input errors, there may be records

missing, duplicate records and other reasons which may cause

the noise or workflow logs incomplete. For the log with noise,

it can do the noise filtering by setting the frequency threshold

‘θ’. For incomplete logs, it can be filtered using the following

two methods: a) list the sets of the end events of the log, if an

instance’s end event does not belong to the set, then the

instance logs are incomplete and should be removed; b) in the

log, if a task is only has the start event without a

corresponding end event, or only has the end event without a
corresponding start event, then the instance is also incomplete

and should be removed.

3.2 Construction of the markov matrix

 The main steps are as follows:

 Step 1: Compute the workflow instance numbers based

on the log, which is means the executions times of workflow,

make it ‘n’.

 Step 2: Analyze the workflow instance, statistic all of

the possible activity, i.e. X ={x0 x1…xk}.

 Step 3: Compute the transition possibility between the

activity, make is ‘pij= mij/n’, mij means the one step transition

times from activity xi to xj in the n workflow instances.

 Step 4: Establish the workflow transition matrix P.

3.3 Definition of the logic relationship mining

rules

 Workflow process model usually consists of sequential

structure, And-split/join, OR-split/join, loop structure

(self-loops and multi-step cycle), which is composed of a

variety of structural and process logic, includes sequence

relationship, causal relationship, selection relationship,

synchronous relationship and circular relationship,

respectively use symbol ">", "→", "#", "//", "◇" to represent.

This paper aims to derive the logical relationship in the

workflow process through the analysis of the transition matrix

P. XS represents the start of the process, XE represents the end

of the process, X represents the sets of process nodes, xi
represents the activity node in the process, pij represents the

transition possibility between process nodes xi and xj.

 The logic relationship mining rules are as follows:

(a) Rule1: Identify the start of the process XS,

(b) Rule2: Identify the end of the process XE

(c) Rule3: Mining rules of the sequence relationship,

(d) Rule4: Mining rules of the causal relationship

(e) Rule5: Mining rules of the synchronous relationship

(And-Split, And-join),

Rule 5.1:

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

Int'l Conf. Software Eng. Research and Practice | SERP'14 | 115

 {

 } , is the

And-Split activity node.

Rule 5.2:

 {

 } , is the

And-Join activity node.

(f) Rule6: Mining rules of the selection relationship
(OR-Split, OR-join)

if ∑ ,

then {

}, is the

OR-Split activity node.

for (i≦k, i=0, i++)
{

if

then si is the execution condition of the OR-split

}

if ∑ ,

then {

 }, is the

OR-Join activity node.

(g) Rule7: Mining rules of the self-circulation relationship

 ,

if (), then {◇
}

(h) Rule8: Mining rules of the multi-step cycle
relationship

Rule8.1: Mining the multi-step cycle activity node

if ()

()

 (
()

)

then {there is multi-step cycle between xi and xj,

 { } }

 ()

The main steps of function Refunction() are as follows:

Do {

for ()

{if
()

 { } }

While () the activities in Xre has cycle

relationship, i.e.

Rule8.2: Identify the start and end of the
multi-step cycle

3.4 Design of the process mining algorithm

 Based on the workflow process logical relationship
mining rules Rule1~Rule8, we design the workflow mining

algorithm Process (P, X). The algorithm can reconstruct the

structural relationship between all the activities, and establish

the ‘W’, ‘ ’ and ‘ ’ set.

 Input: the Markov matric P, the activities set X,

 Output: W is the set of the activities which have causal

relationship, sequence relationship and cycle relationship;

 () ◇ ; is the

set of the activities which have synchronous relationship,

 (

)

 ; is the set

of the activities which have selection relationship,

 (

)

 ;

 The main steps of the mining algorithm ()
are as follows:

 Initialization:

 Step 1:

for ()

{

 ;

}
 Step 2:

for ()

for ()

{

 {()| }

 () ;

}

 Step 3:

for ()

{

if

 and Rule 5.1

then { (

)

 , (

)
 };

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

116 Int'l Conf. Software Eng. Research and Practice | SERP'14 |

if

 and Rule 5.2

then { (

)

 , (

)
 };

if

 and Rule 6

then

{

 (

)

 ,

 (
)

 };

if Rule 7

then { ()
{(

)|
} }

}

 Step 4:

for ()

for ()

{

if Rule 8.1

then

 () {()| }

 {(

)|

}

}

4 Design of the formalization process

algorithm

 The previous mining algorithm results only can be

described in a certain formal description which limits the

application scope of the model. Based on this situation, this
paper separates the process mining algorithm and process

formalization algorithm, which can express the process

mining result in many different formal process models

according to the different mining needs. This paper put

forward a process formalization algorithm DirectedNet(X, W’)

based on directed network graph which describe the mining

result in directed network graph.

 Input: The process activities set X,

 (2)

 Output: The directed network graph model of the

process

 ():

Do

t=0

{ for ()

{if ()

t=t+1;

 {()} }

if ()

t=t+1;

 {()}

}}

 ()

 The process of the algorithm () is a

cyclic process, which use self-circulation method to connect

the active nodes in W’.

 The algorithm () first direct the

start node and the other nodes which has logical

relationship with , and then based on the known logical
relationship between activities, connect all the activity nodes

use a single or double arrow until complete the whole direct

network graph.

5 Simulation

 To verify the feasibility of the method, this paper

chooses a WFMS process (‘Pro’) log from one enterprise

WFMS as the simulation example (see Table 1).

 The log has 52 instances in total, Table. 1 only lists the

instance of Case 1~ Case 4.

TABLE.1 THE WORKFLOW LOG OF ‘PRO’

Ca_id Ac Ca_id Ac Ca_id Ac Ca_id Ac

Case_1 A Case_2 D Case_2 E Case_2 J

Case_1 B Case_3 D Case_1 H Case_4 E
Case_2 A Case_1 F Case_1 J Case_3 G

Case_3 A Case_1 F Case_3 E Case_4 F

Case_1 C Case_4 B Case_2 F Case_3 I

Case_3 B Case_5 A Case_3 F Case_4 G

Case_1 D Case_2 C Case_4 D Case_4 H

Case_2 B Case_3 C Case_2 G Case_3 J

Case_4 A Case_4 C Case_2 I Case_4 J

Case_1 E Case_1 G Case_3 F …

 The steps of the mining process are as follows:

1) Build the Markov transition matrix of ‘Pro’

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

Int'l Conf. Software Eng. Research and Practice | SERP'14 | 117

a) the process of ‘Pro’ has 52 instances in all, i.e.

n=52;

b) the process of ‘Pro’ has 10 activities in total (from A

to J),

c) compute the one-step transition possibility between

the activities,

 ⁄ , e.g.,

 ⁄
 ⁄

 ;

d) Establish the Markov transition matrix P

P

 6
 7

2) Execute the process mining algorithm Process

(P,X), we can get the logical relationship sets W, Wand, and

Wselect.

 ()()()()()()()

()()()()()

and:

 () , i.e.

 () , i.e.

3) According to the relationship sets (W, Wand and

Wselect) and the activity set X, the directed network graph

model of ‘Pro’ is shown in Fig.2.

A B

C

D

E F

G
H

I

J

Fig.2. The direct network graph model of ‘Pro’

6 Conclusion

 Since the changing environment internal and external of

the enterprise, the workflow instances may deviate from the

predefined models, so modelers need to reconstruct the model

according to the actual situation. To overcome the limitation

of the existing process mining algorithms, this article

designed a multi-step process mining method based on

Markov transition matrix, by analyzing the workflow log,

automatically deduced the actual structure of the relationship

between activities, thus implement the workflow

reconstruction. Finally, a practical simulation case study

shows that the method is feasible and applicable. Follow-up

studies will focus on how to automatically derive

sub-processes, as well as how to automatically mining rename

tasks in order to improve and enhance the mining ability of

the method.

7 References

[1] Agrawal R，Gunopulos D，Leymann F. “Mining

process models from workflow logs[C],” Proceedings of the

1998 6th International Conference on Extending Database

Technology，EDBT’98. Valencia，Spain：[s.n.]，1998，

1377：469-483.

[2] Cook J E，Wolf A L. “Discovering models of software

process from event-based data[J],” ACM Transactions on

Software Engineering and Methodology，1998，7（3）：
215-249.

[3] Cook J E. “Process discovering and validation through
event data analysis,” Technical Report

CU-CS-817-96[R].University of Colorado ， Boulder ，

Colorado，1996.

[4] Zhao Weidong, Fan Li. “Situation and development on

workflow mining research [J],”. Computer Integrated

Manufacturing Systems, 2008,14 (12) :2289-2296.

[5] Aalst W，Weijters A，Maruster L. “Workflow mining：
discovering process models from event logs[J],” Knowledge

and Data Engineering，2004，12：369-378.

[6] De Medeiros A K A，van Dongen B F，van Der Aalst

W M P. “Process mining：extending the α-algorithm to

mine short loops [EB/OL] （.2007-10-11）,”

[7] http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.

1.5.7518.

[8] Wen L，Wang J，Van Der Aalst W M P. “A novel

approach for process mining based on event types[J],”

Journal of Intelligent Information Systems，2009，32（2）：
163-190.

[9] Van der Aalst W M P，Dustdar S. “Process mining put

into context[J],” IEEE Internet Computing，2012，16（1）：
82-86.

[10] Van der Aalst W M P. “Decomposing process mining

problems using passages[C],” 33rd International Conference

on Application and Theory of Petri Nets and Concurrency，

PETRI NETS 2012.Hamburg，Germany：[s.n.]，2012，

7347：72-91.

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

118 Int'l Conf. Software Eng. Research and Practice | SERP'14 |

[11] van der Aalst W M P，Kindler E. “Process mining：a

two-step approach to balance between underfitting and

overfitting[J],” Software and Systems Modeling，2010，9

（1）：87-111.

[12] Greco G，Guzzo A. “Discovering expressive process

models by clustering log traces[J],” IEEE Transactions on

Knowledge and Data Engineering， 2006，18（ 8）：
1010-1027.

[13] Demedeiros A K A，Guzzo A. “Process mining based

on clustering：a quest for precision[C],” 5th International

Conference on Business Process Management, BPM

2007.Brisbane, Australia：[s.n.]，2007，4928：7-18.

[14] Herbst J，Karagiannis D. “Workflow mining with

InWoLvE[J],” Computers in Industry，2004，53（3）：
245-264.

[15] Vaidya J，Guo Qi. “The role mining problem：finding

a minimal descriptive set of roles[C],” Proceedings of the

12th ACM Symposium on Access Control Models and

Technologies. New York：ACM，2007：175-184.

[16] Liang, Gao Jianmin, Chen Fumin, etc. “Research on

workflow mining based quality management improvement

[J],” Computer Integrated Manufacturing Systems, 2006,12

(4) :603-608

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

Int'l Conf. Software Eng. Research and Practice | SERP'14 | 119

Self-optimization in Autonomic Computing Systems based on the
Methodology of Bees Swarm Intelligence

Anselmo Leonardo O. Nhane1, Mark A. J. Song2
Computer Science Department, Pontificial Catholic University of Minas Gerais,Belo Horizonte, MG, Brasil

1 Computer Science Department and Information System, National Statistical Institute, Mozambique
2 Computer Science Department, Centro Universitario UNA, Belo Horizonte, Brasil

Abstract— This paper proposes a mechanism for self-
optimization in autonomic computing systems, inspired in the
functioning of the bees swarm in the process of searching
for food sources, exchanging information about the located
sources and in the allocation of bees to such sources.
This analogy is applicable to autonomic computing systems,
on which we also seek to continually optimize the system
operation by monitoring and adjusting its parameters and
evaluating the fitness of proposed solutions. The goal is
try to meet 100 Percent of the Demand while minimizing
Costs by the system. The methodology follows the component
of autonomic control loop. The article includes a case
study focused on the statistical information dissemination
system of Mozambique, which uses resources from a private
datacenter.

Keywords: Autonomic computing, Autonomic computing sys-
tems, Self-Management, Self-optimization, The Bees autonomic
management

1. Introduction
The increasing complexity in computer systems, Figure 1,

applications and services, allied with the growing in the de-
mand for integrated services, are factors that limit traditional
mechanisms for software system managenent with human
intervention.

Fig. 1: Example of the IBM Complex System

Mechanisms such as definition of protection policies, elic-
itation of the system, resource management, troubleshoot-
ing, configuration and implementation definition that meets
optimization aspects, require a thorough knowledge of the
systems. However, the human capacity to intervene and meet
all these systems’ needs is a limiting factor (organization
challenges), which motivates the scientific community to
propose systems with minimal human intervention. That is,
the paradigm that aims at reducing administrative overhead
by providing self-managing applications.

In poor and developing countries like Mozambique, which
has one of the fastest-growing rate of Gross Domestic
Product in Sub-Saharian Africa (about 7.3 percent per year),
infrastructure is also in constant expansion, accompanied by
the increase in the number of users and services provided
using software systems, which implies an increased com-
plexity. But these countries also have low availability of
trained human resources to deal with the growth of the soft-
ware systems and infrastructures and also they do not have
the budget to ensure the continuous expansion in number of
systems. In this context of computing, introducing autonomic
computing can make a difference to this group of countries.
First, the rate of computer literacy in the whole countries
can be minimized, once autonomic computing can take care
of its functioning with minimal human intervention.

In 2007, Mozambique had less than one percent of the
population with internet access [5], but in 2010, the number
of users rose to approximately 2.7 percent and to 4.3 percent
in 2012 [7]. This increase is resulting in complex systems
in a short period of time to meet the growing demand for
current services and products of the Mozambique’s statistical
system.

In this paper we propose a self-optimizing mechanism,
in autonomic computing system, drawing inspiration from
the operation of the bees swarm on its process of looking
for food and sharing information in the dance space. In this
meter we have confidence that the working process in the
hive can be applied to the operation of an autonomic system,
which constantly seeks to optimize the system functioning
through the monitoring, control and analysis of parameters
to identify changes that require configuration changes or
allocation of more resources in a situation of efficiency loss.

The article includes a case study, aimed to show how

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

120 Int'l Conf. Software Eng. Research and Practice | SERP'14 |

developing countries can optimize their resource usage, by
monitoring demand and making decisions to adjust the level
of needed resources from the datacenter, at the dissemination
unit of National Statistical System in Mozambique, with
budget restrictions.

2. Autonomic Computing
The concept of Autonomic Computing (AC) was

introduced by Paul Horn [9]. This concept is inspired by
the Human Nervous System in order to find new ways
of implementing software systems that are able to answer
some challenges posed by the increasing complexity of
current IT systems. The human nervous system is the
most complex system and it is an example of autonomic
behavior in nature. Such system is the master controller
of the functioning of the human body, which monitors
the changes that occur inside and outside the body. Then,
responds appropriately in order to maintain the balance
of the functioning of other organs [8]. Complex software
systems can be comparable with the human nervous system
which controls the most part of body works, eliminating
from the human conscious the activities of managing
all the actions of the body. So, complex systems must
possess autonomic properties that allow them to control
part of their operation without human intervention. This
paradigm means, the change of the patterns of the systems
managed by humans (traditional), into the new era of
technology standards managed by the technology itself
[19]. Such systems are called autonomic. Several proposals
have emerged in the last decade, challenged by the
complexity of IT systems. In 2003, for example, Defense
Advanced Research Projects Agency (DARPA) proposed
self-regenerative systems for military purposes, that can
react to unintentional errors or attacks. An example is the
Situation Awareness System, from the DARPA, where they
intended to create a communication device for location of
the soldiers on the battlefield, that can detects and collect
data on the presence of the enemy tank, and independently
reporting on the location of these to all soldiers. Even in
situations of extreme hardship, it can aid in minimizing
interference from the enemy [1].

2.1 Autonomic computing system properties
An autonomic system has the following properties: ability

to self-configure, self-heal, self-protect and self-optimize.
Self-configuration is a property on which the system must
ensure, automatically, dynamic adaptation to the changes that
occur in their environment. Self-healing is the property on
which the system must discover/identify, diagnose and react
to the disturbance that can cause the system to malfunction.
Self-protection is another property inherent in autonomic
systems. This property is in the system to anticipate, detect,
identify and protect itself from attacks from any source.

Finally, we have the self-optimizing property, through which
the system must monitor and adjust its own resources. For
this, it is necessary that hardware and software systems
maximize the efficient use of resources to achieve the
end-user requirements with minimal human intervention.
However, several aspects of software engineering, such as
life cycle elements, software processes, elicitation of system
requirements, self-healing implementation, self-protection
implementation, self-configuration and the implementation
of self-optimization are still major challenges to be over-
come. Thus, the research focus on self-optimization, based
on the use of the bees swarm method [10] to optimize the
system parameters that govern the system operations in the
allocation of resources.

3. The Bees Algorithm
In the natural process of exploring environment, the bees

are divided into groups (onlookers, foragers, employed). The
Foragers seek those regions with good food (nectar and
pollen) sources. After returning to the hive they perform
movements known as Waggle Dance, to communicate to the
others bees the profitability of the sources found, the distance
and amount of these food sources.

Then, the employed bees and onlookers travel to the se-
lected food sources and for the fields with higher abundance
of food, more resources are allocated (greater presence of
employed bees) [16], [3], [4]. The process repeats and the
bees are recruited more and more, in accordance with the
food demand.

Karaboga, in his study of the Swarm Intelligence, pro-
posed the bees swarm algorithm for parameter optimiza-
tion [10]. Successively, the algorithm versions were be-
ing updated with substantial improvements [11].The latest
version offers a parallel approach [15], [13], where the
artificial agent used is divided into several independent sub-
populations.

The distribution of food sources positions are randomly
produced to the allowable limit of the parameters. From the
Karaboga algorithms illustrated in 1, we have:

xij = xmin
j + rand(0, 1)(xman

j − xmin
j) (1)

Where i = 1, 2, ...SN, j = 1..D. SN is the number of food
source and D the number of optimization parameters. The
employed bees operating the sources calculate food sources
and share information with onlookers bees, according to the
formula in 2:

vij = xij + φij(xij − xik) (2)

Where j is a random integer in the range [1, D] and k ∈
1, 2, .., SN is a randomly chosen index different from i.
φij ∈ [−1, 1] uniformly distributed. After the vi is specified
with values that are within the limits of the parameters, a
fitness value for minimization problems can be associated
with the value vi by the formula: fitnessi=1/(1 + fi) if

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

Int'l Conf. Software Eng. Research and Practice | SERP'14 | 121

fi >= 0 and fitnessi = 1 + abs(fi) if fi < 0, where fi is
value of the objective function that represents the cost value
of the solution vi.

The greedy selection is used between vi and xi for each
mutant solution, based on minimal cost of each vi generated.
After all employed bees complete their search for food, they
share their information about the amount of nectar and the
position of the source with bees onlookers in the dance area.
The onlookers bees select food sources according to their
profitability, and then they look for new sources of food for
a probabilistic choice given by 3:

p[i] =
fitness[i]

SN∑
i=0

(fitness[i])

(3)

Finally, if a food source is not improved, then the bees leave
the food source and call upon an onlooker to discover a new
source in the search area.

4. The Proposed Approach: Self-
Optimization in Autonomic Computing

The self-optimization process is based on the MAPE-K
(Monitor, Analysis, Plan, Execute and Knowledge) control
loop proposed in [12], Figure 2.

Fig. 2: The IBM Autonomic Control Loop

In this section we introduce The Bees Autonomic Manager
(BAM) to generalize the idea for self-optimization processes.

BAM introduces two features in its self-optimization
process. First, is the use of clustering method to harmonize
monitored data from the system, in order to get more
accurate decisions parameters, that are less influenced by
outliers, when we consider the use of statistical mean as
an estimator. Second, we proposed the use of the bees
algorithms in the decisions making with optimal selection
of parameters, and subsequently we use polices to map the
states of the system based on the demand level which we
rank in three levels.

We consider that self-configuration studies are available.
That is, we will not consider in our self-optimization
proposal specifications related to configurations to change

the system, as we consider that is related to the self-
configuration properties. We are not showing how to retrieve
sensor data form the managed element, as the system must
include features to report statistics of its functioning. The
control loop for autonomic computing deals with high level
polices that administrators can specify. In this case, we do
not show how to implement the policies, once again there are
many options using XML to deal with policy specification.

The general overview of the BAM can be seen Fig-
ure 3. The figure focuses on monitoring, analyzing and
decision executions. The study will consider the two process:
Monitoring and Decisions among the changes in the users
demand.

Fig. 3: The BAM

The sensors,[12] collect data from the managed resource,
via a log file. These data are grouped according to the
objective criteria that guide the process. Example: collected
data from the dissemination service in Statistic office, of the
user demand include: time, IP, information concerning data
sets, database, number of data cells extracted, information
size of extracted data. The data is set to SQL database.

The monitor processes the data collected by the sensor
and communicates the level of demand indicators. The
processed data are used for the recognition of demanded
levels, according to the two following steps: (1) extraction of
processing characteristics, from the information passed in the
bees dance area, and (2) the classification of the processing
level. The extraction of (1) is obtained by applying the
Discrete Fourier Transform (DFT), as illustrated at formula
4.

X[k] =
N−1∑
n=0

x[n]ε
(
−2jπn)
N (4)

The Discrete Fourier Transform (DFT) is a function of the
user demand frequency grouping of extracted sample data,
at periodic intervals (which can be defined by the users).

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

122 Int'l Conf. Software Eng. Research and Practice | SERP'14 |

The recognition of demand patterns (high, medium, low)
is done by classifying the extracted demand intervals. This
information is used to map the needs for resources. The
clustering is done from the analysis functions x(n) of the
observed demand data, and X(k) is the transformed form of
x(n) according to the formula in 4.

The example in Figure 4, includes data collected by the
sensor according to the methodology of bees, which corre-
sponds to the demand registered in the system environment.
The DFT line of graphic shows clustered data,reported in
the area of dance(ruled by the methodology of bees) with
less amplitude, which helps in finding accurate values to the
decision step.

Fig. 4: DFT and Demand frequency: Service usage for a day
constant number of resources

The DFT properties are inherent to the needs of the study,
allowing vertical translation of the observed frequencies in
order to perform analysis on the situations at low (A), middle
(B) and high (C) demands while achieving better precision
in demand levels, as Figure 5.

The Monitor uses DFT with the aim of grouping similarity
levels by proximity. That is, determining values with the
same distribution characteristics to converge within a given
range for a certain demand class. This enables the elimina-
tion of the influence of extreme values if using the average
metric. The adapt case of autonomic monitor, ilustrate the 5
the actions of monitor activity.

The step of decision analysis correlates reported event
data to identify the current status of the managed element
and then suggest actions to be taken in case of performance
loss or cost degradation. Then, the BAM use the Bees
algorithms and determines which resources are going to
be used, correlating the quantities of resources used, and
the level of demand identified that optimizes the cost of
operation.

This phase uses classified demands from the autonomic
monitor, to determine which level of resource is necessary
to minimize the cost. In Figure 6, we represent the general
overview of the use case for the bees autonomic manager.
The bees autonomic manager loop considers that the system
interacts with users. And the external component - auto-

Fig. 5: Adapt Case BAM: Autonomic monitor

nomic manager - is added. The diagrams representation are

Fig. 6: The Bees autonomic manager

sourced from Markus in [14], where the study proposes
the Adapt Case Modeling Language that can be applied
for specification of the autonomic computing systems.

The analysis and decisions also use knowledge to enable
decisions in the situations which are planned beforehand, and
not in case of dictation of high or low demand. The system
in the diagram uses the datacenter(the source for resources)
to obtain resources to supply the demands specified.

The resource fitness function is obtained from the cost of
each food source: each type of resource has its cost. Each
food source includes all types of resources. uCi[j] - cost of
j resource in the the ith food source.

Each mutant solution s[i] is evaluated using the following
formula:

fsuC[i] =
NP−1∑
j=0

s[i] ∗ uCi[j] (5)

The formula to determine the fitness related to the cost of
each class of demand is the following:

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

Int'l Conf. Software Eng. Research and Practice | SERP'14 | 123

fs(i) = 1− fsuC[i]

Bc
(6)

Where Bc - is the Budget of demand class, that repre-
sents the Total value that enables administrators to specify
resource limitations for the system. That is, there is the cost
value of each set of resource from the food source related
to the demand. In each situation of demand we consider
a particular budget of the demand class. This information
will help the autonomic bees manage the different cost
degradation for each class (A - lower, B - medium-size ,
C - high) of demand. Based on the fitness value of each
solution:

fitness[i] =

{
1

1+fs(i) if fs(i) >= 0,

1 + abs(fs(i)) if fs(i) < 0 .
(7)

Management Levels in the BAM: The bees make decisions
ir order to achieve global parameter optimization. But the
proposal results does not completely guarantees the optimal
allocation of resources. Two steps are considered for the
decisions. In the first level, we consider the cost of current re-
source of proposed solution and the total cost of the demand
class. The second level indicates at Lower level, resource
based on efficiency indicator (like speedup, response time)
optimization in order to balance the needed resource, from
the bees output proposed parameters.

The knowledge base provides data in addition to infor-
mation about past decisions. An example of data provided is
the time of day, with historical information demand levels.
This information adds significant value for predicting the
situation of high levels of access to the service.

The example, in Figure 7, illustrates the behavior change
of service requests to the systems in the first seven hours,
where there was a drop from 5.8(avarage value) to nearly
2.0(avarage value) of demand. This indicates that demand
has fallen about three times the value of the last seven hours.
Implying the change of track B to the range of low demand
A. That is, the resource in use are in high cost, so it is
necessary to reduce the resource to better attend the current
situation.

Fig. 7: Example of changing demand from (B Class) at the
time 7 to (A Class).

The mean and standard deviation, maximum and mini-
mum values that were observed are key indicators to con-
sider in this range. So the new parameters are defined based

on this information. In the example considered, we use the
average to select the demand class.

In the decision planning step we evaluate the current
demand and observed demand, as the criteria for optimizing
based on the specifications of the administrator in the form
of policy or from analysis and decision, providing new
parameters for the system.

The process of executing decisions occurs when the subset
of parameters can improve the current standard of processing
resource consumption. The process receives data on the
approved update to the next time interval. Then it updates the
information on the use of resources in the knowledge base.
This step allows the system reconfiguration to attend the
suggested levels of demand at low adequate cost of resource
usage.

5. The Case Study: I
In the case study we apply the optimization to the

dissemination system of National Statistical Institute of
Mozambique, based on a private datacenter.

Background: We consider that there is a computer network
that can support the configuration in order to attend the
needed of services levels. There are technologies available
for self-configuring to attend if the optimization decisions if
achieved. These assumptions help to visualize the proposed
methodology for the few steps of self-optimization based on
the cost in the datacenter for the statistic office.

Fig. 8: Source of resources: Datacenter

The Private Datacenter of Mozambican statistical service,
Figure 8, represents the source of resources for the managed
element: the output database of the dissemination unit.

The infrastructure includes a Web-server with non rela-
tional database, Pxweb, with .Px files(PC-AXIS software
family format), and it also includes statistical software appli-
cations for dissemination. These data set have homogeneous
sizes (less than 1Mb). In accordance with the data collected
from the Logs of the web-server, 99 percent of queries are
characterized by extracting data of smaller size. The main
feature is to build the px-matrix and send it to the user. The

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

124 Int'l Conf. Software Eng. Research and Practice | SERP'14 |

user can then either manipulate or view the table. To manip-
ulate tables, there are application tools based on javascript
which run in the user side. All the processes are affected
by processor, memory, disk, and bandwidth. That is, the
optimization process have to consider the four parameters for
each food source(datacenter node with processing capacity)
in the datacenter.

Fig. 9: Initialization: Up bound and low bound

Control parameters: Number of bees (employed bees
+ onlookers), NP=6; Max cycle 10; execution time 10000;
Number of optimization parameters, D =4. Number of food
sources, which represents data center sites, SN=3; Mutation
rate φ = 0.05; the resource bounded by Upper and Lower
resources, Fig. 9. Representing the availability of resource
that can bee allocated to the system from the datacenter. The
cost is considered 1 USD per resource unit, per hour. We
consider the budget for A is the minimal.

The output of executions is a set of minimal parameters
that represent the A demand situation, that where selected
from fitness in formula (5) with an estimated cost 10 USD.

Fig. 10: Output with the A ranked demand

When the system reports from Monitor classify A, no
selection is necessary, Figure 10, since it will be working
in the lowest demand. It is time for reducing resource, by
using low bound resources level. That happens in Time 7,
then the system changes from Class B to A.

The output from picture in figure shows when the auto-
nomic manager sets the resource for the budget necessary to
supply level B demand levels.

The source 2 is ranked as on of the best for the amount
of budget, and there also source 1 available. If the fitness is
positive, then the allocation can be authorized.

Fig. 11: Output with the B ranked demand

In each interval of time the reward will be difference
from the constant utilization of the system resource. In non
autonomic systems, mines are used to the demand the cost
in use for each interval.

6. Review of Related Works
The question of how to achieve self-optimization in au-

tonomic computing has dominated research in the auto-
nomic computing field, during the first decade. The self-
optimization property has received the most contributions
since IBM formally introduced the autonomic computing
paradigms. The proposals on self-optimization are based on
different technique like the Control theory, Utility functions,
and Queue theory.

Walsh proposes the use of model-free reinforcement learn-
ing based on the use of SARSA [17], [18]. This approach
estimates future learning rewards, Q, for each state-action
pair. Its learning rule is given by:

Q(st, at)← Q(st, at)+α[rt+1+γQ(st+1, at+1)−Q(st, at)]
(8)

Where Q is the estimated reward (expected); s is a state,
a is an action, r is the reward. E t and t + 1, are used to
indicate states, present and future and action respectively.
Alpha is the learning rate and gamma is the discount
factor. The SARSA name is given due to the quintuple
(st, at, rt+1, st+1, at+1) that the algorithm uses.

Van (2010) quoted by [6], in his study on "Managing
performance and energy consumption in cloud infrastructure
", uses an approach based on utility function to optimize
performance and energy consumption of the cloud system,
by determining how many resources could be allocated, and
how the applications should be put in the infrastructure to
optimize energy consumption.

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

Int'l Conf. Software Eng. Research and Practice | SERP'14 | 125

The study proposes one framework on two levels. The first
is the application level, where for each application, there
is a performance model, measured by the utility function
and use expressed in response time. At the second level
of infrastructure, there is a global asset manager. The first
is responsible for determining the amount of resources in
terms of VMs for each application, while the second ,
by provisioning VMs resulting from the first manager, is
responsible for optimizing the allocation of all VMs, as well
as to minimize the number of physical machines needed and
power consumption .

And the control is done sequentially and periodically, if
and only if, there is a difference between current number
of VMs and the resulting number of provisioning manager.
As a result of the implementation of the provisioning of
VMs manager is a set of VMs to be requested or released.
Manager allocation of VMs produces a set of VMs with
purpose or to create or to destroy or to migrate , as well as
to turn off or turn on the power consumption [20]

7. Conclusion
The proposal and ongoing project contribute in the study

of autonomic computing, exploring alternatives for achieving
self-optimization for the systems. This is done by applying
the BAM. This analyse uses a wide cycle for convergence to
obtain good results, but they do not interfere in the system
once the decision are made in each interval of at least 5
minutes or more depending on system type or number of
parameters, and the algorithm convergence is achieved in
less than a minute. The example considers the manage-
ment of resources to the dissemination service, allocating
and removing resources provided from the datacenter. This
approach helps to maintain the good level of resource usage
at low cost based predicted demand. During the observation
periods, we show situations where the system was using
resources to fulfill the demand for those periods. From
Figure 7, the system uses the total resources available for
the system during all 13 time units. With the BAM we
change from 7 to 13 the amount of resource, form B to
A. This result in improvements on the use of resources (eg.
low power consumption, less computer or VM allocated).
In general, this causes great money savings. This really
fulfills the the poor countries, since in these countries
there are less literacy rates in computer fields, as well as
smaller budgets to maintain the systems. So we agree that
using Autonomic computing systems, it will be possible to
improve management of total cost for system owners. And
so on, minimizing governments challenges in the decision
level of the organization in how to introduce the IT systems
in remote locations.

Future works: The BAM coordination is the next step to
deal with. We agreed that two major situation are important
for it: Global parameter optimization coordination - That
indicates the best source of resource in term of adequate

cost for the demand level, to allow multi-application man-
agement.

We intend to develop a framework that will implement
the bees autonomic manager and test it in real-time systems
for Population Census. We consider that this can help
with data collection in distributed environments, by adding
and removing resources that can be sourced from external
enterprises based on cloud computing in order to minimize
cost of the activity.

Acknowledgment
The authors would like to thank the National Statistical

Institute(Mozambique) and FAPEMIG for the financial sup-
port.

References
[1] L. Badger, “ Self-Regenerative Systems Program Abstract”. Defense

Advanced Research Projects AgencyDARPA, 2004.
[2] B. Basturk, D. Karaboga, “An Artificial Bee Colony (Abc) Algorithm

For Numeric Function Optimization”. In Swarm Intelligence Sympo-
sium, IEEE Computer Society, 2006. P. 459–471.

[3] E. Bonabeau, M. Dorigo, G. Theraulaz, “Swarm Intelligence: From
Natural To Artficial Systems”, The Oxford University Press, New York,
1999.

[4] S. Camazine, “Self-Organization In Biological Systems”, Princeton,
Princeton University Press, 2003.

[5] INE Mozambique(2007), The INE output database of the Census 2007,
Available: http:http://www.ine.gov.mz/censo2007.

[6] F. G. Junior, “Multi Autonomic Management For Optimizing Energy
Consumption In Cloud Infrastructures”, Universitè De Nante, 2013.

[7] M. Group(2013),The Worldstats website, Internet World
Stats: Internet Usage And Population, Available:
http:http://www.Internetworldstats.com.

[8] S. Hariri, “The Autonomic Computing Paradigm”, in Proc.Cluster
Computing, Springer Science, 2006.

[9] P. Horn, Autonomic Computing: The IBM Perspective
on the State Of Information Technology. Available:
http://researchweb.watson.ibm.Com/autonomic, 2001.

[10] D. Karaboga, “An Idea Based On Honey Bee Swarm For Numerical
Optimization”, Erciyes University, Turkey, 2005.

[11] D. Karaboga, B. Basturk, “A Powerful And Efficient Algorithm
For Numerical Function Optimization: Artificial Bee Colony (Abc)
Algorithm. Journal Of Global Optimization, vol 39, IEEE Computer
Society, P. 459–471, 2007.

[12] J. O. Kephart,D.M. Chess, “The Vision Of Autonomic Computing.
Ibm Thomas J. Watson Res. Center”, Hawthorne,USA,IEEE, Vol 36,
2003.

[13] H. Narasimhan, “Parallel Artificial Bee Colony Algorithm”, IEEE,
2009.

[14] M. Luckey, G. Engels, “ High-Quality Specification Of Self-Adaptive
Software Systems: IEEE SEAMS 2013”, San Francisco, Ca, Usa. 2013.

[15] H. Narasimhan, “Parallel Artficial Bee Colony (Pabc) Algorithm”,
IEEE, 2009.

[16] D. Pham, A. Ghanbarzadeh, “The Bees Algorithm. A Novel Tool For
Complex Optimisation Problems”,Manufacturing Engineering Centre,
Cardiff University, Uk, 2005.

[17] W. E. Walsh, J. O. Kephart, “Utility Functions In Autonomic Systems.
In: Autonomic Computing, 2005”, P. 342–343, 2005.

[18] G. Tesauro, “Reinforcement Learning In Autonomic Computing: A
Manifesto And Case Studies”. IEEE, 2007.

[19] S. Rangswamy, “Techniques And Theories Of Self-Otimizationin
Autonomic Systems”, International Journal Of Advaced Engineering
Technology., 2011.

[20] H. N. Van, F. D. Tan And J. M. Menaud, “Performance And Power
Management For Cloud Infrastructures”. IEEE International Confer-
ence on Cloud Computing, Usa, P.329–336, 2010.

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

126 Int'l Conf. Software Eng. Research and Practice | SERP'14 |

Software Architecture Evolution in the Open World
through Genetic Algorithms

Myriam Torres and Germán H. Alférez
Facultad de Ingeniería y Tecnología

Universidad de Montemorelos
Apartado 16-5 Montemorelos N.L. Mexico

Abstract - In the open world, it is impossible to know at
design time all the possible context events that can arise
(e.g. sudden security attacks, decreased performance, or
service unavailability). Moreover, it is unthinkable to fix
these situations manually because of the rapid responses
required in modern systems (e.g. in banking or trading).
In this paper, we propose an approach to support the
dynamic evolution of software architectures in the open
world by means of genetic algorithms and models at
runtime. Dynamic evolution actions try to preserve the
expected quality attributes of the software architecture
when facing unknown context events. Models at runtime
are used to reason about the quality attributes to be
preserved and the tactical functionality to preserve these
requirements. Genetic algorithms inject the tactical
functionality into the running software architecture. Our
approach is supported by a running prototype.

Keywords: Autonomic Computing, Genetic Algorithms,
Dynamic Evolution, Models at Runtime, Open World.

1 Introduction

 In recent years, there has been a trend to self-
adapt software architectures in order to face arising
context events (e.g. events in the computer infrastructure,
such as security attacks). Instead of carrying out manual
adjustments, which can be slow and error-prone, self-
adaptation facilitates how the system can respond to
changing contexts.

Most of the solutions to achieve self-adaptive
software have focused on the closed-world assumption.
When developing software for the closed-world, the set of
all possible adaptations is known at design time.
However, in the open world, it is impossible to know
beforehand (i.e., at design time) all the possible context
events that can arise. This is specially truth in ubiquitous
and pervasive computing settings, for example in software
based on cloud computing or in wearables. Therefore we
need approaches to develop systems that self-adjust in the
open world.
 Our contribution is an approach to support the
evolution of software architectures in the open world by
means of Genetic Algorithms (GAs) and models at

runtime. On one hand, a GA is a search heuristic that
mimics the process of natural selection. GAs are
especially useful for optimization, machine learning, and
business applications. On the other hand, models at
runtime are used during execution to reason about the
quality attributes that need to be preserved at runtime and
how these attributes can be preserved.
 When an unexpected event occurs in the open
world, GAs are used to find out the most appropriate
software architecture. First, a set of possible software
architectures is auto-generated. Then, these architectures
are mated and a set of abstract tactics is used to mutate
them. We propose the concept of tactics in order to
extend the software architecture with new functionalities
that can be used to keep the Quality of Service (QoS)
level. Then, the utility function, or fitness level, of each
software architecture is evaluated. The most suitable
solutions are used to create new populations.
 We use GAs in our approach because they are
useful to search for the most appropriate solution in the
large and uncertain open world. Specifically, in the open
world there is a large space of possible context events
(foreseen and unforeseen) and a large number of software
architecture configurations that can be used to face these
events. Also, the proven efficiency of GAs offers an
attractive option to get a resulting software architecture in
a short amount of time. Last but not least, since GAs are
supported by an evolutionary approach, they offer a
logical way to guide the dynamic evolution of software
architectures. In this work, we see the concept of
evolution as the gradual and continuous growth of the
software architecture. Dynamic evolution does not imply
just punctual adaptations to punctual context events but a
gradual structural or architectural growth into a better
state.

The remainder of this paper is organized as
follows. Section II presents the background. Section III
presents a motivating scenario. Section IV describes our
approach for the dynamic evolution of software
architectures. Section V presents the tool support. Section
VI describes related work and Section VII presents
conclusions and future work.

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

Int'l Conf. Software Eng. Research and Practice | SERP'14 | 127

2 Underpinnings of Our Approach

 Nowadays, an important trend in software
engineering is to support the automation of decision-
making at runtime with Autonomic Computing [1].
Instead of doing manual reconfigurations of software
architectures to adapt to changes in the context, it is
desirable that the software architecture self-adapts during
execution. In order to achieve this goal, we propose an
approach based on the following concepts:

1. Context: Applications should be aware of their
contexts and automatically adapt to their changing
contexts in order to provide adequate services to users.
Specifically, “context is any information that can be used
to characterize the situation of an entity” [2]. A system is
context-aware if it can extract, interpret and use context
information and adapt its functionality to the current
context of use.

2. Dynamic adaptation vs. Dynamic evolution: The self-
adaptive-software community is concerned with the
increasing complexity of the context [3]. This complexity
is caused by systems that are moving from the closed
world to the open world (e.g. ubiquitous and pervasive
computing).

Under the closed-world assumption, the possible
context events are fully known at design time. These
events will eventually trigger the dynamic adaptation of
the software architecture. Nevertheless, it is difficult to
foresee all the possible situations arising in uncertain
contexts where the system runs. Therefore, the software
architecture should react to continuous and unanticipated
changes in complex and uncertain contexts for a better
functioning.

We define dynamic evolution as the process of
moving the software to a new version, which cannot be
supported by predefined dynamic adaptations, in order to
manage unknown context events at runtime [4]. We refer
to unknown context events as those arising situations in
the context that have not been foreseen at design time.
Uncertainty is caused by how the software architecture
should deal with these unknown context events.

3. Autonomic Computing: It is a branch of software
engineering concerned with creating software systems
capable of self-management [1]. The term autonomic is
derived from human biology. For example, the autonomic
nervous system monitors heartbeat without any conscious
effort. In a similar way, self-managing autonomic
capabilities try to resolve problems with minimal human
intervention.

4. Models at Runtime: Models at runtime can be defined
as “causally connected self-representations of the

associated system that emphasize the structure, behavior,
or goals of the system from a problem-space perspective”
[5]. In response to changes in the context, the system
itself can query these models to determine the necessary
modifications in the underlying architecture.

5. Evolutionary Algorithms: Evolutionary Algorithms
(EA) are a branch of artificial intelligence for solving
search and optimization problems. EA includes search
methods that allows to treat optimization problems where
the objective is to find a set of parameters for a function
adaptation. From this set, one of the most popular models
are GAs [6].

GAs work with a set (population) of candidate
solutions (individuals) with the best capability
(adaptation) [7]. The evolution usually starts from a
population of randomly generated individuals and
happens in generations. The population changes as an
iterative process (generations) where individuals that have
better capabilities are likely to survive and move to the
next generation and participate of the genetic operators. In
each generation, the fitness of every individual in the
population is evaluated. Multiple individuals are selected
from the current population (based on their fitness), and
modified to form a new population. New individuals are
created by means of using genetic operators, namely
selection, crossover, and mutation.

3 Motivating Scenario

 In order to illustrate the need for dealing with
unexpected context events in the open world, we
introduce a critical system that supports on-line product
shopping at EUROTECH, a multinational retailer of
technology products. In Figure 1, the UML is used to
design the software architecture in terms of software
components.

Figure 1. EUROTECH software architecture

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

128 Int'l Conf. Software Eng. Research and Practice | SERP'14 |

 The operation for product searching is provided
by the SEARCHPRODUCT component, which is part of the
HKWHOLESALESUPPLIER component. The product
information is sent to the customer by the
SHOWPRODUCTINFO component and the information for
other related products is listed by the
SHOWRELATEDPRODUCTS component. Customers can add
products to the shopping cart through the
HKWHOLESALESUPPLIERSHOPPINGCART component.
When the customer is ready to checkout, he or she is
authenticated by the GOOGLEAUTHENTICATION
component. The PAYMENT CALCULATOR component
calculates the total amount to be paid. The payment is
done through the BARCLAYSBANKCREDITCARDPAYMENT
component. Finally, the in-house EMAILINVOICE
component sends an e-mail to the customer with the
invoice and the UPSSHIPPING component is invoked to
deliver the product.
 In order to support the dynamic adaptation of the
system to keep this process available 24/7, systems
engineers have programmed a set of predefined
adaptation actions for specific context events. For
instance, if the BARCLAYSBANKCREDITCARDPAYMENT
component is unavailable, then other components can be
invoked instead.
 Nevertheless, implementing predefined
adaptation actions has the following drawback: If there
are not predefined adaptation actions for a particular
context situation, then no adaptation is carried out. This
situation helps us to identify the following challenges for
context-aware systems in the open world: 1) context-
aware systems should be able to count on corrective
actions that trigger the dynamic evolution of the system to
preserve the expected requirements when facing unknown
context events; and 2) the dynamic evolution of the
software architecture should be carried out by auto-
generated evolution actions in order to avoid human
intervention. The following section describes our
approach to face these challenges.

4 Dynamic Evolution of Software
Architectures

 Manual dynamic adaptation of software is
unfeasible in complex computational scenarios that
require prompt response and high availability. Moreover,
critical software, such as software that supports power
grids, cannot be stopped in order to inject new
functionality or make changes. Therefore, our approach is
focused on supporting autonomic adjustments of the
software architecture. To this end, our solution is based
on IBM's reference model for autonomic control loops [1]
(which is sometimes called the MAPE-K loop). By
following the principles of the MAPE-K loop, it is
possible to inject autonomic behavior into the system.

 Figure 2 describes the pieces of our approach in
terms of the MAPE-K loop. The CONTEXT MONITOR
retrieves information from the context by means of
sensors (e.g. one sensor measures performance and
another one observes security levels). In turn, the
EVOLUTION PLANNER analyzes the collected context
information and looks for quality attributes that can be
negatively affected by unknown context events (i.e.,
unforeseen at design time). Also, the EVOLUTION
PLANNER plans dynamic evolutions by looking for
surviving tactics to preserve the software architecture
despite unknown context events. Afterwards, the GA
EVOLVER executes the dynamic evolution of the software
architecture by means of GAs.

Figure 2. Our approach for dynamic evolution

 The steps that are carried out by our approach to
face unknown context events in the open world are as
follows:

1. Observe the Context: The objective of this step is to
get information from the context. This information will be
used later to trigger dynamic adjustments on the software
architecture. To this end, we propose a CONTEXT
MONITOR that processes context information that is
collected by sensors and updates an ontology accordingly.
The CONTEXT MONITOR captures the basic metrics of
significant quality attributes from the context. The
CONTEXT MONITOR and the underlying ontology are
described in our previous work [8, 9].

2. Look for Quality Attributes that Can Be Affected.
The objective of this step is to look for the quality
attributes that can be negatively affected by unknown
context events. Quality attributes are the basis of software
architectures [10]. Therefore, quality attributes, such as
accuracy, security, reliability, availability, and
performance must be preserved at runtime despite arising
unknown context events.
 In order to find the quality attributes that can be
negatively affected by unknown context events, we
propose the EVOLUTION PLANNER, which uses forward
chaining. Forward chaining evaluates arising context facts

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

Int'l Conf. Software Eng. Research and Practice | SERP'14 | 129

against rule premises, which are defined at design time
and kept in a knowledge base. In our previous work, we
define how forward chaining can be used to realize if a
particular fact (an unknown context event) can trigger an
evolution [4]. For example, it is possible to find out that
the HKWHOLESALESUPPLIER component can affect the
HIGH SECURITY quality attribute when this component has
rapidly increased its execution time (an unknown context
event).

3. Look for a Tactic to Face the Unknown Context
Event: In our approach, tactics are considered as the last
resort to be used when the system does not have
predefined adaptation actions to deal with arising context
events. These tactics are expressed in a requirements
model. This model is leveraged at runtime to count on the
representation of the requirements, including quality
attributes, which the context-aware system must preserve
at runtime. Requirements in this model have to be
fulfilled despite arising unknown context events. Since we
are particularly interested in keeping quality attributes or
non-functional requirements (NFRs) at runtime (e.g.
performance), the EVOLUTION PLANNER uses GRL [11].
 Figure 3 depicts the requirements model for the
on-line product shopping system at EUROTECH. This
model has softgoals that describe the quality attributes to
be kept by the context-aware system in order to reach the
top-level goal (e.g. the HIGH SECURITY softgoal). It also
contains tasks that specify specific surviving tactics to
reach the softgoals (e.g. the DECEPTION task). Since tasks
represent core assets to keep the QoS of the system, they
make a positive contribution to softgoals. The tactics with
the highest contributions (i.e., the ones with “++”) are
chosen first by the EVOLUTION PLANNER.

Figure 3. Requirements model

4. Generate an Initial Population: In this step, an initial
population of chromosomes is auto-generated by the GA
EVOLVER at runtime. Each chromosome is given a
random collection of genes. Each gene represents a
particular software component (see Figure 4).

A software component is a software element that
conforms to a component model and can be independently
deployed and composed without modification according
to a composition standard. Each chromosome in the initial

population represents a fully-functional software
architecture.

Figure 4. Generation of the initial population of components

 Genes are taken from a repository of
components. A repository is a storage site for objects of
some sort. In other words, a repository stores information
about an organization’s assets. It can store information,
store-in-depth documentation, support for versioning and
change control, generate name conventions, etc.
 For example, in our repository we have common
and variant software components. Common components
have to be present in all the generated chromosomes.
However, variant components are present in particular
chromosomes. For example, on one hand, the
GOOGLEAUTHSERVICE is a common component that is
present in all the chromosomes. On the other hand, the
functionality to look for products can be implemented by
means of two alternative variant components, the
HKWHOLESALESUPPLIER and the AMERICAN SUPPLIES
Co. components. Any of these variants can fulfill the
expected functionality.
 In order to decide which genes (components)
have to be present in each chromosome, we make use of a
feature model [12]. This model describes the dynamic
software architecture configurations, the variants of the
software architecture, and constraints among
functionalities [8]. Feature modeling was chosen because
it offers coarse-grained variability management and has
good tool support.

5. Crossover and Mutation: Crossover combines the
properties of two chromosomes of the previous
population to create new chromosomes (software
architectures in our case). Mating is achieved by selecting
two parents and taking a “splice” from each of their gene
sequences. Mutation is used to introduce new genetic
material into the population. In our approach, mutations
are the tactical functionalities that are used to evolve a
chromosome in order to preserve the quality attributes
that can be negatively impacted by unknown context
events.
 For instance, Figure 5 shows how software
architectures A and B are mated. The result is software
architecture C. In the second step of this section, we
described an example in which our solution discovers an
unknown context event: the HKWHOLESALESUPPLIER

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

130 Int'l Conf. Software Eng. Research and Practice | SERP'14 |

component can affect the HIGH SECURITY quality
attribute. In this case, GAs are used to insert the
functionality of the DECEPTION tactic into the resulting
software architecture (see Figure 3). We consider this
insertion as a mutation. This tactical mutation will try to
preserve the security quality attribute in a particular
generated architecture.

Figure 5. Crossover and mutation of tactical
functionalities

6. Selection: In this step, the population is subjected to a
selection process that favors individuals better adapted.
Each chromosome in the population must be evaluated.
This is done by evaluating its “fitness” or the quality of its
solution. The fitness is determined through the fitness (or
utility) function, making a summation of the functionality
(together with the mutated tactics) of the genes that make
up the chromosome. Based on the fitness level of each
chromosome, it is possible to select the chromosomes that
will mate, or those that have the “privilege” to mate in
further generations. For example, security levels can be
evaluated with different metrics in each resulting
chromosome. The chromosomes with the best results will
have the best fitness.
 Steps 5 and 6 are repeated until the best solution
has not changed for a preset number of generations.
Finally, our GA approach returns a software architecture
that can be used to face the arising unknown context
events.

5 Tool Support

 A prototype system validates the feasibility of
our approach. The CONTEXT MONITOR and the
EVOLUTION PLANNER are described in our previous work
[4, 8, 9]. The CONTEXT MONITOR uses the SPARQL

Protocol and RDF Query Language (SPARQL)1 to query
the ontology with context information. The EVOLUTION
PLANNER uses the EMF Model Query (EMFMQ)2 to
manage the feature model and the requirements model at
runtime [4]. The GA EVOLVER is implemented in Java.
Changes in the evolved software architecture can be
applied on the underlying system by means of different
technologies, such as OSGi bundles3. These bundles can
be activated or deactivated at runtime according to the
evolutionary process.
 Figure 6 shows the screenshot of our running
prototype, a dynamic evolution manager that implements
the components of IBM’s MAPE-K loop for the open
world. This prototype presents the logs of the activities
that are carried out by the CONTEXT MONITOR, the
EVOLUTION PLANNER, and the GA EVOLVER when an
unknown context event is detected.

Figure 6. Running prototype

 In the scenario of Figure 6, the CONTEXT
MONITOR detects that the execution time of the
HKWHOLESALESUPPLIER component is greater than 10
milliseconds. This is an event that was not predefined at
design time. Afterwards, the EVOLUTION PLANNER
realizes that this unknown context event can negatively
affect the HIGH SECURITY quality attribute. As a result, it
looks for a tactic to preserve this quality attribute and it
finds the DECEPTION tactic. Then, the GA EVOLVER uses
this information to choose the software architecture with
the best fitness. At the end of the process, our GA-
oriented approach mutates the original software
architecture with the DECEPTION tactic. This tactic will try
to deceive the hackers that are trying to violate the
security of the HKWHOLESALESUPPLIER component at a
particular time. As a result, the expected HIGH SECURITY
quality attribute is preserved.

1 http://www.w3.org/TR/rdf-sparql-query/: SPARQL
2 http://www.eclipse.org/modeling/emf/: EMF Model Query
3 http://www.osgi.org/Main/HomePage/: OSGi

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

Int'l Conf. Software Eng. Research and Practice | SERP'14 | 131

 Preliminary evaluation results show that using
GAs to evolve the software architecture is a promising
option for the unpredictable open world. This is because
of the fact that GAs can be used to optimize a large set of
non-linear systems (software architectures) with a large
number of variables (software components).

6 Related Work

 Over the past decade, a large number of research
works have been concerned with self-adaptation. We give
an overview of relevant approaches that support self-
adaptation.
 The MUSIC project [13] focuses on developing
self-adaptive mobile applications. The authors use an
explicit representation of the environment, in particular an
ontology-based model. MUSIC adopts utility functions as
adaptation mechanism. MUSIC uses a system model
based on a system component meta-model representing
the system structure. The variability is implicit in the
system model. The main variability mechanism consists
in loading different implementations for each component
type of the architecture. The system, environment and
adaptation representations are fixed at design time.
However, MUSIC does not provide mechanisms to
manage unexpected changes in the architecture at
runtime.
 Morin et al. [14] propose a combination of
model-driven engineering and aspect-oriented modeling
to support self-adaptation. This approach keeps an explicit
representation of the system. The system is modeled using
a base model that contains the common functionalities
and a set of variant models that can be composed with this
base model. The variant models capture the variability of
the adaptive system. An adaptation model specifies which
variant have to be selected depending on the environment
of the running application. As adaptation mechanisms
they use adaptation rules that specify how the system
should adapt to its context. All the models are fixed at
design time and cannot be extended at runtime to
incorporate unanticipated elements.
 RAINBOW [15] is an architecture-based
framework to support self-adaptation of software systems.
At runtime, the authors use an explicit representation of
the system, specifically an abstract architectural model.
The adaptation mechanism is explicit and it is based on
ECA rules. Since the variability is implicit, it is
encapsulated into the adaptation rules. RAINBOW also
uses an implicit representation of the context. RAINBOW
does not provide mechanisms to allow the modification of
the context, system, and rules representations at runtime.
 Zhang et al. [16] introduce an approach for
creating formal models to support self-adaptive system
behavior. Specifically, they use state machine based
models (such as Petri nets) to model the system’s adaptive
behavior. Contextual changes guide the transitions among

system states. Then, the adaptation mechanism is explicit
through rules. In this work, the underlying mechanisms
for dynamic adaptations are fixed at design time and
cannot be extended at runtime.
 PLASTIC [17] focuses on service-oriented
systems. PLASTIC maintains an explicit model of the
system. Application alternatives are stored in a repository.
However, no new alternatives can be added at runtime.
PLASTIC does not provide mechanisms to extend the
system, the context and system variants at runtime.
 CAPucine [18] builds adaptive systems based on
services. CAPucine considers the environment implicitly
inside the system. The variability is managed explicitly by
means of a feature model. The system is represented
explicitly through models. The adaptation mechanism is
explicit. A series of rules are stored in a repository. This
approach defines all the underlying elements at design
time.
 CASA [19] provides a framework for enabling
dynamic adaptation of applications executing in dynamic
contexts. Adaptation mechanisms are defined explicitly
by a set of adaptation policies. CASA does not provide
mechanisms to modify or extend the specification of
the software architecture at runtime.
 In the aforementioned approaches, adaptation is
fully foreseen at design time. Systems have a fixed set of
adaptation actions and new behaviors cannot be
introduced during runtime in the software architecture.
The trend has focused on self-adaptive mechanisms that
are not open to evolution in the open world. According to
our best knowledge, our work presents the first generic
approach based on GAs to handle unknown context
events through the dynamic evolution of the software
architecture.

7 Conclusions and Future Work

 In this paper, we have presented an approach for
the dynamic evolution of software architectures in the
open world through GAs. Specifically, our approach deals
with unexpected context events and has several benefits:
1) it can guide the creation of context-aware systems that
self-evolve when facing unknown context events in order
to preserve quality attributes; 2) it can be applied to
different domains; and 3) human workload is reduced
thanks to the autonomic evolution of the system.
 As future work, we will answer the following
questions related to the verification of the evolved
software architecture: Does a merged tactic accomplish its
objective at runtime? Or does the quality attribute
continue decreasing? How to verify that the software
architecture does not grow excessively with a large
amount of merged tactics, which can make the software
architecture complex or slow? In this way, some tactics
could be automatically removed when the software
architecture has reached a stable state.

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

132 Int'l Conf. Software Eng. Research and Practice | SERP'14 |

8 References

[1] J. O. Kephart, D. M. Chess, 2003. The vision of

autonomic computing, Computer, vol. 36, no. 1,
pp. 41–50.

[2] A.K. Dey, 2001. Understanding and Using
Context. Personal and Ubiquitous Computing
Journal, Vol. 5 (1), pp. 4–7.

[3] M. Prehofer, C. Schäfer, W. Schlichting, R. Smith,
D. Sousa, J. Tahvildari, L. Wong, K. Wuttke, J.,
2013. Software engineering for self-adaptive
systems: A second research roadmap. In: Lemos,
R., Giese, H., Müller, H., Shaw, M. (Eds.),
Software Engineering for Self-Adaptive Systems
II. Vol. 7475 of Lecture Notes in Computer
Science. Springer Berlin Heidelberg, pp. 1–32.

[4] G. H. Alférez, V. Pelechano, 2012. Dynamic
evolution of context aware systems with models at
runtime. In: R. France, J. Kazmeier, R. Breu, C.
Atkinson, (Eds.), Model Driven Engineering
Languages and Systems. Vol. 7590 of Lecture
Notes in Computer Science. Springer Berlin /
Heidelberg, pp. 70–86.

[5] G. Blair, N. Bencomo, and R. B. France, October
2009. Models@run.time, Computer, vol. 42, pp.
22-27.

[6] D. Ashlock, 2006. Evolutionary Computation for
Modeling and Optimization. Springer.

[7] M. Mitchell, 1996. An Introduction to Genetic
Algorithms. MIT Press.

[8] G. H. Alférez, V. Pelechano, 2011. Context-aware
autonomous Web services in software product
lines. In: Proceedings of the 2011 15th International
Software Product Line Conference. SPLC’11.
IEEE Computer Society, Washington, DC, USA,
pp. 100–109.

[9] G. H. Alférez, V. Pelechano, R. Mazo, C. Salinesi,
D. Diaz, May 2014. Dynamic adaptation of service
compositions with variability models, Journal of
Systems and Software, Volume 91, Pages 24-47.

[10] L. Bass, P. Clements, R. Kazman. 2013. Software
Architecture in Practice, Third Edition. Pearson
Education, Inc.

[11] L. Liu, E. Yu, 2004. Designing information
systems in social context: a goal and scenario
modelling approach. Inf. Syst. 29, 187–203.

[12] D. Batory, 2005. Feature Models, Grammars,
Propositional Formulas. In Software Product Lines
Conference, ser. Lecture Notes in Computer
Sciences, vol. 3714, Springer-Verlag. Springer-
Verlag, 2005, p. 7-20.

[13] R. Rouvoy, P. Barone, Y. Ding, F. Eliassen, S.
Hallsteinsen, J. Lorenzo, A. Mamelli, U. Scholz,
2014. MUSIC: Middleware support for self-
adaptation in ubiquitous and service-oriented

environments, in Software Engineering for Self-
Adaptive Systems, ser. Lecture Notes in Computer
Science, B. Cheng, R. de Lemos, H. Giese, P.
Inverardi, J. Magee, Eds. Springer Berlin /
Heidelberg, vol. 5525, pp. 164–182.

[14] B. Morin, O. Barais, G. Nain, J. M. Jezequel, 2009.
Taming dynamically adaptive systems using
models and aspects. In IEEE 31st International
Conference on Software Engineering. ICSE’09. pp.
122–132.

[15] D. Garlan, S.-W. Cheng, A.-C. Huang, B. Schmerl,
P. Steenkiste, oct. 2004. RAINBOW: architecture-
based self-adaptation with reusable
infrastructure, Computer, vol. 37, no. 10, pp. 46–
54.

[16] J. Zhang, B. H. C. Cheng, 2006. Model-based
development of dynamically adaptive software,
in Proceedings of the 28th international conference
on Software engineering, ser. ICSE’06. New York,
NY, USA: ACM, pp. 371–380.

[17] M. Autili, P. Di Benedetto, P. Inverardi, 2009.
Context-aware adaptive services: The PLASTIC
approach, in Fundamental Approaches to Software
Engineering, ser. Lecture Notes in Computer
Science, M. Chechik, M. Wirsing, Eds. Springer
Berlin / Heidelberg, vol. 5503, pp. 124–139.

[18] C. Parra, X. Blanc, L. Duchien, 2009. Context
awareness for dynamic service-oriented product
lines, in Proceedings of the 13th International
Software Product Line Conference, ser. SPLC’09.
Pittsburgh, PA, USA: Carnegie Mellon University,
pp. 131–140.

[19] A. Mukhija, M. Glinz, 2005. Runtime adaptation
of applications through dynamic recomposition of
components, in Systems Aspects in Organic and
Pervasive Computing. ARCS’05, ser. Lecture
Notes in Computer Science, M. Beigl, P.
Lukowicz, Eds. Springer Berlin / Heidelberg, vol.
3432, pp. 124–138.

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

Int'l Conf. Software Eng. Research and Practice | SERP'14 | 133

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

134 Int'l Conf. Software Eng. Research and Practice | SERP'14 |

SESSION

ENERGY EFFICIENT SOFTWARE DESIGN,
REQUIREMENTS ENGINEERING, COST

ESTIMATION

Chair(s)

TBA

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

Int'l Conf. Software Eng. Research and Practice | SERP'14 | 135

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

136 Int'l Conf. Software Eng. Research and Practice | SERP'14 |

Automation of Energy Performance Evaluation of Software
Applications on Servers

Jasmeet Singh, Veluppillai Mahinthan, and Kshirasagar Naik
Dept. of Electrical and Computer Engineering, University of Waterloo, Waterloo, Ontario, Canada

Abstract— Although the hardware subsystems, namely, pro-
cessors, memory, disk, and network interfaces of a server
actually consume power, it is the software activities that
drive the operations of the hardware subsystems leading to
varying dynamic power cost. There are a number of ways
to optimize application programs at their design stages but
it is difficult for the developers to analyse their applications
in terms of power cost on the real servers. In this paper, we
present the design of an automated test bench to measure
the power cost of an application running on a server.
We show how our test bench can be used by software
developers to measure and improve the energy cost of two
Java file access methods. Another benefit of our test bench
has been demonstrated by comparing the energy costs of
compression and decompression features provided by two
popular Linux packages: 7z and rar. Overall, this paper
makes a contribution to reduce the perception gap between
high level programs and the concept of energy efficiency.

Keywords: energy cost, automated test bench, synchronization,
energy efficient software design, file access methods

1. Introduction
Electrical energy is a key resource consumed by all

computing platforms [1], [2], and the design of a software
application has a significant impact on the power consump-
tion [3]. Various techniques have been suggested to reduce
the power consumption of software systems in [3] and [4].
Considering the fact that power bill accounts for a significant
portion of the cost to run a data center, it is useful to analyse
and minimize the energy cost of applications running on
large systems, namely, servers. Although there are a number
of ways to optimize the application at its design stage,
developers generally do not consider the energy cost of their
software while making important design decisions. They find
it difficult to measure the energy cost incurred by their
workload and know how it behaves on real servers inside
data centers. In addition to this, the measurement process
takes a lot of human effort and time.

In this paper, we present the design of an automation
system, to measure the energy cost of an application running
on a server, with the following properties: (i) a power
automation software tool (PAST) is developed for automat-
ing the measurement process; (ii) the PAST runs on a
monitoring computer which is the same machine used by

the developer and different than the server under test; (iii)
both the application running on a server (Load) and the
power measurement instrument are remotely controlled by
PAST for synchronization purpose; and (iv) for statistical
data collection of power performance, the PAST can repeat a
test on the Load multiple times without human intervention.

By using the automated test bench, developers can upload
their application to the server and measure the energy cost of
running it for the various design choices. By this way, they
can concentrate more on the development, without wasting
time on the measurement process. By means of our test
bench, we validate the claim in the reference [5] that the
energy cost of one Java file read method, FileInputStream
(M1) is more than the other method, BufferedInputStream
(M2). Then we study the impact of introducing a program-
mer buffer to both the methods, by measuring their energy
cost of reading a file from the disk with varying buffer sizes.
Although M1 consumes more energy than M2, their energy
cost is same for a wide range of buffer sizes. In addition,
the energy cost of M2 is further reduced after selecting the
optimal buffer size. The other benefit of our test bench is
that it can be used to compare the various functions of
software in terms of their energy cost. Nowadays there are
many software applications in the market providing the same
functionality. The information regarding the energy cost of
the same operation by different software applications allows
us to chose the energy efficient ones in data centers. We anal-
yse the energy cost of the compression and decompression
features of two famous Linux packages: 7z and rar.

The rest of the paper is organized as follows. In Section
2, we briefly present the related work and compare our
approach with the other energy measurement tools developed
recently. In Section 3, we explain the system model of
the automation framework. Implementation details of the
automation framework have been explained in Section 4. In
Section 5, we explain how the automated system has been
used to conduct experiments. Some concluding remarks and
directions for future work are provided in Section 6.

2. Related Work
The techniques for understanding the power cost of

servers can be categorized into three major groups: (i) direct
measurement by means of instrumentation of the hardware
[6]; (ii) estimation by means of power models [7], [8];

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

Int'l Conf. Software Eng. Research and Practice | SERP'14 | 137

Server

CPU Memory

Hard Disk

Wall Power
Power
Meter Power Supply

AC Power

DC Power

USB Connection
Load

LAN Cable

Development
Environment

PAST

Monitoring
 Station

Fig. 1: System Model

and (iii) software measurement by means of various tools
and application programming interface (APIs). A deeper
understanding of power costs of computing subsystems,
namely, memory, processor, hard disk, and other peripherals,
enables better use of storage encryption, virtualization, and
application sandboxing [9], [10]. The authors of the paper
[11] studied in detail the effects of abstraction layers and ap-
plication development environments on the energy efficiency
of software. Their results indicate that greater use of external
libraries is more harmful in terms of energy cost for large
scale applications. Ardito et al. [5] developed the concept
of introducing the energy efficiency into SQALE (Software
Quality Assessment based on Lifecycle Expectations), one
of the software quality models to monitor the impact of
software on energy consumption during its development.
They identified some energy efficient software guidelines
and translated them into measurable requirements of the
model. Although direct measurement of power consumption
is expensive, it gives more accurate results than estimation
models [7].

Our work also falls in the category of direct measurement.
The tools used by developers to measure the energy cost of
their applications rarely exist. The authors of the paper [12]
presented a new tool for mapping software design to power
consumption and describe how these mappings are useful
for the software designers and developers. In reference [13],
a comprehensive survey of different energy measurement
approaches has been done. Based on this survey, the authors
have come up with four recommendations for the efficient
energy measurement approaches: (i) accurate measurements
for better precision; (ii) fine-grained power models to trace
how and where the energy is being used in software; (iii)
reduce user experience impact - the measurement tools
should not require manual modifications of source code of
the applications; and (iv) software-centric approaches for
better evolution and flexibility.

We have also reviewed those efforts similar to our frame-
work which discuss automation of energy measurement.
PowerPack [14] and pmlib software [15] have automated the

energy profiling of parallel scientific workloads by software
code instrumentation. These tools have a set of user level
APIs which one can insert before and after the code region
of interest to create its energy profile. Both these tools did
not talk about the applicability of their APIs to the target
code of all programming languages. PowerPack requires
additional sensing resistors for each of the power lines
in addition to the power meter. Moreover, these tools can
not be used to measure the energy cost of closed source
applications. In contrast, our framework does not need the
manual modification of source code of the application for
its energy measurement. In another recent work [16], they
have designed a framework called software energy footprint
lab, which executes the software of interest on the server
and output the power consumed during the execution on
a separate machine. Their approach requires manual effort
to start the software under test and sending the commands
to their Data Acquisition System right before the software
is executed and another one right after it terminates, for
synchronization. Our approach is different from them as
PAST controls both the execution of the software as well
as the measurement process. The process of synchronization
between the server and the meter is automated in our
approach. In addition, the measurement process of the same
application can be repeated a number of times for statistical
significance.

3. System Model of Test Bench
The system model of the automation framework has been

shown in Figure 1. The definitions of all the terms used in
the figure are given below.
Server: A system for which we are interested in evaluating
the energy cost of running an application.
Load: A software application that runs on the server, and
we measure the energy cost of running that application.
Power Meter: A data acquisition unit used for measuring
power. We used a Lab-Volt 9063-00 Data Acquisition and
Control Interface as a power meter.

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

138 Int'l Conf. Software Eng. Research and Practice | SERP'14 |

:Main Thread Server
Power
Meter

At Ti

 Start Load At Ti Start
 Recording

:LoadThread

Load Executed

At T0,
New

Sequence Diagram

Stop Stop Recording

Record Output

PAST

:MeterThread

Upload Application

Status of Upload

New

If Status = ‘OK’

Fig. 2: Message Sequence Chart

Wall Power: Supplies AC power to the Server.
Monitoring Station: A computer equipped with the PAST
system which controls both the Server and Meter. A pro-
grammer is developing his application on this machine and
can run PAST to upload the application to the Server and
measure its cost. By running PAST on a separate machine, it
starts executing the Load on the Server as well as starts the
Meter to record current and voltage values simultaneously.

The Monitoring Station is connected to the Meter via
an USB (Universal Serial Bus) interface and to the Server
through a LAN (Local Area Network).

Our test bench can be used to measure: (i) the power con-
sumed by a server’s individual subsystems, namely, memory,
disk, and processor, if their power lines are easily accessible;
and (ii) the total power cost of a server. Only the total power
can be measured for a server where one cannot identify the
power lines to its individual subsystems. To set up the test
bench for power measurement of individual subsystems, we
examined the different power lines from the ATX 24 pin
connector which powers the whole motherboard of desktop
computer. The power lines to the processor (CPU: central
processing unit) operate at 12V , first fed to the voltage
regulator module which converts the voltage to the actual
voltage required by the processor [17]. From the 24 wires
of ATX connector, one yellow wire of 12V is feeding power
to the processor. The other two yellow wires are from the
ATX 4 pin 12V Power Connector (ATX v2.2) dedicated for
the processor. The disk (Hard Disk) is getting power from a
Molex 4 pin power supply connector which operates at two
voltage levels, 5V and 12V . The memory (RAM: random
access memory) system is getting power over three lines
from the 24 pin connector, and the voltage level is 3.3V . The
total power cost can be measured from the AC (Alternating
Current) power lines to the server power supply.

4. Automated Test Bench
In our test bench, we use a Lab-Volt 9063-00 Data

Acquisition and Control Interface system, known as the
Meter in this paper. To read power samples from Meter,
the device supports APIs in the form of Microsoft Dynamic
Link Library (DLL). Therefore, the PAST is developed in
Visual Basic. In the remainder of this section, we explain
the design of PAST by means of its behaviour, which is
represented as a message sequence chart, and then the key
problems faced in the design of the PAST.

4.1 Message Sequence Chart
Figure 2 shows the sequence of steps of the PAST

executed during the whole process of measurement.
PAST is a multi-threaded system, with three threads:

MainThread, LoadThread and MeterThread. The PAST is
launched on the Monitoring station with the location of the
configuration file as its input parameter. A configuration file
is a text file that is stored on the Monitoring Station, it
contains both the Server and Meter information. Figure 3
shows some entries from configuration file. The behaviours
of the three threads is described below: MainThread:
MainThread first reads the configuration file for the
server_ipaddress, username, password and the location
on the server (server_app_loc) where the developer wants
to upload the application. Launch_app_command con-
tains the command to start an application on the server.
meter_inputs in the configuration file tells which current
and voltage input channels of the Meter and at what sam-
pling frequency (meter_ sampling_freq) the Meter should
produce those values. It then starts the LoadThread and waits
for the other threads to finish.
LoadThread: This first uploads the application onto the
server. It stops the process if the application is not uploaded

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

Int'l Conf. Software Eng. Research and Practice | SERP'14 | 139

successfully. If upload is successful, then it initializes the
Meter with the meter information being read from the
configuration file. If the Meter is ready to read then it starts
a new thread MeterThread and starts the application on the
Server.
MeterThread: This starts recording the current and voltage
values from the Meter by using meter API calls. LoadThread
ensures that the MeterThread is recording the values till the
application is running on the server. And finally it saves all
the values in to the file inside directory (Recording_dir)
on the Monitoring Station.

sampleconfig.txt[11/Apr/2014 4:06:00 PM]

server_ipaddress=192.168.1.148
username=developer
password=developer
local_application=C:\MyApp.jar
server_app_loc=/home/jasmeet/
Launch_app_command=java - jar MyApp.jar
iterations=5
component=CPU
tunable_parameter=BufferSize
tunable_parameter_array=128,256....
Recording_dir=C:\Power\Results
server=linux
meter_sampling_freq=1000
meter_inputs=E1,I1,I2,I3

Fig. 3: Sample Configuration file

From the recorded values, energy cost of running an
application is computed by using the expression:

Energy_cost =
∑
∀i

V (i).I(i).∆t (1)

where V (i) and I(i) are the ith voltage and current samples,
respectively, and ∆t is the sampling interval.

4.2 Key Challenges
There are some practical problems in measuring the

energy cost of an application at the subsystem level, namely,
processor, memory, and hard disk. There are only 4 current
and voltage inputs to the meter. Therefore, at a time only 4
power channels can be measured. However, in case of our
desktop computer, for all the three components (processor,
memory and disk), there are a total of 8 power lines needed
to be monitored. Therefore, we measured the power cost of
the three subsystems in three repeated experiments.

5. Experiments and Results
In this section, we show how software developers can

use our test bench to evaluate the energy performance of
running an application on a server with various design
options. We compare the energy cost of two Java file access
methods: (i) M1 using FileInputStream only and (ii) M2
using BufferedInputStream. Ardito et al. [5] intuitively claim
about the energy efficiency of these two methods without any

measurements. First, we validate their claim by measuring
the energy cost of the methods on our test bench. Then we
revise the two methods by introducing a buffer into them
and measure their energy cost with varying buffer sizes.
We also compare the revised methods to read extremely

Table 1: Server Machines Configuration

Parameter
Desktop

(ASUS P4P800-VM)

Real Server

(Dell PowerEdge 2950)

Processor
Intel Pentium 4,

3.2 GHz

7x Intel Xeon, 3 GHz,

4 cores per processor

Hard Disk 80 GB IDE 1.7 Tera Bytes SAS

Main Memory 2 GB DIMM 32 GB DIMM

Operating System Linux (Ubuntu 13.10) Linux (Ubuntu 13.10)

large files in terms of their energy cost. Next, we compare
the energy performance of two packages 7z and rar with
respect to compression and decompression. Table 1 shows
the configurations of two machines used in our experiments.

5.1 Example of using test bench to make im-
portant design decisions

Listing 1 and Listing 2 in Figure 4 describe M1 and M2,
respectively. We measure the energy cost of CPU, memory
and disk for reading a video file of size 512 MB (Mega
Bytes) with M1 and M2 on a desktop machine. Figure 4
shows the results of our measurements by comparing the
energy cost of all the three components for both M1 and
M2. The reason behind the less energy consumption by M2,
for all the components is that it reads a file of any size in
larger chunks equal to the size of its internal buffer from
the disk, whereas M1 reads a single byte of data in one read
operation. It is clear from the results that CPU consumes the
maximum energy in reading a file.

We further study the impact of introducing a programmer
defined buffer into both the methods. Listing 3 and Listing
4 describe the modified code of the two methods, and they
are denoted by M1’ and M2’ corresponding to M1 and
M2, respectively. In both M1’ and M2’, line #2 shows the
definition of buffer as an array of type byte, and its size
is equal to bufferSize. Line #4 and #5 of M1’ and M2’
respectively, show that in one call read operation reads
several bytes of data of size, bufferSize. Therefore bufferSize
is a tunable parameter which the developer can vary and run
these methods to read a file. We measure the energy cost of
CPU, memory and Disk for both M1’ and M2’ with buffer
size ranging from 1 Byte to 64 Mega Bytes (MB).

Figure 5 shows the evaluation of the total energy cost
of all the three components for both M1’ and M2’. The
results in Figure 5 show that after introducing a programmer
buffer into M1 and M2, the total energy cost of all the three
components, is maximum at buffer size 1 byte. It started

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

140 Int'l Conf. Software Eng. Research and Practice | SERP'14 |

Listing 2. M2: File Reading using BufferedInputStream

FileInputStream fis = new FileInputStream(fileName);

BufferedInputStream bis = new BufferedInputStream(fis);

int b,cnt = 0;

while ((b = bis.read()) != -1)

{

if (b == ’\n’)
cnt++;

}
fis.close();

Listing 1. M1: File Reading using FileInputStream

FileInputStream fis = new FileInputStream(fileName);

int b,cnt = 0;

while ((b = fis.read()) != -1)

{

if (b == ’\n’)
cnt++;

}
fis.close();

0

5000

10000

15000

20000

25000

30000

35000

40000

CPU Hard Disk Memory

En
er

gy
 (W

at
t S

ec
on

ds
)

M1 M2

Fig. 4: Energy cost evaluation of CPU, Memory and Disk for M1 and M2 on the Desktop

1 FileInputStream fis = new FileInputStream(fileName);
2 byte[] buffer = new byte[bufferSize];
3 int b,cnt = 0;
4 while ((b = fis.read(buffer)) != 1)
5 {
6 if (b == ’\n’)
7 cnt++;
8 }
9 fis.close();

Listing 3: M1’: Introducing user buffer in M1

1 FileInputStream bis = new FileInputStream(fileName);
2 byte[] buffer = new byte[bufferSize];
3 BufferedInputStream bis = new BufferedInputStream(fis);
4 int b,cnt = 0;
5 while ((b = fis.read(buffer)) != 1)
6 {
7 if (b == ’\n’)
8 cnt++;
9 }

10 fis.close();

Listing 4: M2’: Introducing user buffer in M2

decreasing with the increase in the buffer size till 128 bytes.
We expanded the graphs of Figure 5 in Figure 6 to show the

1B 8B 64B 512K 4K 32K 256K 2M 16M
0

1

2

3

4

5

6
x 10

4

Buffer Size in Bytes (B), Kilo Bytes (K) and M (Mega Bytes)

E
ne

rg
y

(
W

at
t S

ec
on

ds
)

Energy Consumption by CPU + Memory
 + Disk for reading a file using M2’

Energy Consumption by CPU + Memory
 + Disk for reading a file using M1’

Fig. 5: Total energy cost by M1’ and M2’ with different
buffer sizes on the Desktop

energy cost of individual components along with their total
energy cost at the buffer sizes from 128 bytes to 64 MB.

Figures 6(a), 6(b) and 6(c) show the energy cost of CPU,
memory and disk respectively, and their total energy cost in
6(d). The energy cost behaviour between M1’ and M2’ is
same as between M1 and M2 for buffer sizes from 128 bytes
to 8KB; in other words, energy cost of M2’ remains less than
M1’. Then, energy is constant for both the methods ranging
from 8KB to 128KB, except that there is a sharp increase
at 32KB by M1’ for disk. It started increasing from 128KB
to 1 MB then decreases and remains constant till 64MB.
Both M1’ and M2’ consume almost the same energy for
all the three components from 8KB to 64MB and consumes
minimum energy at 16KB. Moreover, this energy is even less
than M2. Therefore, it is clear from our measurements that
there is a further opportunity to decrease the energy cost of
M1 and M2 by introducing a programmer buffer into them.
Both the methods consume almost the same energy at buffer
sizes ranging from 8K to 64 MB which contradicts the claim
by Ardito et. al [5] that M1 always consumes more energy
than M2. In addition to this, 16K is the optimal buffer size
for all the three components.

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

Int'l Conf. Software Eng. Research and Practice | SERP'14 | 141

128B 512B 2K 8K 32K 128K 512K 2M 8M 32M
0

5

10

15

20

En
er

gy
(W

at
t S

ec
on

ds
)

Buffer Size

128B 512B 2K 8K 32K 128K 512K 2M 8M 32M
0

5

10

15

20

25

30

35

40

En
er

gy
(W

at
t S

ec
on

ds
)

Buffer Size

128B 512B 2K 8K 32K 128K 512K 2M 8M 32M
0

100

200

300

400

500
En

er
gy

(W
at

t S
ec

on
ds

)

Buffer Size

Energy Consumption by CPU for
reading a file using M2’

Energy Consumption by CPU for
reading a file using M1’

Energy Consumption by Memory
 for reading a file using M2’

Energy Consumption by Memory
 for reading a file using M1’

Energy Consumption by Disk for
reading a file using M2’

Energy Consumption by Disk for
reading a file using M1’

128B 512B 2K 8K 32K 128K 512K 2M 8M 32M
0

100

200

300

400

500

Buffer Size

En
er

gy
 (W

at
t S

ec
on

ds
)

Energy Consumption by CPU + Memory+
Disk for reading a file using M2’

Energy Consumption by CPU + Memory+
Disk for reading a file using M1’

Buffer Size in Bytes(B), KB (K) and MB(M)

(a) (b)

(c) (d)

CPU energy cost Memory energy cost

Disk energy cost CPU + Memory + Disk energy cost

Fig. 6: Energy cost of M1’ and M2’ with different buffer sizes on the Desktop

To gain additional insights into the behaviours of M1’
and M2’ while reading extremely large files, we perform
the experiments on the same desktop machine to read files
ranging from 1MB to 32 Giga Bytes(GB), while keeping
the buffer size fixed at 16KB. Figure 7 shows the graphs
plotted for the total AC (Alternating Current) energy cost as
function of different file sizes for both the methods at 16KB
buffer size. It is clear from the graph that both the methods
consume the same energy at 16KB buffer size. We close this
section by noting the above results enable the developer to
chose the right method for reading a file with appropriate
buffer size during the design stage.

5.2 Using the test bench in function level en-
ergy cost measurement

As discussed in Section 1, the test bench can also be used
to measure the energy cost of a specific function of an appli-
cation software whether it is open source or closed source.
To validate this functionality of our test bench we conducted
the experiments on a real server (Table I) from a data center.
We consider two popular Linux packages, namely, 7z and rar
to compress and decompress files. Both the packages output
compressed files in .rar and .7z formats and can decompress

the same to the original files. A video file of size 512 MB is
used in our experiment for compression. Figure 8 shows the
total AC (Alternating Current) energy cost of a server for the
four functionalities of both the packages. The results show
that the 7z package consumes more energy in compressing
the files to .rar and .7z formats compared to the rar package.
However the rar package consumes less energy in producing
.rar files than it consumes to produce in .7z format. In case of
decompression from .rar format, 7z consumes more energy
than it consumes while converting from .7z format while rar
consumes the same energy in decompressing .rar and .7z
formats to produce the original files. Further investigation is
required to find the causes of energy cost differences of the
same operations of two packages.

6. Conclusion and Future Work
In this paper we presented an automation framework to

measure the energy cost of servers while running software
applications. The framework’s infrastructure mainly contains
a power meter, target server and control software (PAST) for
synchronization and monitoring. By using the test bench,
we performed actual measurements to verify the claim in a
previously published paper [5] that energy cost of reading

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

142 Int'l Conf. Software Eng. Research and Practice | SERP'14 |

1M 4M 16M 64M 256M 1G 4G 16G
0

0.5

1

1.5

2

2.5

3

3.5
x 10

4

En
er

gy
(W

at
t S

ec
on

ds
)

File Size in M(Mega Bytes) and G(Giga Bytes)

Energy for reading file using M1’
with buffer size 16KB

Energy for reading file using M2’
with buffer size 16KB

Fig. 7: Energy cost of M1’ and M2’ for different file sizes
on the Desktop

files by the method FileInputStream (M1) is greater than
the BufferedInputStream (M2) method. However this claim
is not valid in certain cases, if we introduce a programmer
buffer in both the methods. It holds good for buffer sizes
ranging from 128 bytes till 8KB, but these two methods
consume almost the same energy at buffer sizes from 8KB to
64MB. Also, the introduction of buffer in M2 has further re-
duced its energy cost. Finally, we compared the energy costs
of the same functionality provided by different software
applications by measuring the energy costs of compression
and decompression features of two Linux packages: 7z and
rar. The 7z package consumes more energy than rar in com-
pressing and decompressing files. However, rar consumes
more energy in compressing to .7z format than to .rar format.
The automation framework can be used by programmers to
evaluate the energy cost of their applications. More work is
required to be done to find out the causes of energy cost
differences of the same operations of two packages.(Figure
8)

References
[1] T. Mudge, “Power: A first class design constraint for future architec-

tures,” in High Perf. Computing. Springer, 2000, pp. 215–224.
[2] K. Naik and D. S. Wei, “Software implementation strategies for

power-conscious systems,” Mobile Networks and Apps, vol. 6, no. 3,
pp. 291–305, 2001.

[3] M. Sabharwal, A. Agrawal, and G. Metri, “Enabling green it through
energy-aware software,” IT Professional, pp. 19–27, 2013.

[4] D. J. Brown and C. Reams, “Toward energy-efficient computing,”
Communications of the ACM, vol. 53, no. 3, pp. 50–58, 2010.

[5] L. Ardito, G. Procaccianti, A. Vetro, and M. Morisio, “Introducing
energy efficiency into sqale,” in ENERGY 2013, The Third Intl.
Conf. on Smart Grids, Green Communications and IT Energy-aware
Technologies, pp. 28–33.

[6] T. Stathopoulos, D. Mclntire, and W. J. Kaiser, “The energy en-
doscope: Real-time detailed energy accounting for wireless sensor
nodes,” in Information Processing in Sensor Networks, 2008. IPSN’08.
International Conference on. IEEE, pp. 383–394.

0

10000

20000

30000

40000

50000

60000

70000

Compression
 (.rar)

Decompression
(.rar)

Compression
(.7z)

Decompression
(.7z)

En
er

gy
 (W

at
t S

ec
on

ds
)

7z Package

rar Package

Fig. 8: Energy cost of 4 functions of rar and 7z packages
on the real server (Table I)

[7] J. C. McCullough, Y. Agarwal, J. Chandrashekar, S. Kuppuswamy,
A. C. Snoeren, and R. K. Gupta, “Evaluating the effectiveness of
model-based power characterization,” in USENIX Annual Technical
Conf, 2011.

[8] Y. Sun, L. Wanner, and M. Srivastava, “Low-cost estimation of sub-
system power,” in Green Computing Conference (IGCC), Intl. IEEE,
2012, pp. 1–10.

[9] P. A. P. D. S. William, J. Kaiser, and P. L. Reiher, “Investigating
energy and security trade-offs in the classroom with the atom leap
testbed,” 2011.

[10] D. McIntire, K. Ho, B. Yip, A. Singh, W. Wu, and W. J. Kaiser,
“The low power energy aware processing (leap) embedded networked
sensor system,” in Proceedings of the 5th intl. conf. on Information
processing in sensor networks. ACM, 2006, pp. 449–457.

[11] E. Capra, C. Francalanci, and S. A. Slaughter, “Is software green?
application development environments and energy efficiency in open
source applications,” Information and Software Technology, vol. 54,
no. 1, pp. 60–71, 2012.

[12] C. Sahin, F. Cayci, J. Clause, F. Kiamilev, L. Pollock, and K. Win-
bladh, “Towards power reduction through improved software design,”
in Energytech, IEEE, 2012, pp. 1–6.

[13] A. Noureddine, R. Rouvoy, and L. Seinturier, “A review of energy
measurement approaches,” ACM SIGOPS O.S. Review, vol. 47, no. 3,
pp. 42–49, 2013.

[14] R. Ge, X. Feng, S. Song, H.-C. Chang, D. Li, and K. W. Cameron,
“Powerpack: Energy profiling and analysis of high-performance sys-
tems and applications,” Parallel and Distributed Systems, IEEE Trans-
actions on, vol. 21, no. 5, pp. 658–671, 2010.

[15] S. Barrachina, M. Barreda, S. Catalán, M. F. Dolz, G. Fabregat,
R. Mayo, and E. S. Quintana-Ortí, “An integrated framework for
power-perf. analysis of parallel scientific workloads,” in ENERGY
2013, The Third Intl. Conf. on Smart Grids, Green Communications
and IT Energy-aware Technologies, pp. 114–119.

[16] M. A. Ferreira, E. Hoekstra, B. Merkus, B. Visser, and J. Visser,
“Seflab: A lab for measuring software energy footprints,” in Green and
Sustainable Software(GREENS), 2nd Intl. Workshop. IEEE, 2013, pp.
30–37.

[17] C. Isci and M. Martonosi, “Runtime power monitoring in high-end
processors: Methodology and empirical data,” in Proceedings of the
36th annual IEEE/ACM International Symposium on Microarchitec-
ture. IEEE Computer Society, 2003, p. 93.

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

Int'l Conf. Software Eng. Research and Practice | SERP'14 | 143

Environment for Requirements Elicitation Supported by

Ontology-Based Conceptual Models: A Proposal

J. Valaski, S. Reinehr, and A. Malucelli

PPGIa, Pontifícia Universidade Católica do Paraná, Curitiba, Paraná, Brazil

Abstract - Requirements Elicitation is a Requirements

Engineering activity that aids understanding of the customer’s

needs. The lack of understanding of the problem domain, the

poor communications among stakeholders and a lack of

consensus regarding the use of terms, are some of the main

challenges of this activity. Ontologies are a type of formalism

that can be applied to aid understanding and reach a consensus

in a knowledge domain. In this context, the goal of this study is

to present a proposal for an environment that supports

requirements elicitation from the early stages, when

communications are more informal, to the point where a list of

software requirements is obtained. This environment will be

supported by natural language processing techniques and

ontology-based conceptual model represented in OntoUML.

An experiment is described with the objective to discuss the

opportunities and difficulties that arise on the way to achieve

the desired results.

Keywords: Requirements Elicitation; Ontology; Natural

Language Processing; OntoUML.

1 Introduction

In the context of software development, Requirements
Engineering is the field that supplies the appropriate
mechanisms to understand customer’s needs [1]. Requirements
Engineering can be characterized as an iterative process of
discovery and analysis to produce for producing a clear,
complete and consistent set of requirements of software [2] that
can be represented in different forms. The initial result of the
Requirements Engineering process is the production of several
personal and not very clear visions of a system represented by
informal languages, while the final result is a complete
specification of the system represented formally, which all
those involved have achieved and accepted. At the beginning
of the process, it is common to see languages that are more
informal, while at the end the specification is normally
represented in formal languages [3].

Poor understanding of the business on the part of the
requirements engineers and poor communication between the
business specialists and computing specialists can compromise
the quality of information [4]. Therefore, during software
development, especially in its early stages, it is necessary to use
a common language that enables shared understanding among
stakeholders to aid the smooth flow of information that is
obtained from different sources [5]. Broader understanding of

the problem domain is also fundamental in terms of
communication and quality.

The conceptual model is an instrument that enables the use
of a common vocabulary and facilitates the comprehension and
discussion of elements that may appear in the system. One of
the most known conceptual metamodel is the Entity-
Relationship (ER). Nevertheless, the reason of the ER
popularity is also its main weakness: the metamodel is simple
and this feature helps the conceptual modelers, however, the
metamodel does not present high expressivity. The UML is also
a well-known language to build conceptual models, but it
presents the same problem of expressivity.

Ontologies have been an important element to support the
construction of more expressive conceptual models. The main
objectives of ontologies in this context include enabling a
common shared language [6], aiding understanding of the
problem domain [7], supporting the analysis of the expressivity
of the language [8] and providing a language that represents a
domain that is as close as possible to the real world [9].

Guided by these matters, Guizzardi [10] proposed
OntoUML, a language used to represent ontology-based
conceptual models. As the language is ontology-based, the
assumption is that the conceptual models constructed in
OntoUML are more expressive and represent the real world of
the domain more faithfully than other languages of conceptual
representation. The constructs proposed in OntoUML prevent
the overload and redundancy found in other languages, such as,
UML. Therefore, the problem of understanding the domain for
correct requirements elicitation could be minimized if these
models represented in OntoUML were used to derive the
requirements. However, as OntoUML is a more expressive
language, it proposes a larger set of constructs that are not easily
identified, especially by novice modelers [11].

In this context, the present study aims to propose an
environment that supports the construction of conceptual
models by processing texts to derive initial requirements from a
system to be developed. The presentation of this proposal is
organized as follows: in Section 2, the basic concepts of the
proposal are outlined; in Section 3 the works related to this
proposal are presented; Section 4 presents the architecture of the
proposed environment; an experiment is conducted and
described in Section 5 to demonstrate and discuss the viability
of the proposal; and in Section 6 the final considerations and
recommendations for future works related to the proposal are
presented.

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

144 Int'l Conf. Software Eng. Research and Practice | SERP'14 |

2 Theoretical framework

2.1 Ontology in Requirements Engineering

With their origins in philosophy, ontologies were employed
to categorize knowledge and represent it through taxonomies.
The current definition of an ontology has been improved and
adapted according to the field in which it will be applied. In
computer science, one of the most well-known definitions is
given by Gruber [12]: “An ontology is a specification of a
conceptualization”.

In the field of Requirements Engineering, ontologies have
been applied for different purposes: a common shared
vocabulary [6]; the reuse and restructuring of knowledge [13];
understanding the problem domain [7]; analyzing language
expressivity [8]; representation of the domain that is more
faithful to the real world [9], and improvement of
communications among specialists in different domains [14].

According to the objectives of the application of ontologies,
the approach can be conceptual or computational. On this
subject, Guizzardi [15] suggests a need for two classes of
representation language in ontology engineering. The first class,
referred to in this work as “conceptual” has to do with languages
that are philosophically well founded, focusing on expressivity
and conceptual clarity. The second class, referred to in the
present study as “computational”, are languages that focus on
computing matters such as decidability and automated
reasoning. The class of language used in this work is conceptual.

2.2 OntoUML

The OntoUML language proposed by Guizzardi [10] was
motivated by the need for an ontology-based language that
would provide the necessary semantics to construct conceptual
models with concepts that were faithful to reality. The classes
proposed in OntoUML are specializations of the abstract classes
of the Unified Foundational Ontology (UFO) and extend the
original metamodel of UML.

Although OntoUML represents several types of categories,
due to space limitations, in this paper only the main constructs
that make up the object type category will be presented [11]. In
this category, constructs are more closely related to the static
conceptual modeling of a domain. The hierarchical structure of
these models is described in Fig.1.

The Object Type constructs can be Sortal and Non-Sortal.
The sortal provides identity and individualization principles to
their instances, while the non-sortal does not supply any clear
identification principles.

The Sortal constructs are classified as Rigid Sortal and Anti-
Rigid Sortal. A Sortal is said to be rigid if it is necessarily
applied to all its instances in all possible worlds. A Sortal is said
to be anti-rigid if it is not necessarily applied to all its instances.
To demonstrate this difference, the “Person” concept can be
used as a Rigid Sortal and the “Student” concept as an Anti-
Rigid sortal.

The Rigid Sortal includes the Kind and Subkind categories.
A Kind is a Rigid Sortal, and therefore has intrinsic material
properties that provide clear identity and individualization
principles. It determines existentially independent classes of

things or beings and are said to be functional complexes. These
can be natural (dog, person) or artifacts (television, house). A
Subkind is also a rigid type that provides the identity principle
and has some restrictions established and related to the Kind
construct. Every object in a conceptual model must be an
instance of only one Kind; Subkinds of one Kind must appear in
the form of a disjoint partition, e.g., the “Person” concept is a
Kind and the concepts of “Man” and “Woman” are Subkind.

There are two sub-categories of Anti-Rigid Sortal: Phases
and Roles. In both cases, the instances can change their types
without affecting their identity. Whereas during the Phase
construct the changes can take place as a result of changes of
intrinsic properties, e.g., “Child”, “Adolescent”, “Adult,” which
are concepts phases related to the “Person”. The alteration of
intrinsic property age of a person causes a change in phase. In
Role construct, the changes take place because of relational
properties, e.g., “Student”, “Husband” and “Wife” which are
concept roles related to “Person”. In the case of student, the
relationship with a learning institution determines the role. The
same applies to Husband and Wife.

Figure 1 Fragment of metamodel (Guizzardi, 2005)

In comparison with UML, OntoUML has a larger set of
constructs, enabling greater expressivity of conceptual models
and avoiding overload and redundancy [10]. Nevertheless, it is
more complex to use it than using traditional languages such as
UML, especially for novice modelers [11]. One of the
difficulties of constructing a model represented in OntoUML is
identifying the correct construct for a given concept to be
represented. In this sense, it is important to develop automatic
or semi-automatic mechanisms that help the domain modeler to
identify this concept and its correct construct. A linguistic
approach with a semantic focus can be applied to aid
comprehension of the concepts to be modeled [16].

2.3 Semantic types and disambiguation

Dixon [17] proposes a semantic organization for words in
classes of meaning known as semantic types. In this proposal,
semantic types handle nouns, adjectives and verbs. Generally,
in conceptual modeling, nouns are the semantic types that
indicate important concepts in a conceptual modeling. That
being the case, due to space limitation, only some categories of
semantic types related to nouns will be given as example. For
the semantic noun, five main categories are proposed: Abstract
Reference, Activities, Concrete Reference, States and Speech
Acts. Each of these categories may have sub-categories.
Concrete Reference, has the following categories, for instance:

ObjectType

Sortal Type

Kind

Non-Sortal Type

Rigid Sortal Type Anti-Rigid Sortal Type

Type

subKind Phase Role

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

Int'l Conf. Software Eng. Research and Practice | SERP'14 | 145

 Animate: living animal beings, but not human beings;

 Human: living human animals;

 Parts: nouns whose referents are components parts of an
individual; and

 Inanimate: nouns referring to inactive, non-living
things.

The semantic types can be mapped to the constructs of
OntoUML [16] and thereby enable semi-automatic support for
their identification using Natural Language Processing (NLP).
However, one of the challenges of automatic identification of
the semantic type is the disambiguation of the term [16][18].

A word can have several meanings and the correct
identification of its meaning may depend on the context in
which it is used. The task of computationally identifying the
meaning of words based on their context is known as Word
Sense Disambiguation (WSD) [19]. There are techniques and
algorithms for disambiguation, such as TargetWord, which is
applied only in the case of a target word in a sentence, and the
AllWord, which is applied to all words in a sentence. An
example of a disambiguation technique is
Wordnet::SenseRelated [19]. Wordnet:SenseRelate is based on
Wordnet, which is a lexical base for the English language. This
tool performs the disambiguation of a term found in the base and
also identifies the corresponding semantic type.

3 Related work

One of the first works found in literature proposing the use
of ontologies for constructing conceptual models is presented by
[20]. In this work, a methodology was proposed for knowledge
acquisition based on the use of natural language and mental
models. The methodology is composed of an interview,
diagrams and a conceptual analysis. The conceptual analysis
was conducted through the construction of an ontology in which
what constitutes the discourse domain is defined. The ontology
was applied to limit the vocabulary that the computer would
have to understand.

In [21] proposed domain ontologies and task ontologies to
be used in a domain-oriented software development
environment. The domain and task ontologies were built in the
fields of cardiology, acoustic propagation and entomology (the
study of insects). The ontology was represented using Prolog. In
this proposal the role of the ontologies was to aid understanding
of the domain and its tasks, contributing with elicitation and
specification, such as what is written in use cases.

In [22] texts and use cases were processed to extract relevant
terms from the problem domain. An ontology was then created
that would later be used to identify the system object model. The
ontology was generated in XML and RDF. The objective of the
ontology was to provide metadata that would offer controlled
vocabulary from the domain and transform the textual
requirements into an object model.

In [23] a methodology was proposed for the development
process of multi-agent software. The methodology considers

aspects from the requirements analysis up to the implementation
of the system. In the requirements stage, the use of the Problem
Ontology Domain (POD) was proposed to obtain a general view
of the problem domain. The ontology helps to identify concepts
during the requirements phase through class diagrams. The role
of the ontology was to provide an associated vocabulary to the
problem domain and reuse knowledge.

The creation of a domain ontology derived automatically
from texts described in Controlled Natural Languages (CNL)
was proposed in [24]. The domain ontology model was later
transformed into a UML class model. The ontology was
generated using the Protégé tool and represented in OWL. The
objective of the ontology was to support the creation and
validation of artifacts generated from descriptions in CNL up to
the class diagram. A linguistic approach with a semantic focus
on comprehending the concepts to be modeled adopting
OntoUML was proposed in [16]. As an extension of this
proposal, a semi-automatic method was proposed for the
learning of well-founded ontologies through disambiguation of
terms [18].

Out of the works that were analyzed, those most closely
related to this proposal are [24], [16] and [18]. In proposal [24]
the modeling language is UML, which limits the building of
ontology-based conceptual models. In proposals [16] and [18],
OntoUML is used for conceptual modeling, but the method that
is proposed has no environment that provides computational
support from the building of the conceptual model to the
derivation of requirements.

4 Proposed environment

As shown in the previous section, works can be found in
literature that have already proposed and applied ontologies to
support activities related to Requirements Elicitation using
conceptual modeling as a base. However, no proposals were
found for the derivation of requirements from ontology-based
conceptual models. Neither was any proposal found for an
environment that provides computational support to all tasks
involved in the elicitation process up to the derivation of
requirements using the ontology-based conceptual model.
Therefore, this study is motivated by the proposition of this
environment.

The proposed environment should support the identification
of important terms pertaining to a domain, the disambiguation
of relevant terms, the building of the conceptual domain model
and the derivation of requirements in this domain. Identification
of important terms can be done through electronic messages or
the processing of documents exchanged by project stakeholders.

NLP tools could be used to identify the relevant terms and
identify the semantic types. The initial lexical base could be the
WordNet. To build the ontological conceptual model the
language could be OntoUML as it is ontology-base

d. The use of OntoUML helps on understanding of the
discourse universe, i.e., the domain, without concern over the
software to be developed.

The ontology-based conceptual model support the
understanding of the domain as it is organized. Fig. 2 shows the

architecture and flow of tasks to be semi-automated by the
proposed environment.

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

146 Int'l Conf. Software Eng. Research and Practice | SERP'14 |

Part of the flow is based on the model proposed by [18]. The
text to be processed could be originated from dialogues among
stakeholders or documents (laws, internal documents, e-mails,
etc.) that describe the domain in question. Using this text, the
following tasks will be executed by the environment: i) Identify
important terms: when a text is received in order to be used by
NLP, the relevant texts will be extracted automatically; ii) Build
XML tagged file: with the important terms identified and the
original text, an automatic routine will be executed to create an
XML file with the tagged terms; iii) Disambiguation and
supersense extraction: with the XML file generated, algorithms
will be executed for the disambiguation of the tagged terms
using WordNet as a lexical database; iv) Semantic type and
OntoUML mapping: with the terms disambiguated the
constructs will be identified automatically using mapping of the
semantic types and the OntoUML constructs; v) Build model
semi-automatically: with the main constructs identified,
routines will be developed to support the semi-automatic
building of the model. The process will not be totally automated
because the algorithms available cannot identify the correct
semantic type in every situation. The identification of the
relationships should also be a task that is performed semi-
automatically. Here the guide based on Design Patterns
proposed in [11] could be used; and vi) Derive list requirements:
from the conceptual model a list of the possible requirements
deduced from the relationships established among the concepts
will be generated automatically.

5 Experiment

To demonstrate and discuss the viability of the proposed
environment, an experiment was conducted. The method used
for its execution and the results obtained are presented below,
followed by a discussion of the findings.

5.1 Method

The experiment was conducted based on the stages of the
method proposed in [18]:

i) Identifying important terms: in this stage, a text was
selected to describe a knowledge domain and from this the
conceptual model could be built. The text was extracted from
[25] in which the domain of a bus route is described. In this
work, there is also an entity relationship (ER) model that
corresponds with the text. In this way, the elements proposed in
the ER model were used to compare some results. The text used
in the experiment is shown in Table I;

ii) Determining the meaning of important terms: to select the
important terms, the topia.termextract version 1.1.0, developed
by Python (https://pypi.python.org/pypi/topia.termextract/) was
used. This tool was chosen because it is easy to use, it gives
satisfactory results and its use is free;

iii) Identifying the semantic types of each term: following
the identification of the relevant terms, an XML file was
prepared with the original text tagged with the important terms

Figure 2 Architecture of the proposed environment

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

Int'l Conf. Software Eng. Research and Practice | SERP'14 | 147

https://pypi.python.org/pypi/topia.termextract/

that had been identified. To process the file, the algorithm for
disambiguation TargetWord [26] was used with the help of
Wordnet::SenseRelate. After the test with the metrics (lch, hso,
wup, res, lin, jcn and lesk), the lesk was the metric that was used
to execute it as it had the most satisfying results. A previous test
was made using the example illustrated in [18]; and

iv) Choosing the OntoUML for each semantic type: after the
semantic type of each term had been identified, the Supersense
indicated by the WordNet base was obtained, using the mapping
proposed in [16].

In the original method [18] another stage is proposed:
Building the OntoUML model”. This stage was not executed as
no available mechanisms were located to enable the automatic
building from the constructs that were identified.

TABLE 1. SELECTED TEXT

Text

There are two ways for people to travel with Voyager. Either passengers
can make a reservation on a trip, or passengers can show up at the boarding

gate without a reservation and purchase a ticket for an unreserved seat.

Passengers with a reservation are assigned a reservation date, whereas,
passengers without reservations are assigned a boarding date. The name and

addresses of all passengers are collected. Telephone numbers are collected

where possible. All bus trips are organized into daily route segments. All
daily route segments have both a start time and an end time. Each daily

route segment. Voyager organizes is classified as a route segment with a

segment number, start town, and finish town. Voyager offers a range of
trips, and each trip is made up of one or more route segments. For every trip

there is a trip number, start town, and finish town. If the trip is organized

around a special event, the event name is also associated with the trip. Each
daily route segment that Voyager offers is part of a dally trip. A daily trip

is undertaken by one or more bus drivers. The name, address, and employee

number of all drivers is collected. Voyager also records information about

absent drivers. When a driver is absent. Voyager records the absence start

date and the details about the absence. The absent driver provides one or

more reasons for being absent and each reason is assigned a detail number
and a short description. Voyager also collects information about the buses

used for daily trips. Buses have a make, model, and registration number.
For buses in use, the average daily kilometers is collected. If a bus requires

maintenance, Voyager notes the date on which the bus entered maintenance

and records the one or more problems with the bus. Voyager assigns a
problem number and a short description for every maintenance problem.

Finally, the average cost to repair all problems with a bus in maintenance is

also recorded.

5.2 Results and discussion

i) Important terms: the algorithm was executed using
topia.termextract and returned 33 important terms, as shown in
Table II.

TABLE II. IMPORTANT TERMS

Terms

bus; bus drivers; bus trips; date; detail number; driver; employee number;
end time; event name; maintenance; maintenance problem; name; number;

passenger; problem; problem number; record; records information;

registration number; reservation; reservation date; route; route segment;
segment; segment number; telephone numbers; town; trip; trip number;

unreserved seat; voyager records; Voyager; Voyager notes.

To check the accuracy of the results, the elements proposed

in the ER model [25] and the terms obtained automatically were

mapped. Table III shows the elements in the ER model and the

relationship with the automatically identified important terms.

TABLE III. MAPPING BETWEEN ELEMENTS OF THE ER MODEL AND THE

RELEVANT TERMS

Concept

(ER model)

Element

type

Relevant term

mapped

Passengers Entity Passenger

Name Attribute Name

Address Attribute -

Telephone Attribute Telephone number; number

Reservation Date Attribute Reservation date; date

Boarding Date Attribute Date

Daily Route Segment Entity Route segment; route

Start Time Attribute -

Finish Time Attribute End time

Aver. No. Of Passengers Attribute -

Aver. No. Of Reservations Attribute -

Daily Trips Entity Bus trips

Finish Time (duplicate) Attribute End time

Start Time (duplicate) Attribute -

Route Segment Entity Route segment; route;

segment Segment# Attribute Segment number; number

Start Town Attribute Town

Finish Town Attribute Town

Bus Entity Bus

Aver. Daily Kilometers Attribute -

Reg. Attribute Registration number

Make Attribute -

Model Attribute -

Date Entered Maintenance Attribute Date

Trip Entity Trip

Trip# Attribute Trip number

Start Town (duplicate) Attribute Town

Finish Town (duplicate) Attribute Town

Special Event Attribute Event Name

Driver Entity Driver; bus Driver

Employee# Attribute Employee number; number

Name (duplicate) Attribute Name

Address (duplicate) Attribute -

Absence Start Date Attribute -

Maintenance Problems Entity Maintenance Problems;

maintenance; problem Problem# Attribute Problem number; number

Description# Attribute -

Average Cost to Repair# Attribute -

Absence Details Entity -

Details# Attribute Detail number

Description# (duplicate) Attribute -

Only the elements of the entity and attribute type are shown.

The mapping was done just to compare if the automatic

extraction process was accurate. Of the 34 different concepts

presented in the ER model (9 entities and 25 distinct attributes),

only 11 distinct concepts (32.5%) had no mapping with an

important term. While 23 distinct concepts had mapping

(67.5%). It is important to emphasize that some terms found in

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

148 Int'l Conf. Software Eng. Research and Practice | SERP'14 |

the ER model were not found in the text (Aver.No.Of

Reservations and Aver.No.Of Reservations).

On the other hand, of the 33 automatically identified

important terms, only 7 (21.2%) terms (record, records

information, unreserved seat, voyager records, Voyager and

Voyager notes) had been mapped with the concepts presented

in the ER model. Of these 7 terms, 3 were related to the name

of the tourist company (Voyager), which is conceptually not

relevant. While 26 (78.8%) terms had been mapped. These

results proved to be satisfactory, enabling the experiment to

proceed to the next stages.
ii) Important terms: sense, semantic type and the OntoUML

construct. Of the 33 important terms, the terms that involved the
name of the tourist company (voyager records, Voyager,
Voyager notes) were excluded because they were not interesting
terms for disambiguation. The simple terms with composite
correspondents and which were not used in the text separately
(route, segment, number) were also excluded. In the end,
disambiguation was performed on 27 terms. Fig. 3 shows a

sample of the XML file with the important terms tagged in the
text.

Figure 3 XML file with tagged text

The meanings identified by the TargetWord algorithm are
shown in Table IV.

TABLE IV. IMPORTANT TERMS AND MAPPING WITH ONTOUML

Important Term WordNet Sense Supersense Semantic

Type

OntoUML

 Construct Bus #1: a vehicle carrying many passengers; used for public transport artifact artifact kind
Bus drivers #1: someone who drives a bus person rank role

Bus trips - - - -

Date #6: a particular day specified as the time something happens time time datatype

Detail

Number

- - - -

Driver #1: the operator of a motor vehicle person rank role

Employee
Number

- - - -

End time - - - -

Event name - - - -

Maintenance #1: activity involved in maintaining something in good working order act activity kind

Maintenance Problem - - - -

Name #1: a language unit by which a person or thing is known communication activity kind

Passenger #1: a traveler riding in a vehicle (a boat or bus or car or plane or train,
etc.) who is not operating it

person rank role

Problem #3: a source of difficulty cognition manual

Problem Number - - - -
Record #7: a document that can serve as legal evidence of a transaction possession activity kind

Records Information - - - -

Registration Number #1: the number on the license plate that identifies the car that bears it communication activity kind

Reservation #2: a statement that limits or restricts some claim communication activity kind

Reservation Date - - - -

Route Segment - - - -

Segment Number - - - -

Telephone Number - - - -

Town #1: an urban area with a fixed boundary that is smaller than a city location place datatype

Trip #1: a journey for some purpose act activity kind

Trip number - - - -

Unreserved

Seat

- - - -

The disambiguation of terms related to entities, was more

accurate than the disambiguation of terms related to attributes.

Of 8 important terms related to entities, 5 (62.5%) (bus, bus

drivers/driver, maintenance, passenger and trip) were

disambiguated and the mapping was done between the

important terms and the OntoUML constructs. On the other

hand, of 19 important terms related to attributes, only 7 (36.8%)

terms were disambiguated. It also was observed that sense

identification for composite terms are less efficient.

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

Int'l Conf. Software Eng. Research and Practice | SERP'14 | 149

From this viewpoint, it can be concluded that the method

and tools are more efficient for identifying simple terms and

terms related to entities. For complete identification of all the

concepts, human intervention is required. It is also important

to observe that the WordNet is a database of generic terms. In

specific domains, disambiguation performance may not be

possible due to the lack of record of all senses related to the

terms to be disambiguated. Thus, there is a need to develop

mechanisms in order to support the establishment of a semantic

database for specific domains, which terms will not be found

in the WordNet database. In addition to aiding

the disambiguation of the terms in specific domains, additional

information can be recorded in order to support the

development of the ontology-based conceptual model.

6 Final considerations

Up to now, software requirements elicitation remains based

on informal communications. For this reason, this stage is

characterized by problems such as deficient communication,

lack of consensus concerning the use of terms and lack of

knowledge of the domain. To resolve part of these problems,

studies are proposing the use of ontologies, a formalism with

the purpose of facilitating communications by way of a

common vocabulary and sharing knowledge of a knowledge

domain.

However, in these proposals there is no environment to

support requirement elicitation based on ontological conceptual

models. The use of an ontological conceptual model would

enable a closer view of the domain to be represented. However,

the building of an ontological conceptual model is not an easy

task, especially for novice modelers. OntoUML is a language

for building ontology-based conceptual model, but it is

considered more complex than other languages such as UML.

Therefore, it is necessary to create mechanisms to aid people

in the building of this model. The use of NLP techniques is

proposed to identify these constructs in the communications

among those involved and thus support the semi-automatic

construction of this model. It is assumed that from the

conceptual model it is possible to automatically generate a list

of requirements, since the ontology-based model reflects a

domain more faithfully. The future works related to this

proposal are: i) Improving the environment proposed

integrating techniques to support the process; ii) testing with

NLP algorithms for comparing results; iii) to propose a method

in order to update a semantic database in a specific domain; iv)

development of semi-automated support for building the

conceptual model; v) and to propose a method for the derivation

of requirements from the conceptual model;

REFERENCES

[1] R.H., Thayer, and M. Dorfman, “Software Requirements Engineering”,
2d Ed. IEEE Computer Society Press, 1997.

[2] W., Robinson, and S. Pawlowski, “Managing requirements inconsistency
with development goal monitors”, IEEE Transactions on Software
Engineering, 25, 1999.

[3] K. Pohl, “Requirements engineering: An overview”, In Encyclopedia of
Computer Science and Technology. A. Kent, and J. Williams, Eds.Marcel
Dekker, New York, NY, vol. 36, suppl. 21, 1997.

[4] J. Luis, D. Vara, and J. Sánchez, “Improving Requirements Analysis
through Business Process Modelling : a Participative Approach”, 1, pp
165–176, 2008.

[5] S.W. Lee, and R. Gandhi, “Ontology-based active requirements
engineering framework”, in Engineering Conference, APSEC, 2005.

[6] G.N. Aranda, A. Vizcaíno, A. Cechich, and M. Piattini, “A Methodology
for Reducing Geographical Dispersion Problems during Global
Requirements Elicitation”, in WER, pp 117–127, 2008.

[7] L. Li, “Ontological modeling for software application development”,
Advances in Engineering Software, 36, pp 147–157, 2005.

[8] M. Harzallah, G. Berio, and A.L. Opdahl, “New perspectives in
ontological analysis: Guidelines and rules for incorporating modelling
languages into UEML”, Information Systems, 37, pp 484–507, 2012.

[9] H. Zhang, R. Kishore, R. Sharman, and R. Ramesh, “Agile Integration
Modeling Language (AIML): A conceptual modeling grammar for agile
integrative business information systems”, Decision Support Systems,
44, pp 266-284, 2007.

[10] G. Guizzardi, “Ontological Foundations for Structural Conceptual
Models”, Telematica Instituut Fundamental Research Series 15,
Universal Press, 2005.

[11] G. Guizzardi, A. Graças, and R.S.S. Guizzardi, “Design Patterns and
Inductive Modeling Rules to Support the Construction of Ontologically
Well-Founded Conceptual Models in OntoUML”, 3rd Workshop on
Ontology Driven Inf. Systems (ODISE 2011), London.

[12] T.R. Gruber, “Toward Principles for the Design of Ontologies Used for
Knowledge Sharing”, International Journal of Human and Computer
Studies, 43(5-6), pp 907-928, 1995.

[13] R. Girardi, and A. Leite, “ A knowledge-based tool for multi-agent
domain engineering”, Knowledge-Based Systems, 21, pp 604–611, 2008.

[14] H. Kilov, and I. Sack, “Mechanisms for communication between business
and IT experts” Computer Standards & Interfaces, 31, pp 98–109, 2009.

[15] G. Guizzardi, “On ontology, ontologies, conceptualizations, modeling
languages, and (meta) models”, Frontiers in artificial intelligence and
applications, pp 18–28, 2007.

[16] L. Castro, “Abordagem Linguística para Modelagem Conceitual de
Dados com Foco Semântico”, Msc Dissertation, Universidade Federal do
Estado do Rio de Janeiro, Rio de Janeiro, Brazil, 2010.

[17] R.M. Dixon, “A Semantic Approach to English Grammar”, 2nd ed.
Oxford University Press, USA, 2005.

[18] F. Leão, K. Revoredo, and F. Baião, “Learning Well-Founded Ontologies
through Word Sense Disambiguation”, in proceeding of: 2nd Brazilian
Conference on Intelligent Systems (BRACIS-13), 2013.

[19] T. Pedersen, and V. Kolhatkar, “WordNet:: SenseRelate:: AllWords: a
broad coverage word sense tagger that maximizes semantic relatedness”,
Human Language Technologies, 2009.

[20] S. Regoczei, and E.P.O Plantinga, “Creating the domain of discourse:
ontology and inventory”, International Journal of Man-Machine Studies,
27, pp 235–250, 1987.

[21] K.M. Oliveira, F. Zlot, A.R. Rocha, G.H. Travassos, C. Galotta, and C.S.
Menezes, “Domain-oriented software development environment”,
Journal of Systems and Software, 72, pp 145–161, 2004.

[22] W. Vongdoiwang, and D.N Batanov, “An ontology-based procedure for
generating object model from text description”, Knowledge and
Information Systems, 10(1), pp 93–108, 2006.

[23] M. Cossentino, N. Gaud, V. Hilaire, S. Galland, and A. Koukam,
“ASPECS: an agent-oriented software process for engineering complex
systems’, Autonomous Agents and Multi-Agent Systems, 20(2), pp 260–
304, 2009.

[24] P.F. Pires, F.C. Delicato, R. Cóbe, T. Batista, J.G. Davis, and J.H Song,
“Integrating ontologies, model driven, and CNL in a multi-viewed
approach for requirements engineering”, Requirements Engineering,
16(2), 2011.

[25] A. Gemino, and Y. Wand, “Complexity and clarity in conceptual
modeling: Comparison of mandatory and optional properties”, Data &
Knowledge Engineering, 55(3), pp 301–326, 2005.

[26] TargetWord, accessed: http://search.cpan.org/~sid/WordNet-
SenseRelate-TargetWord-0.09/lib/WordNet/SenseRelate/Target
Word.pm, date: 2014 January 3

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

150 Int'l Conf. Software Eng. Research and Practice | SERP'14 |

Empirical investigation of Systems Cost Estimation

Models in the Limpopo province of South Africa:

A requirements modelling problem

Benson Moyo
1
, Magda Huisman

2

1
Computer Science and Information Systems Department, University of Venda,

Thohoyandou, Limpopo, South Africa;
2
School of Computer, Statistical and Mathematical Sciences, North-West University,

Potchefstroom Campus, South Africa

Abstract - There are many factors believed to be important to

systems development cost estimation. However an in-depth

analysis demonstrates requirements as central cost drivers. The

various transformations requirements go through from

candidate requirements to released response is the most

intricate part of systems development cost estimation.

Requirements exist independent of systems development

methodologies. Requirements may be viewed from bespoke or

market driven perspectives. The former assumes a traditional

economic agent theory view where a client organisation

requests for a service from the systems development

organisation. The later, market-driven requirements elicitation

entails predicting requirements by the systems development

organisation based on market research output. Irrespective of

the perspective the systems development cost estimation is

imperative. The study investigates adoption and usage of cost

estimation models by the systems development companies in

the Limpopo province of South Africa. The paper introduces

a requirements transition state diagram and pinpoints

informal cost estimation models as predominant. In this

article we also present the results of our survey findings and

the discussion of those results as well as the recommendations

for further work

Keywords: System development, requirements, cost estimation

1 Introduction

 Requirements exist independent of systems

development methodologies. Requirements form the basis for

the contract among the developer, the client and the user in a

traditional economic agent theory based development. In

market-driven systems development, requirements are

predicted by the development organisation from market

research output. This gives two ramifications of requirements;

one based on a particular organisation where client and users

are accessible and the other where clients and the users are the

universe market or a market segment hard or expensive to

access if not impossible. The nature of requirements

influences the selection of systems development

methodologies. The purpose of systems development

methodologies is to guide the development team successfully

translate prioritised set of requirements into systems solution.

They facilitate the development of technological frames to

align expectations of technology and minimise incongruence,

in systems development and reduce uncertainty in

requirements determination [18]. Systems development

methodologies are prospected to define work breakdown

structure [19], provide support for improved product quality,

productivity, human resource control and cost control [18].

Within the systems development methodology adopted by an

organisation, forecasting and controlling systems development

costs is crucial. Cost estimation is a systems development

methodology activity that allows management to justify the

relevance of a systems project in terms of reputation, social

responsibility and more importantly financial value.

 Research in systems development is not short of

findings on software crisis that emerged from the 1960s. The

crisis is claimed to stem from deficiencies in requirement

determination emanating from inconsistencies, omissions,

errors and ambiguities associated with requirements

management. Systems development is basically governed by

the requirements of the target system. The aforesaid

requirement deficiencies are viewed as the key cause of

systems development project failure. Failure means that the

systems neither performs to specifications, nor meets

budgetary constraints, nor is delivered within specified

schedule, nor satisfies user needs and expectations. Cost

estimation is primarily based on requirements. Inaccurate

requirements identification, analysis, prioritisation,

abstraction, triage, tracking and specification constitute the

main causes for failure. In order to derive cost and schedule

estimates requirements are the main input into the estimation

process.

 Cost estimate entails effort and schedule cost required

to complete the system that meet client expectations, and

satisfy developer starting from consultation to deployment.

The client might be the universal market or market segment or

a particular organisation (economic agent theory [30]).

Requirements elicitation, analysis and management are

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

Int'l Conf. Software Eng. Research and Practice | SERP'14 | 151

complex processes that inject complexity to software cost

estimation.

 Costing is governed by requirement based on both

internal and external factors. For example from internal factors

client and user requirements, systems quality, and contractual

obligations whereas on the external factors we have the legal,

statutory and regulatory requirements. The dilemma is on

deciding which factors to include and which transformation to

apply in order to map the factors into a single financial value.

The growth in size, importance and complexity of software

has exacerbated cost estimation [1]. No one cost model can

address all the cost estimation situations of systems

development. Literature reviewed reveals that there is still a

gap between the use of systems cost estimation models and the

actual systems costing practices in organisations. Logically

systems cost estimation models should permit systems project

managers reliably approximate systems cost. However,

systems projects are complex in nature and it is challenging to

accurately estimate their costs. From a causal wisdom

perspective, a miniature perturbation in the development

process for instance, may cause a huge change in systems

costs. A small perturbation on the systems development

methodology may also result in the deterioration of

communication which in turn might lead to conceptual

incongruence within the development team. Systems

development conceptual incongruence degenerate into

assignment scope challenges, quality issues and schedule

slippages which in most cases, trigger considerable costs.

Project managers have their fears on two extremes on systems

project cost estimation: over costing or under costing. Over

costing may damage the company‟s reputation and lead to

failure to win systems development contracts (or fail to

penetrate the market in case of a market driven systems

development). On the other hand under estimating the cost

may lead to loss of money and decrease in organisational

profitability.

 Cost estimation is a multidimensional construct that

require identification and definition of numerous attributes.

These attributes are attached to a weight which is then

converted into cost drivers which in turn are transformed into

financial values. In systems cost estimation there is no uniform

set of attributes or parameters for every project. Each project

is unique and may require contextual consideration to define

the parameters. Developing a mobile phone game application

does not exert the same demands as an online banking

application, nor a nuclear reactor safety monitoring systems.

Failure of each of the three mentioned systems has different

consequences. For instance mobile phone game system failure

may lead to disappointment; the banking system malfunction

may culminate in financial loss, whereas the nuclear safety

monitoring system failure may be catastrophic. Requirements

important in one system application may not be so important

in another system application. Even if the same requirements

are found in different systems, their weight intensities may

differ. The different importance levels, rejection and

prioritisation from one systems project to another makes it

difficult to develop generic cost estimation models. Each cost

estimation model is based on researcher‟s assumptions on a

particular problem domain. Research has proposed a number

of parameters but the underlying factors are requirements.

 There is no simple way to make an accurate estimate of

the effort required to develop systems [1]. Estimates are

generated from requirements definitions or market research.

The estimates define the effort, duration and staffing and other

resources Alterations can be done to attain a trade-off between

effort and duration. At the same time the systems product

should respond to the requirements otherwise it might neither

penetrate the market nor pass acceptance test even if the

release date is met. Focusing on release date may have an

implicit maintenance burden as some of the features may not

be developed properly.

 There are many requirements that need to be met by

systems cost estimation models, in order to be adopted by an

organisation as satisfactory in capturing the systems project

costs measures. Systems cost estimation model maps various

systems metrics and measurement into a single financial value.

As the systems development process evolves so cost

estimation should improve. There are many systems cost

estimation models in existence, and companies in Limpopo are

presented with the challenge to find the appropriate costing

models, practices, techniques and tools. Systems cost

estimation include specialised planning such as: quality plan

which measures quality procedures and levels that will be used

in a systems development, verification and validation plan

which caters for the relevance degree of solution

approximation by the system developed, configuration

management plan which focuses on the alignment of

management procedures and structures to be used,

maintenance plan which predicts the maintenance burden,

defect density which forecast the cost of defect discovery and

removal, reviews and inspections, and change management

plan that shows how the skills, experience, fears, and

perceptions of project team members and users will be

considered.

 Systems cost estimation models strive to approximate

the solution of systems cost estimation problem. Systems cost

estimation is prediction of the cost of the resources that will be

required to complete all of the work of a systems project [1]. It

is important for project managers to use the appropriate model

that will enable a successful completion of a systems project.

In this work we investigate the actual adoption of the systems

cost models in practice.

 Khativi and Jawawi[8] state that the main reason for

project failure is imprecision in cost estimation. However this

is a high level of abstraction as one might ask for the causes of

this imprecision. Systems project managers strive to acquire as

much information on existing cost estimation models as

possible. There is no exhaustive repository of projects that can

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

152 Int'l Conf. Software Eng. Research and Practice | SERP'14 |

enable success and failure comparisons of cost estimation

models, despite claims by cost estimation model authors that

such repositories exist. The failure and success histories of

cost models have limited scope as each project responds to

specific requirements. Specific situational characteristics make

it so difficult to design a „one size fits all‟ costing model [13],

though model developers believe the use of templates and

frameworks can solve the problem.

 Cost estimation is critical for organisations both that

specialise on systems and those that outsource systems

development. The purpose of this research is to investigate

existing cost estimation models and their adoption in the

systems development industry in Limpopo province of South

Africa.

 A survey on companies is carried out and the results

show low usage of different systems project costing models in

existence. Mostly formal systems project costing models are

used when dealing with government systems projects. This

may be that in order to win a tender from the government there

is need to have rigorous cost estimation algorithms. The paper

is organised into five sections. The first provides an overview

of cost estimation characteristics. The second outlines the

rationale behind cost estimation. The third describes briefly

our research approach, the forth section gives a discussion of

the findings and finally, the fifth section provides conclusions

and recommendations for further work.

2 Systems Cost estimation

 Systems cost estimation is embedded into systems

development. In this section we present justification, need and

examples of systems costing models.

2.1 The rationale behind cost estimation

 In order to make strategic decisions managers need

some information about the resources required for the project.

However this information is usually not available at the time it

is needed. Estimates provide an approximation on the effort,

schedule and other constraints needed. With estimates

decisions on whether to proceed with a project can be made.

Estimates serve at the intelligence and choice phases of the

decision making process. One of the purposes of performing a

cost estimate is to have a means by which the development

costs can be monitored and controlled. Monitoring and control

may be performed either at micro level or macro level. At

micro level progress on addressing requirements is checked

and at macro level progress is assessed by checking feature

developed.

 Costs estimates make the basis for the management and

the development company to approve a project proposal or

reject it. It is a crucial factor in determining when and how the

project should be carried out. The project planning,

controlling, resource allocation and roles in the project and

overall activities of the project are linked to the cost estimate.

A system is an investment and therefore it should demonstrate

financial, technical and social feasibility. Systems cost

estimates are critical to developers, clients and users [3]. In a

bespoke development environment they can be used for

generating request for proposals so that the client can have the

clue of the approximate amount required for the whole system

that is contract negotiations between the client and the

developer, scheduling between the programmers and the

project managers, monitoring and control. On a market-driven

systems development the developer makes assumptions on

client and user requirements based on market research and

work out the justification to commit resources.

 The reasons for performing a cost estimate dictate what

to estimate, how to estimate, when to carry out the estimation

and the degree of accuracy. In principle cost estimation is

iterative in nature in order to continuously update management

on the project status. Suri and Ranjan[7] assert that small

projects can be easily estimated and accuracy is not very

important. But as the size of project increases, requirements

become hard to elicit and analyse. The increases and

dynamism of requirements lead to complex dependences and

complicated relationships among them.

2.2 Requirements in cost estimation

 Requirements present challenges as they come from

different stakeholders that may even have conflicting

objectives. The huge volume of requirements inflow and the

need to select and reject some is a challenge. For example a

selected requirement can be dependent on a rejected

requirement. On another hand considering all requirements is

not feasible as some may be contradictory and conflicting.

Inconsistency, errors, ambiguity, incompleteness and different

levels of abstraction are some of the challenges. Despite all

these challenges cost estimates are based on requirements as

they form part of the contract and the main link between the

client and the developer.

 Systems cost estimation involves measurement. Like

any other measurement it depends on the perspective about the

phenomenon to measure in this case requirements. The

perspective is dependent on the operational definition of the

concept. However, requirements as aforementioned are

presented at different levels of abstraction making it difficult

to calibrate them. The operational definition compounds the

difficulties of uniform measurement of requirements as they

may fall on nominal scale or ordinal scale or interval scale, or

ratio scale. They may also be presented in varying degrees of

abstraction of course this is due to different stakeholder

linguistic capabilities. Requirements are a unifying concept.

They go through a series of stages and sometimes are rejected

due to change of environment. This has implications on cost

estimation. Estimators model requirements into higher level

features and functions and during this process of translation

some requirements may be rejected without visualising

dependencies. Unimportant requirements may be included. In

some cases a complete misinterpretation during translation

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

Int'l Conf. Software Eng. Research and Practice | SERP'14 | 153

from requirements to model systems artefacts may result.

Figure 1 shows a proposal of a highly simplified view of

requirement transition state diagram. During the initial phases

of a systems project, large number of candidate requirements

will be collected. These would be subjected to a selection and

rejection processes. In order to cost selected requirements

there should be cost elements and unit measures. The cost unit

measures constitute a complex set of factors that affect cost

estimation. The difficulty and the level of accuracy of systems

cost estimation are shaped by the different categories of

requirements which are considered as cost factors.

Requirements can be grouped under two broad classes; the

functional and non-functional. Requirements can determine

the following factors: systems quality, duration, team size,

number of consultants, number and characteristics of

stakeholders, legal statutes, regulatory statutes, mandatory

statutes, organisational policy, criticality and complexity of

the system, project risk factor, team expertise and experience,

development platform, systems development methodology,

techniques, and tools adopted, contingency plan and defect

density.

Figure 1: Requirements state transition diagram

 The estimator works out the duration of the project in

person-week or person-month based on the requirements

analysis. Systems cost is directly proportional to project

duration. The longer the duration between initial selected

requirements and release, the more likely that there will be

significant changes to the initial requirements resulting in

more inaccurate cost estimates. This may occur due to

continuous inflow of new requirements, modification of

already known requirements, remodelling of requirements,

change in user expectations, changes in the environment in

which the system is to be installed, or change of technology.

 Requirements also drive the size of the team and the

level of expertise needed for the systems project. Cost

increases with the size and composition of the team in other

words the cost is directly proportional to the team size,

expertise and experience. The more the team increases the

more complex team coordination and communication will be

among the members. Communication becomes less effective

with the increase of the team and the project manager has to

possess good management skills to keep the team productive.

It is mostly the project manager‟s task to know the effort each

team member and the capability of each member when

scheduling the work that is meant to address the systems

requirements. Therefore the increase in the team does not

mean that the work is going to be completed earlier or best

done.

 Each systems project has risks associated with it. These

risks may be associated with the integration of tools that offer

source code generation, debugging, tests, document

generation, diagraming, version controlling and other

programming related services into the development process.

Risks can also be due to lack of experience in the application

domain, omitted requirements, misinterpreted requirements,

mismanaged requirements, staff turnover and change of

environment. The level of requirement uncertainty is used to

establish the level of tolerance and estimate and allocate an

estimate contingency fund.

 Requirements leads to the selection of systems

development methodology and in reverse the methodology

addresses the requirements. The methods, techniques, tools,

programming languages, programming paradigm, team skills,

expertise, and experience are all unified by the methodology

and a cost factors. Estimation is not a task done only once, at

the project inception; it is a process where estimates and re-

estimates are undertaken throughout the lifecycle of a project.

The relevance of an estimator is not necessarily the accuracy

of the initial estimates, but rather the degree to which the

estimates converge towards the actual costs.

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

154 Int'l Conf. Software Eng. Research and Practice | SERP'14 |

2.3 Existing systems cost estimation models

 Organisations use different models to calculate cost

estimates. These cost estimation models can be classified

under two main categories: the formal mathematical models

and informal experience based models. The formal models

endeavour to quantify the cost factors and apply a set of

relations that describe the mapping between the cost factors

and the cost values. The mapping functions are formulated

through analysis of historical data, assumptions and may be

adjusted to each individual development context. On the other

hand informal models are used by highly skilled experienced

developers, expert or /and managers who have gained

sufficient knowledge from previous systems development

projects. The informal models rely on the history of past

projects. A repository of detailed metrics and descriptions of

characteristics recorded for each project. This repository may

be a computerised database or manual record or simple

organisational memory. The estimator can query the database

searching for projects with similar characteristics and then

benchmark the estimate on actual costs and process of the

previous projects. Informal models are hard to understand as

the experienced estimator may rely on tacit knowledge to

obtain the estimate.

2.3.1 Formal models

 A formal model may transform the systems

requirements into a measure of the “size” of the systems in the

form of Source Lines of Code (SLOC) as the basis for creating

the cost estimates. Source Line of Code is an estimation

parameter that illustrates the number of all commands, control

structures, variable declarations, assignments, compiler

directives, variable method definition and declarations

excluding comments, blanks, and continuation lines. The

advantage of SLOC is that estimating line of code seems

intuitive. The lines of code are a parameter commonly used in

formal model cost estimation models. It is also straightforward

to count the lines of code in finished product which make it

easy to compare the cost estimate and the actual cost. The

disadvantage surfaces from deciding what to include as a line

of code. The next challenge is when different programming

languages are used it becomes difficult to use the SLOC model

for cost estimation. Each language has its own number of lines

of code to accomplish the same task. Line of code is not

appropriate in a multiple programing language environment

characterised by the current trends in systems development.

 Instead of using the line of code, function points metrics

can be used. It is a measurement based on functionality of

systems[9]. It measures the amount of functionality in a

system by counting and weighting inputs, outputs, queries, and

logical flow, interfaces, files handling and device

manipulation. Grouping the functions gives another measure

referred to as the feature points. The feature points also

consider algorithms as parameter and encapsulate control

structures.

 A function point based cost estimate known as systems

functional size measurement is recognised by the International

Organization for Standardization (ISO) and (International

Electrotechnical Commission (IEC) as standard for measuring

systems size. For example International Function Point Users

Group (IFPUG) Function Point (FP) method [14] and the

Common Software Measurement International Consortium

(COSMIC) function point method [16]).

 One most commonly known, well publicised and taught

formal cost estimation models is Boehm‟s Constructive Cost

Model (COCOMO) [15]. COCOMO is widely practiced and

popular among the systems development community because

of its adaptability to different development environments. It

predicts the length and effort of a project by drawing an

association between the size of the systems and various cost

drivers. The factors are assigned weights based on modelled

requirements cost factors, project‟s domain, environment, and

constraints. The drawback on this model is that it requires too

many parameters and simply selecting different values for the

multipliers can vary the minimum and maximum estimates by

a very high margin. Without historical data, it is difficult for

an organization to determine the approximate values for these

multipliers. The whole model fails when an organization is

developing a system outside its immediate domain of

expertise.

2.3.2 Informal models

 An organisation may have a multi-stage estimation

process. The contractor may present initial estimates. The

estimate will be presented just to win the contract. The

strategy is „pricing to win‟. The estimate is made as low as

possible so as to win the contract. Often times the estimate is

done based on ambiguous and sometimes contradictory

requirement. Once a company has been awarded the contract,

it may then perform another more detailed estimate. The post

contract winning estimate is done looking at the real systems

problem to be solved. In most cases the posts-contract

estimate is higher than the pre-contract estimate. The

contractor may present this updated estimate to the client, and

if management reject it there are a number of ways in which

the contractor can go around the problem. They can develop a

system with less functionality and suggest enhancements. If all

fails then the contractor may accept the price to win estimate.

Costs do not accurately reflect the work required and the

rejection on acceptance test is common.

 Estimation based on expert judgment is done by

considering advice given by experts who have more

experience in similar projects[8]. The work breakdown

structure (WBS) organises activity patterns that vary from

project to project, by defining assignment scope. It identifies

activities needed to complete project development and the

effort, staffing, duration of each task and the skills required.

The size of activities defined within the WBS is dependent on

the level of detail of the estimate and size of the project. A

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

Int'l Conf. Software Eng. Research and Practice | SERP'14 | 155

cost estimate frequently includes a complete work breakdown

structure (WBS), which project team members use as a basis

for understanding their roles and avoid bumping into each

other‟s way. The sum of the direct individual activity costs

and other indirect cost such as travel costs gives the overall

project cost. The Delphi technique constitutes a team of

experts tasked to generate systems cost estimates of a project

given all available factors and constraints. Each expert

provides an estimate without consulting other team members.

The second iteration allows each expert to have access to the

estimation information provided by other experts during the

first iteration. The process continues until the expert estimates

converge to a point.

 The following table 1 shows a historical perspective of

the formal models and indicates the modelling level of

requirements abstraction that gives the cost unit measure.

Avoid using too many capital letters. All section headings

including the subsection headings should be flushed left.

Table 1: Trends in cost estimation

Year Authors Model Cost drivers

1970 Boehm[1] Rule of thumb no specific factors

1975 Alberecht and Gaffhey[20] Function Point Analysis external input, external output, external inquiries, external,

interfaces, internal files

1977 Park[1988] PRICE-S source lines of code, function points, predictive object points,

defect prediction

1979 Putnam[21] Putnam Model manpower distribution, environment indicator, duration

1979 Albrecht[24] Function Point interfaces, forms, reports, database tables

1980 Jensen[25] SEER-SEM source line of code, effort, schedule, defect predict, risk,

reliability

1981 Boehm[17] COCOMO source lines of code, effort

1983 Rubin[27] ESTIMACS function point, effort, staff count and deployment, risk, portfolio

impact, customer complexity

1983 Symons[22] Mark II function points inputs, outputs, queries, and logical flow, interfaces, files

handling, data processing

1986 ISO/IEC 20926[14] IFPUG function point

1992 Bergeron and St-Armaud[23] Mark II Function Point inputs, outputs, queries, and logical flow, interfaces, files

handling, data processing

1995 Boehm[15], Boehm et al[26] COCOMO-II object points, function points, lines of code, effort

1997 Jones[32] Checkpoint activity, task. estimates, deliverables ,defects, schedules

1998 Chatzoglou and Macaulay [28] MARCS time, effort, staff size

3 Methodology

 The approach is essentially qualitative research based

and uses instruments of interviews and questionnaire.

Intensive and extensive literature survey is conducted to

establish the status of systems cost estimation in industry. A

questionnaire is administered to the project managers and

freelancers in the Limpopo province of South Africa. It is

important to acknowledge that the sample was purposeful and

non-probabilistic. The guiding selection principle was to

increase the probability of the presence of the phenomenon of

study interest in the sample [13]. Participants were recruited

from the Limpopo province systems development companies.

4 Results and discussion

 Table 2 shows the usage trends of different costing

models found in systems development houses in Limpopo.

Experience based costing is more pronounced despite the

dissemination of models, tools and techniques from the

research community. For freelancers their cost estimates are

based on the feature points. Cost estimation is allocated an

average time of three weeks per project.

Table 2: Cost model usage

Table 3 shows the probability of approximating costs in

different development phases of the development process.

Estimates in the initial stages of the project are not reliable as

the level of requirement understanding is low. Sometimes

what may be established as feasible might not be as feasible as

earlier thought. Development process iterates over

requirements several times leading to the establishment of

factors governing requirement dynamics. Requirements are

regarded as the most difficult part of a project.

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

156 Int'l Conf. Software Eng. Research and Practice | SERP'14 |

Table 3 SDLC phase cost estimates accuracy

5 Conclusions

 We found that systems cost estimation is based on

and governed by the requirements of the target system.

Requirements determination is an integral part of systems

cost estimation and the basis for systems costing in Limpopo

province. However, before cost estimation requirements are

modelled into cost drivers in the form of function points,

feature points or object points. The main challenges emerge

during the requirement transformation into cost factors. In

order to minimise the impact of error in cost estimation the

estimators carry out the estimation process throughout the

life cycle of a project. However, with requirements poorly

identified, specified, and modelled failure probability is high

irrespective of the number of times cost estimation is done.

Timing of estimates, estimation constraints, systems

development methodology used, experience and expertise are

the basis for cost estimation in Limpopo, but all these are

dependent on requirements.

 Despite availability and publicising of formal cost

estimation models, informal models are most preferred by the

systems development industry in the province of Limpopo in

South Africa. As further work we would replicate the

research in the remaining eight provinces of South Africa and

endeavour to find out the reasons for not adopting the formal

cost models.

6 References

[1] I. Sommerville, in Software Engineering; Software Cost

Estimation, pp. 1–58, 2004.

[2] T. N. Sharma, A. Bhardwaj, and A. Sharma, “A Comparative study

of COCOMO II and Putnam models of Software Cost Estimation,”

vol. 2, no. 11, pp. 1–3, 2011.

[3] J. Kaur, S. Singh, and K. S. Kahlon, “Comparative Analysis of the

Software Effort Estimation Models,” pp. 485–487, 2008.

[4] M. M. Albakri and R. J. Qureshi, “Empirical Estimation of

COCOMO I and COCOMO II Using a Case Study.” pp. 265–270,

2012.

[5] I. Myrtveit, E. Stensrud, and M. Shepperd, “Reliability and validity

in comparative studies of software prediction models,” IEEE Trans.

Software Engineering, vol. 31, no. 5, pp. 380–391, 2005.

[6] B. Boehm and C. Abts, “Software Development Cost Estimation

Approaches”, 1998.

[7] P. K. Suri and P. Ranjan, “Comparative Analysis of Software Effort

Estimation Techniques,” vol. 48, no. 21, pp. 12–19, 2012.

[8] V. Khativi and D. N. A Jawawi, “Software Cost Estimation

Methods : A Review,” vol. 2, no. 1, pp. 21–29, 2010.

[9] S. L. Pfleeger, F. Wu, and R. Lewis, Software Cost Estimation and

Sizing Methods: Issues, and Guidelines (Google eBook). Rand

Corporation, pp. 97, 2005.

[10] H.M Haddad, N.R Ross, and W. Kaensaksiri,‟‟Software Reuse

Cost Factors‟‟ Int`l Conf. Software Engineering and

Practice,pp.284-290,2012

[11] B. Boehm, C. Abts, and S. Chulani, Software development cost

estimation approaches - A survey. Annals of Software Engineering,

Vol 10, No1-4. Springer, Netherlands, 2000.

[12] C.F. Kemerer, An empirical validation of software cost estimation

models. Communication of the ACM, Vol 30, No 5, 416-429,

1987.

[13] K. Eisenhardt, Building theory from case study research, Academy

of management review, Vol 14, No 4, pp 532-550, 1989.

[14] ISO/IEC 20926 Software and systems engineering -Software

measurement - IFPUG functional size measurement method 2009,

2nd , ISO, Geneva, 2009

[15] B. Boehm, Software Cost Estimation with COCOMO II, Prentice

Hall PTR, Upper Saddle River, NJ, 2000.

[16] ISO/IEC 19761 Software engineering – COSMIC: a functional size

measurement method, 2nd edition, ISO, Geneva, 2011.

[17] B. Boehm, Software Engineering Economics, Englewood Cliffs

N.J., Prentice-Hall Inc. 1981.

[18] M. Huisman and J. Iivari, Deployment of systems development

methodologies: Perceptual congruence between IS managers and

systems developers, Information & Management , Vol. 43, No. 1,

pp. 29-49, 2006.

[19] N.Jayaratna, Understanding and evaluating methodologies: A

systemic framework. McGraw Hill, UK, 1994.

[20] A.J Alberecht and J. E Gaffhey, Software function, source lines of

code and development effort prediction: A software science

validation, IEEE transactions on Software Engineering.

[21] L. H Putnam, A general Empirical Solution to the macro software

sizing and estimating problem, IEEE transaction on Software

Engineering, Vol 4, No 4, pp345-361, 1981.

[22] C. Symons, Software sizing and estimation Mark II function

points, Wiley, 1991.

[23] F. Bergeron and J. Y. St-Armaud, Estimation of information

systems development effort: a pilot study, Information and

Management, Vol 22, No 4, pp 239-254, 1992.

[24] A. J. Albrecht, “Measuring Application Development

Productivity”, Joint SHARE,

GUIDE, and IBM Application Development Symposium, pp. 83-

92, Monterey, 1979.

[25] R. Jensen, “An Improved Macrolevel Software Development

Resource Estimation Model”, Proceedings of 5th ISPA

Conference, pp. 88-92, April 1983.

[26] B. Boehm, B. Clark. E. Horowitz, C. Westland, R. Madachy, and

R. Selby, “Cost Models for Future Software Life Cycle Processes:

COCOMO 2.0”, Annals of Software Engineering, Software

Process and Product Measurement, Science Publishers,

Amsterdam, The Netherlands, Vol. 1, pp.57-94, 1995.

[27] H. Rubin, “ESTIMACS”, IEEE, 1983.

[28] P. D. Chatzoglou and L. A Macaulay, A rule based approach to

the developing software prediction, Automated Software

Engineering, Vol 5 No 2, pp211-243.

[29] M. Shin and A. L. Goel, “Emprirical data modeling in software

engineering using radial basis functions”, IEEE Transactions on

Software Engineering, pp. 567-576, 2000.

[30] C. Toffolon, S. Dakhli, “A Framework for Software Engineering

Inconsistencies Analysis and Reduction”, In Proceedings 22nd

Annual International Computer Software & Applications

Conference (COMPSAC 98), IEEE Computer Society Press, pp.

270- 277.

[31] R. Park., “The Central Equations of the PRICE Software Cost

Model,” Park R., 4th

COCOMO Users‟Group Meeting, 1988.

[32] C. Jones, Applied Software Measurement, McGraw Hill, 1997.

.

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

Int'l Conf. Software Eng. Research and Practice | SERP'14 | 157

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

158 Int'l Conf. Software Eng. Research and Practice | SERP'14 |

SESSION

SOFTWARE ENGINEERING AND SAFETY,
SOFTWARE QUALITY, ERROR CHECKING,

TESTING METHODS, DEBUGGING METHODS

Chair(s)

TBA

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

Int'l Conf. Software Eng. Research and Practice | SERP'14 | 159

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

160 Int'l Conf. Software Eng. Research and Practice | SERP'14 |

	

UAH OnTrack: Precision Navigation System for Research
on The Software Safety Issues of Positive Train Control

Scott Schiavone, Sjohn Chambers, Sunny Patel, Lee Ann Hanback,
David J. Coe, Jason Winningham, B. Earl Wells, George Petznick*, and Jeffrey H. Kulick

Department of Electrical and Computer Engineering, *Consulting Railway Expert
The University of Alabama in Huntsville, Huntsville, Alabama, USA

Abstract - The Department of Electrical and Computer
Engineering at The University of Alabama in Huntsville
(UAH) is developing UAH OnTrack, a system for creating
location and velocity aware model trains for teaching about
software system safety. UAH OnTrack mimics capabilities of
the congressional mandated Positive Train Control system,
which will allow centralized analysis and control of US trains
in case of imminent danger. The system provides location
and velocity information to model trains in GPS challenged
environments such as real trains might find in tunnels, urban
environments and underground rail yards and stations. It
also provides an opportunity to develop advanced scheduling
algorithms mimicking the properties of the US airspace
Required Navigation Performance capabilities by allowing
trains to follow more closely than the traditional block
scheduling system. It also provides a platform for
development and verification of robust algorithms for
monitoring of system safety and security.

Keywords: Positive train control, software safety
engineering, DO-178, inertial measurement unit, smart train

1 Introduction
Over the past few years, the Electrical and Computer

Engineering Department at The University of Alabama in
Huntsville has been developing a Software Safety and
Security Laboratory for teaching software safety engineering.
Students utilizing the laboratory have developed train
scheduling software using an aviation safety standard, DO-
178B to create high reliability software for scheduling trains
[1]. Like the current system in use in the US, the system used
block scheduling which only requires knowledge of a train’s
location to the nearest block. This is typical of the system in
use in the US on real trains. However, in the Rail Safety
Improvement Act of 2008, Congress mandated that a
supervisory safety system be created with a centralized
authority to detect and manage possibly dangerous conditions
such as a halted train, an out of position train, or a train that
ran a signal [2]. These systems are primarily based on GPS
and as a result can only be used in areas with GPS coverage.
GPS-based systems fail in challenged areas such as tunnels
and underground yards as found in inner cities. Moreover, a
control system that relies only upon GPS data may be
spoofed by an attacker. To ameliorate these risks some
systems plan on using inertial measurement units (IMU) to

confirm data supplied by GPS and to provide GPS equivalent
data in GPS challenged regions. Computer engineering
students and faculty at UAH have been working on UAH
OnTrack, a low cost system to provide model trains precise
navigation capabilities similar to those found on full size
trains and other systems.

The goals of the UAH OnTrack system are to provide
all basic operating capabilities required to implement a
positive train control system including occupancy detection,
switch operation, train selection and movement, precise train
localization, and accurate train velocity data. Using these
basic capabilities provided by the OnTrack system, students
enrolled in the software safety engineering course may then
focus on the development and verification of smart train
scheduling software and the safety supervisory system
components required for positive train control. Before
describing the UAH OnTrack system in detail, we discuss
current US railway signaling, the Positive Train Control test
bed developed for use with the OnTrack system, and relevant
details of modeling train sensing, signals, and control.

2 Background
Current signaling in the US and on model railroads is a

block-oriented system of signals. Rail systems are divided
into blocks of track where block lengths may vary. To
maintain safe separation between trains, the general rule is
that only one train is allowed to occupy any given block.
Signals are used to govern movement of trains from block to
block. Signaling may be manually mediated, by wireless
communications or by warrants – explicit orders that a train
has permission to proceed. Automated Block Signaling is
used to locally determine if a train is allowed to proceed into
the next block. A train occupying a block results in a short
circuit between the rails triggering display of the occupied
signal.

It is important to note that prior to positive train control
and precise navigation, train locations were known only down
to the block level. Whether a block spanned a few miles to a
several tens of miles, the exact location of the train within
that block was unknown. With the precise navigation availed
by positive train control signals using GPS or the precision
location and velocity information provided by UAH
OnTrack, signaling can enter an entire new arena which will
allow multiple trains to safely occupy a single block

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

Int'l Conf. Software Eng. Research and Practice | SERP'14 | 161

	

simultaneously including multiple trains closely following as
they travel in the same direction.

2.1 Positive Train Control Test Bed
Our previously reported software safety research and

education efforts utilized our original 4’ x 8’ HO gauge
model railroad software safety test bed [1][3]. As a result of
experiments performed on this compact track layout, we
determined that our new Positive Train Control (PTC) test
bed must not only contain longer detection blocks, but it must
also utilize faster and more accurate occupancy detection
mechanisms to allow trains to operate at higher speeds and
maximize track usage.

Figure 2 below shows a schematic of the new PTC test
bed track layout, which consists of a Main Line and an East-
West Interurban Line. Outer dimensions of the PTC test bed
are 18’ x 8’. The Interurban Line includes a single passing
siding (bottom center) and two figure eight shaped reversing
loops. The Interurban tracks cross the Main Line tracks at
four points, but trains operating on one line cannot transition
to the other line. The Main Line includes multiple passing
sidings and two rail yards. Complexity of the scheduling and
safety monitoring software will increase as the software must
not only schedule trains on two different rail lines, but it must
also prevent collisions within each line and between the trains
operating on the two different lines.

To mimic modern railway systems utilizing ABS, the
PTC test bed track has been divided into multiple blocks for
both scheduling and occupancy detection. Each siding will
have at minimum three blocks. Short blocks will be used for
siding entry and siding exit detection while a longer block or
set of blocks in between will provide adequate space for one
or more model trains to park off of the main track. Track
control electronics will provide as a baseline block-level
occupancy data, but this low precision localization
mechanism will be augmented by precise navigation to
facilitate the development of advanced scheduling algorithms.

2.2 Model Trains
Model railroading has been around for almost 100 years.

The accuracy of the models has varied over the years. The
scale of the models (N, HO, O, etc.) has been used to convey
the relative size of model trains to real ones. For example, the
size ratio of an HO model train to a real train is 1:87 while O
gauge has a size ratio of 1:43. The accuracy of the modeling
varies as needed. For example, while the scaled size of
windows on an HO gauge train can be close to the true size of
the windows. In the real train, the wheel flange, which holds
the wheel on the track is usually much larger than an accurate
scale would allow for to ensure that the train would leave the
track on the slightest curve.

2.2.1 Digital Signaling and Control
Signaling is another area where fidelity varies based

upon the need. Policies and procedures, such as block
signaling are often tightly adhered to while signaling
methodology varies considerably. Most HO gauge trains
today utilize a signaling and control system called digital
command control (DCC). In DCC, unlike earlier model train
systems, power is applied continuously to the track. Digital
data packets are transmitted to the individual locomotives that
have computer decoders installed. The decoders read the
message and adjust locomotive features such as speed,
direction, sound, train type (slow, heavy freight vs fast, light,
passenger train). Power on the track is low voltage AC and
the digital data packets are overlaid on the AC power signal.

Digital data is created in a unit called a command
module. This is converted to DCC signals in a combined
command/booster module, or conveyed to separate power
boosters using a CSCDMA network called LocoNet. Output
from the boosters can be conveyed directly to the track.
Since the location of the individual locomotive is unknown,
the signal is sent to all track sections.

Figure 2 – Positive Train Control test bed track layout

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

162 Int'l Conf. Software Eng. Research and Practice | SERP'14 |

	

Figure 3 – Rail Diagram Showing Reversing Loop Polarity Short (counter-clockwise travel) [4]

2.2.2 Power Management, Protection, and Reversing
Loops

Two power management strategies are also
implemented at this level: power management and
reversing. Power management, which can be implemented
in a variety of ways, typically limits power on a track
section to what is required by a few locomotives- typically
10 watts. When an overload or short is detected, the power
management unit shuts down power to the offending
section(s) of track. Reversing is a power management
strategy that is needed when a train can reverse direction
and traverse a section of track in both directions (going
forward in both cases). In this case, as seen in Figure 3
above, if one track is hot and the other neutral, then when
the track reverses hot and neutral are reversed. When a
train wheel touches two sections of track that are reversed
powered, a direct short occurs. To rectify this problem, a
reversing power setup will reverse the polarity on one
section of track upon detection of a short. If this does not
clear the problem in a few milliseconds, the power
management system kicks in and turns off power to that
section.

Modern model train controllers have integrated coarse
train location and identification capabilities. Train location
power managers that distribute power to individual sections
of track are available that if a train is detected in a block of
track, a message is sent on LocoNet signaling that some
power-consuming device is on that track section. The train
itself is not identified and if this information is to be used
then the controller system connected to the power manager
has to keep track of which vehicle is in the section. As a
vehicle traverses two sections then the system reports a
vehicle is entering. As a controller continues to monitor
the power manager, it maybe able to track the location of a
train provided it knew its initial location and its speed and
direction. Since there is no positive confirmation of this

information at best systems of this type can only guestimate
which train is in which section.

2.3 Transponding
A new development in model train power

management is called transponding. In this case, the
decoder on the locomotive can send information back into
the rails while it is drawing power from the track. If the
supervisory controller keeps careful note of which trains
are entering and exiting a section of track and receives the
transponder data contemporaneously, it is possible to track
the entering and exiting of a particular train into and from a
particular track section. However, the exact location of the
train within the section cannot be determined by any
current model railroad signaling system. In order to mimic
current developments in positive train control on US
railways, we have started development of a positive train
control tested.

3 The UAH OnTrack System
3.1 System Overview

The UAH OnTrack system consists of an Android
tablet application and an Arduino-based wireless controller
module that is connected to Digitrax DCC hardware on the
PTC test bed (Figure 4) [5]. The precise navigation sensor
hardware mounted on each train sends data by Nordic
NRF24L01+ radio to the wireless controller, which
forwards this data back to the tablet via Bluetooth to
accurately update the application display in real time. The
tablet application allows a user to control operation of PTC
test bed trains and track switches. The application utilizes
two-way Bluetooth communications to interact with the
wireless controller module. Train and switch commands
(DCC and LocoNet) are forwarded from the tablet to the
wireless controller, which forwards these commands via
the Digitrax hardware by DCC or LocoNet to trains or
switches as appropriate.

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

Int'l Conf. Software Eng. Research and Practice | SERP'14 | 163

	

Figure 4 – Block diagram of UAH OnTrack system.

3.2 Key Design Goals
The goal of the UAH Software Safety and Security

Laboratory in this effort is to allow students to study and
advance safety and security aspects of the positive train
control system. To accomplish this, train locations and
velocities need to be determined more precisely than
available through DCC block level signaling and detection.
Positive train control systems use a variety of localization
systems including GPS and inertial navigation units.
Although it is possible to use GPS repeaters within a
building GPS would still not yield precise enough location
information (approximately 3 meters) for control of HO
train systems. Furthermore, real trains must often operate
in GPS challenged areas such as tunnels and underground
yards in inner-city stations such as Grand Central Station in
New York City. We therefore decided to look at an inertial
navigation system scaled to the power and costs
commensurate with model trains but providing extremely
precise location and velocity information.

To reduce cost, the sensor package was based on an
ArduIMU designed for model aircraft. This MEMS- based
IMU includes 3-axis accelerometers, 3-axis angular rate
sensing, and 3-axis magnetometers. MEMS-based IMUs
are subject to a number of potential sources of error
including noise, drift, and gravitational perturbations. A
sample output of the x accelerometer, aligned in the

direction of motion, is shown in Figure 5. As can be seen
from this figure, the output of the accelerometer is quite
noisy. A low pass filter would normally be used to obtain
the envelope characteristics. However, the processor
located in the gondola housing the IMU is extremely low
power operating off batteries and had insufficient
processing power to both filter and correct the data and
maintain radio contact with the wireless controller.

Railroad tie counters have been used in real railway
applications to obtain estimate of train speeds independent
of wheel rotation. So, a tie counting system was integrated
with the IMU sensor package to supplement the location
and velocity information from the IMU. The tie counting
system utilized a downward facing infrared source/sensor
pair. It was determined experimentally that painting the
cork roadbed under the track light grey reduced overall
noise improving the accuracy of the tie counting system.
The tie counting system can only provide speed
information since the direction is unknown. The IMU data
is used to determine train direction and location to within 1
cm is possible.

One additional output of the precise navigation
system is which path of a switch was taken. When a train
proceeds across a switch, we need to know not only the
speed and direction (forward or backwards) but whether the
train took the straight through or turnout direction. This
information is also provided by the IMU system.

Figure 5 – IMU acceleration output in the x direction (blue trace).

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

164 Int'l Conf. Software Eng. Research and Practice | SERP'14 |

	

Figure 6 – Tie Counter: (A) Output in the Presence of Location Bar Code and (B) Bare tie output.

Figure 7 – Sample screenshot of UAH OnTrack tablet app.

3.3 Track Bar Codes Re-zero Absolute
Location

Two key issues are drift and initialization of the
inertial navigation system. If an expensive IMU system,
perhaps based on ring laser gyros, is used, then drift may
not be significant. However, if a less expensive system,
such as the MEMS based unit used in UAH OnTrack is
used, then drift is a significant cause of error. In addition,
the initial location of the IMU and attached locomotive
needs to be established whenever the system is initialized.

Rather than require the locomotives be started in a
fixed position, which would be a significant burden to the
current system that might have 10’s of locomotives on stub
sidings, we approached the problem of drift and
initialization with a single solution. In the UAH OnTrack
system, bar codes are placed in between the tracks in
known locations, such as on the entries and exits to

switches and the end of stub sidings. The tie counter
hardware was augmented with software to detect these
barcodes in the track. Figure 6A below illustrates the signal
output when the tie counter runs over a bar code and should
be compared to Figure 6B where the tie counter is running
over bare ties.

3.4 Tablet Application
The tablet application currently under development is

a key component of the UAH OnTrack system since no
existing software is capable of utilizing real time sensor
package IMU and tie counter data for command and
control. The application will support both layout
acquisition and rail operations. For acquisition, the user
overlays the locations of switches and bar codes on top of a
photograph or schematic of the track layout. All switches,
bar codes, and trains have integer identifiers. Trains are
then added to the overlay displayed on the tablet screen by

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

Int'l Conf. Software Eng. Research and Practice | SERP'14 | 165

	

setting a numeric identifier and an approximate starting
position. As with standard model train DCC controllers,
the user may then use the tablet to command the physical
train to move forwards, backwards or stop via a virtual on-
screen throttle control. Data from the sensor package is
used to correct the on-screen position of the train relative to
the locations of the bar codes traversed. Gesture
commands will be added to facilitate opening and closing
of switches, changing focus of control from one train to the
next, and emergency stop of all trains. Visual feedback to
the user will include numbered train icons indicating
current position and train identifier and the current setting
of each switch. Figure 7 shows a screenshot of the UAH
OnTrack application currently under development.

4 Conclusions and Future Work
The PTC test bed, in conjunction with the UAH

OnTrack system, provides a low-cost research and
education platform for researchers, graduate and
undergraduate students. Efficient safety critical automatic
scheduling algorithms will be key to full utilization of
limited track resources in the future. The PTC test bed
allows safe exploration of new scheduling algorithms to
improve track utilization and techniques for verification of
these algorithms. Users may also gain hands-on experience

in software safety engineering by developing and verifying
centralized safety supervisory systems via the PTC test bed.
The test bed also provides a safe environment for students
to explore the use of alternate technologies for precise
localization and track inspection such as video tracking and
ultrawide band radars.

5 References
[1] David J. Coe, Joshua S. Hogue, and Jeffrey H. Kulick,
"Software Safety Engineering Education," 2011
International Conference on Software Engineering
Research and Practice (SERP'11), WORLDCOMP 2011,
July 18-21, 2011, Las Vegas, NV.
[2] Rail Safety Improvement Act of 2008, URL
http://www.fra.dot.gov/eLib/Details/L03588
[3] Travis Cleveland, David J. Coe, and Jeffrey H. Kulick,
"Video Processing for Motion Tracking of Safety Critical
Systems," 2013 International Conference on Software
Engineering Research and Practice (SERP'13),
WORLDCOMP 2013, July 22-25, 2013, Las Vegas, NV.
[4] Reversing Loop Diagram, URL
http://www.hmrg.co.uk/techtops/revloop.htm
[5] Digitrax, URL http://www.digitrax.com

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

166 Int'l Conf. Software Eng. Research and Practice | SERP'14 |

Symbolic Model Checking Applied to Timing Diagrams

Amanda D. L. de O. Tameirao1, and Mark A. J. Song2
1Department of Computer Science, FUMEC University

Belo Horizonte, Minas Gerais, Brazil
2Department of Computer Science, Pontifical Catholic University of Minas Gerais

Belo Horizonte, Minas Gerais, Brazil

Abstract— During a software products̀ entire life cycle,
errors and faults are introduced, which should be corrected
as soon as possible. Among the most efficient forms of
error correction is symbolic model checking. Symbolic model
checking is a technique that enables developers to check for
properties that do not conform to what was modeled, by
going through every computation of a system. System mod-
eling was shown to be an efficient aid in understanding the
solution and minimizing errors. Among the proposed mod-
eling methodologies is Unified Modeling Language (UML).
UML is a visual modeling language to document, specify
and build system artifacts. Although it has many resources,
it lacks formal semantics, which hinders the use of symbolic
checking. In this paper we discuss applications of model
checking in UML through the translation of timing diagrams
to symbolic model verification (SMV).

Keywords: software engineering, model checking, timing dia-
gram

1. Introduction
The UML visual modeling language is broadly used to

specify, model, document and build systems. It has two spe-
cific model types that can be created: structural models, that
highlight the physical organization; and behavioral models,
that highlight a systems dynamic structure [1] [2]. Version
2.0 proposes 13 types of diagrams used to organize and
understand every need in a development project. One of the
proposed diagrams is the timing diagram, which is the main
focus of this paper.

Timing diagrams are used to model systems for which
time is the main execution factor and determines the action
and response of every iteration.

One of the goals of this work is to guarantee that the
model is drawn correctly and to avoid error propagation
to subsequent process stages, like coding and testing. To
achieve that, the modeled diagram will be translated into a
verification model, and symbolic checking will be applied
to validate the model.

Symbolic model checking is a technique used to assess
whether a finite state model satisfies every property defined
for it. If it does not, a counterexample is provided, allowing
every path to modeled states to be traversed [3].

Associating both techniques is, however a challenge. UML
is becoming more and more efficient in its modeling, aiding
and supporting system development, but its lack of formal
semantics makes it hard to apply model checking techniques,
which use a mathematical language that is scarcely used by
developers.

This study aims to bring the two techniques closer so that
system development is more efficient and dependable. The
rest of the paper is structured as follows, section 2 presents
the diagrams contained in UML 2.0, highlighting the main
diagram used in this paper, the timing diagram. Section 3
defines model checking. Section 4 there is a brief summary
of the most relevant related work. Section 5 explains how
timing diagrams are translated into model checking code.
Section 6 contains translation examples and what kind of
properties can be used. Finally, section 7 concludes the
paper, and discusses future work prospects.

2. UML 2.0 Diagrams
A set of graphically represented elements is known as a

diagram [2]. These diagrams can offer many perspectives for
the visualization of a system. UML has, in version 2.0, 13
diagrams available for modeling a system [1] [2], split into
two types, as follows:

• Structural diagrams, that focus on the physical structure
of the modeled system. Represented by, class diagram,
components diagram, composite structure diagram, de-
velopment diagram and package diagram.

• Behavioral diagrams, that focus on the behavior of
artifacts. Represented by, activity diagram, use case
diagram, UML state machine diagram.

• Finally, interaction diagrams, which correspond to a
subdivision of behavioral diagrams, and show the in-
teraction between the components [4]. Represented
by, sequence diagram, interaction overview diagram,
communication diagram and timing diagram.

The timing diagram in this article is used together with
the model checking.

2.1 Timing Diagram
The timing diagram was created to model systems for

which time is of vital importance to the execution. It

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

Int'l Conf. Software Eng. Research and Practice | SERP'14 | 167

illustrates state changes that occur in a system, as well as
interactions and restrictions existent between events. It is a
behavioral diagram, and it is vastly employed in embedded
and real-time systems.

Three elements can be used to model a timing diagram:
lifelines, state conditions and time units.

Lifelines represent a systems main events. In Figure 1,
we can see the indication of MailServer, that is, the
indication that the systems main event is the server itself.
The state conditions correspond to the state changes for each
event. In Figure 1, these are represented by the inactive,
authenticated and transmitting states, indicating
that the MailServer lifeline can change into any of
those states. Time units determine the temporal counting for
the items. In Figure 1, they correspond to the progressive
count from 0 to 19. All of the elements are connected
and determine the systems actions, limits, and temporal
restrictions.

Fig. 1: Timing Diagram [5]

3. Model Checking
Formal verification is a technique used to spot errors

that were not identified during usual testing. It provides
a counterexample for cases where there is a divergence,
allowing its origin to be traced [3]. It is largely used in
critical systems, but even though is guarantees the reduction
of flaws in a project, it is not very explored in common
systems, due to the difficulty in using a specific formalism.

In this approach, a state transition graph models the
system to be verified through formulae written in temporal
languages, known as Computation Tree Logic (CTL), and
Linear Temporal Logic (LTL). Each node corresponds to one
of the systems states, determined by the values contained
in each one of its variables. The edges correspond to the
transitions between states. The verification procedure goes
through all of the states and checks if they meet the defined
required properties.

The following steps must be followed: first, the properties
that a system must have to be considered correct must be
specified. Then, a formal model to represent the system must
be built. The model must include every property considered
essential to the verification, leaving behind details that do not
affect the correctness of said properties. Finally, the model
checker must be run to validate the properties that were

previously defined. In this way, the checker is employed to
test if the model meets the specified requirements. If every
property is satisfied, then the model is correct. Otherwise, a
counterexample will be generated to demonstrate the failure.

4. Related Work
Formerly conducted studies concerning UML diagrams

and their conversion to SMV were analyzed.
Amongst the most relevant studies, the papers by Hai-Yan

[6] , Beato [7], Fernandes [8] and Santos [9] can be cited.
This section will point out the main aspects of those studies.

In 2001, Hai-Yan et al [6] conducted a study about the
translation of the UML state machine diagram to the SVM
model checker. In this study, the authors used an automaton
hierarchy formalism, and starting from it they translated the
implementations into the SMV language, allowing properties
to be subsequently inserted into the translation.

In 2005, Beato et al [7] defended the use of XMI to enable
the translation of a diagram into SMV. In this study, they
performed translations of class, activity and state machine
diagrams. Properties were inserted using a tool developed
by the authors.

In 2011, Fernandes [8] also used XMI, and by means of
a self-developed tool, performed the translation of activity,
state machine and sequence diagrams into the SMV checker,
enabling properties to be inserted and tested at any time.

In 2014, Santos et al [9] transformed three behavior
diagram, sequence, state machine and activity, to the SMV,
to meet critical systems, in order to minimizer errors and
quickly corrects them preventing them from propagating.

These studies demonstrate that diagram translation is
viable and welcome, because currently only the development
of critical systems have their efficacy guaranteed through the
use of model checking.

5. Translation of th Timing Diagram to
the SMV Checker

Figure 2 demonstrates this works main proposal, showing
the involved stages and the environment created for the
translations.

Proposal stages:
• Drawing the conceived timing diagram in a UML

modeling tool;
• Exporting the diagram to XML Metadata Interchange

(XMI);
• Including the XMI file in the environment developed by

the authors for the translation into formal verification
language, so that it can be evaluated by the SMV
verifier;

• Once in possession of the translated diagram, setting,
through the environment, the properties that should be
evaluated and including them in the translated file;

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

168 Int'l Conf. Software Eng. Research and Practice | SERP'14 |

• Running the verification using the SMV tool, to obtain
an answer.

Fig. 2: Diagram-to-SMV translation stages

Following these steps, the translation of the diagram
shown in Figure 1 was performed and the following results
were obtained, in Table 1. Each item in the timing diagram is
reported to the XMI file by tags and specific types, following
the diagrams reading order:

Table 1: Translation of the Timing Diagram to SMV
UML SMV Initial value

Lifelines Variables First value of a
conditional state

State conditions Variable states

Time units Time when transition First value indicated
states occur in the diagram

Time instances Determine the occurrence
of state changes in lifelines

Items taken from the XMI file are described in SMV as
follows:

• In a timing diagram, lifelines represent the maxi-
mum number of states the diagram will be split
into. In an XMI file, they are represented by the
timingFrameLifeline type. Figure 3 demon-
strates what the representation looks like in an XMI
file, followed by translation performed.

Fig. 3: Lifeline description in an XMI file

In the translation made by the environment, the name is
used to define the variable. Each timing diagram can have
more than one lifeline (Table 2):

Table 2: Translation of the Lifelines to SMV Language

MODULE main
VAR

mailServer : inactive, authenticated, transmiting;

• State conditions represent transaction changes that oc-
cur in each lifeline. In an XMI file, they are represented
using the stateCondition (Figure 4).

Fig. 4: State condition description in an XMI file

In the environment-generated translations, the names are
used to define the possible states of a variable (Table 3):

Table 3: Translation of the State Conditions to SMV Lan-
guage

MODULE main
VAR

mailServer : inactive, authenticated, transmiting;

• Time units define the exact moment f the occurrence
or replacement of an action. In an XMI file, they are
represented by the timeUnit type. Figure 5 exem-
plifies how the representation is done in an XMI file,
followed by the translation generated by the proposed
environment (Figure 5).

Fig. 5: Time unit description in an XMI file

The translation created by the proposed environment uses
the names to define the possible states of a counting variable
(Table 4):

Table 4: Translation of the Time Unit to SMV Language

MODULE main
VAR

mailServer : inactive, authenticated, transmiting;
counter : 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19;

• Time instances determine exactly when state changes
will take place. They store the initial and final moments
of every event. In an XMI file, they are represented
using the timeInstance type. Figure 6 shows an
example of such an XMI representation and is followed
by an example translation by the proposed environment.

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

Int'l Conf. Software Eng. Research and Practice | SERP'14 | 169

Fig. 6: Time Instance description in an XMI file

The following is an example translation made by the
environment, showing the states with their respective initial
and final times, determining when they will occur (Table 5):

Table 5: Translation of the Time Instance to SMV Language

next(mailServer) := case
counter >= 0 & counter <= 2 : inactive;
counter >= 3 & counter <= 6 : authenticated;
counter >= 7 & counter <= 14 : transmiting;
counter >= 15 & counter <= 19 : inactive;

esac;

After all translations are completed, the final code gen-
erated from the XMI file shown in Figure 1 will be (Table
6):

Table 6: Translation timing diagram Figure 1 to SMV

MODULE main
VAR

mailServer : inactive, authenticated, transmiting;
counter : 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19;

ASSIGN
init(mailServer) := inactive;
init(counter) := 0;
next(counter) := case

counter = 0 : 1;
counter = 1 : 2;
counter = 2 : 3;
counter = 3 : 4;
counter = 4 : 5;
counter = 5 : 6;
counter = 6 : 7;
counter = 7 : 8;
counter = 8 : 9;
counter = 9 : 10;
counter = 10 : 11;
counter = 11 : 12;
counter = 12 : 13;
counter = 13 : 14;
counter = 14 : 15;
counter = 15 : 16;
counter = 16 : 17;
counter = 17 : 18;
counter = 18 : 19;
TRUE : 0;

esac;
next(mailServer) := case

counter >= 0 & counter <= 2 : inactive;
counter >= 3 & counter <= 6 : authenticated;
counter >= 7 & counter <= 14 : transmiting;
counter >= 15 & counter <= 19 : inactive;

esac;

6. Definition of Properties and Verifica-
tion

This section presents some possibilities of formal verifi-
cation applied to the timing diagram translation. For data
representation, some properties were previously defined and
verified by the checker.

6.1 It is globally true that the execution of an
activity implies in the execution of another one
in the future

SPEC AG ((mailServer = authenticated) -> AF (counter > 5))

Considered the example illustrated in Figure 1, the spec-
ification questions whether it is true that whenever the
mail server is currently in the authenticated state it
is implied that, in the future, the value of the counter
variable will always be greater than 5. For this property, the
checkers answer will be TRUE (Table 7).

Table 7: Result of the property

– specification AG (mailServer = authenticated -> AF counter > 5) is true

6.2 It is always true that, for the next state in
which a state occurs, it is implied to be globally
true that another state will occur

SPEC AX(mailServer = inactive -> AG(counter > 10))

Considered the example illustrated in Figure 1, the specifi-
cation questions whether it is true that, in every situation, for
the next state in which the mail servers action is inactive,
it is implied that counter will always be greater than 10. For
this property, the checkers answer will be FALSE, and in this
case it provides a counterexample to back its answer (Table
8).

Table 8: Result of the property

– State: 1.1 <-
mailServer = inactive
counter = 0

– State: 1.2 <-
counter = 1

6.3 It is globally true that the execution of an
activity implies in the execution of another one
in the future

SPEC AG ((mailServer = authenticated) -> AF (counter > 5))

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

170 Int'l Conf. Software Eng. Research and Practice | SERP'14 |

Considered the example illustrated in Figure 1, the spec-
ification questions whether it is true that whenever the
mail server is currently in the authenticated state it
is implied that, in the future, the value of the counter
variable will always be greater than 5. For this property, the
checkers answer will be TRUE (Table 9).

Table 9: Result of the property

– specification AG (mailServer = authenticated -> AF counter > 5) is true

6.4 There is some computation for which, in
the future, if a state occurs, another one will
occur

SPEC EF(mailServer = transmiting & EG(counter <= 5 |
counter > 15))

Considering the example illustrated in Figure 1, the spec-
ification questions whether there exists a path in which the
mail server currently has the transmitting action and
counters value is less than or equal to 5, or greater than
15. For this property the checker will return FALSE, and
provide the following counterexample to corroborate the
answer (Table 10).

Table 10: Result of the property

– State: 1.1 <-
mailServer = inactive
counter = 0

6.5 There is some computation for which, in
the future, an activity depends on some other
activity

SPEC EF(mailServer != authenticated & counter <7)

Considering the example illustrated in Figure 1, the spec-
ification questions whether there exists a path in which, in
the future, the mail server will have the authenticated
action and counters value will be less than 7. For this
property, the answer provided by the checker is TRUE (Table
11).

Table 11: Result of the property

– specification EF (mailServer != authenticated & counter < 5) is true

7. Conclusion and Future Work
The aforementioned related work demonstrates that the

insertion of symbolic model checking in usual systems adds
more reliability to them, as well as financial gain prospects,
by avoiding errors that were not previously found.

This paper presents a contribution by translating the tim-
ing diagram, allowing, through the developed environment,
any system to be validated and verified with a greater proba-
bility of success, which guarantees more dependability. The
developed environment has the goal to unburden analysts
involved in projects by making their work a bit easier, by
taking from them the requirement of knowing the formalisms
that accompany temporal languages.

As future work, it will be possible to develop a plugin
that will enable automatic model verification. From an XMI
file generated by a UML modeling tool, the environment
will generate the SMV translation, allow the definition of
properties, add them to the previously generated translation
and check the model, eliminating some of the steps that
comprise the approach proposed here.

Another possible approach would be pointing out errors
in the diagrams. Since the checker can generate counterex-
amples, they could be read and a path inversion could be
generated, pointing out to the analyst the exact contention
point, broadening the collaboration for a more assertive
development process.

These improvements will provide analysts with more pre-
cision in work carried out during the requirements identifica-
tion and system modeling activities, while also minimizing
error propagation to future project stages.

Acknowledgements
The authors acknowledge the financial support received

from the Foundation for Research Support of Minas Gerais
State, FAPEMIG.

References
[1] Pender, T.; UML Bible. Wiley. 2003.
[2] Booch, G.; Rumbaugh, J.; Jacobson, I. The Unified Modeling Language

User Guide. Addison-Wesley. 2005.
[3] Clarke, E. M.; Grumberg, O.; Peled, D. A. Model Checking. The MIT

Press, 1999.
[4] Object Management Group. (2014). UML 2.4.1 Superstructure Speci-

fication. [Online]. Available: http://www.omg.org/spec/UML/2.4.1.
[5] Pilone, D.; Pitman, N. UML 2.0 in a Nutshell. OŔeilly Media, 2005.
[6] Hai-yan, C.; Weil, D.; Ji, W.; Huo-wang, C. V̈erify UML statecharts

whit SMV.̈ Wuhan University Journal of Natural Sciences. China, vol.
6, p 183-190, 2001.

[7] Beato, M.E. ÜML automatic verification tool with forma methods.̈
Eletronic Notes in Theoretical Computer Science. Spain, vol. 127, p
3-16, 2005.

[8] Fernandes, F. G.; Song, M. A. J. V̈erification of UML Behavioral Dia-
grams using Symbolic Model Checking.̈ In: IADIS Applied Computing.
Brazil. p. 1-8. 2011.

[9] Santos, L. B. R.; Santiago JÃžnior, V. A.; Vijaykumar, N. L.
T̈ransformation of UML Behavioral Diagrams to Support Software
Model Checking.̈ In: Formal Engineering Approaches to Software
Components and Architectures. France. p. 133-142. 2014.

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

Int'l Conf. Software Eng. Research and Practice | SERP'14 | 171

A Quality Assurance Approach to Technical Debt

Zadia Codabux, Byron J. Williams, Nan Niu

Department of Computer Science and Engineering

Mississippi State University

Starkville, Mississippi

Abstract - Technical debt is a metaphor used to reason about

lingering issues in software development. It is the result of

decisions taken during the development process, which are

often made due to resource constraints and aggressive

schedules. The consequences of technical debt are that it can

impede future development and incur increasing costs.

However, technical debt is not always bad as, in some cases,

respecting deadlines is more important than clean code.

Nevertheless, for achieving quality software, it is crucial to

prevent the amount of debt from increasing. In this paper, we

describe a method for addressing technical debt using a

quality assurance (QA) classification scheme and focus on

prevention, reduction, and containment activities. We also

highlight techniques and processes that are used to apply

quality assurance to technical debt.

Keywords: technical debt, software quality, software testing

1. Introduction

Software development is prone to failure. One of the root

causes of this failure is the use of predictive processes for

complex software. Predictive processes attempt to fully define

all requirements upfront. Traditional software development

models such as the waterfall model, which involves predictive

processes, are not the most appropriate when business needs

and technology change rapidly. It is often difficult to establish

a complete vision for the software product at inception, list all

the requirements clearly, and devise a detailed plan to convert

these requirements into the finished product [1].

A shift in thinking occurred when development began to

focus on customer needs and the product rather than the

processes. This shift gave rise to agile software development,

which involves an incremental, iterative approach to project

development where the requirements and their solutions evolve

through collaboration between development teams and

customers [1]. In addition, as stated by Williams and Cockburn,

agile development is “about feedback and change,” and agile

methodologies are developed to “embrace, rather than reject,

higher rates of change [2].”

One of the main foci of agile software development is quick

release of functionality. While so doing, technical debt can

arise whenever issues not solved in the current release will

have to be addressed in later releases [1]. This technical debt

metaphor was coined by Ward Cunningham in the 1992

OOPSLA experience report to describe how long-term code

quality is traded for short-term gains such as increased

productivity. Cunningham stated, “Shipping first time code is

like going into debt. A little debt speeds development so long

as it is paid back promptly with a rewrite. Objects make the

cost of this transaction tolerable. The danger occurs when the

debt is not repaid. Every minute spent on not-quite-right code

counts as interest on that debt. Entire engineering organizations

can be brought to a stand-still under the debt load of an

unconsolidated implementation, object-oriented or otherwise”

[3].

In other words, technical debt is the consequence of

tradeoffs made during software development, as illustrated in

Figure 1. These tradeoffs include not preserving architectural

design; not using good programming practices, conventions

and standards; no longer updating documentation; and not

performing thorough testing [4]. However, every minute spent

on “not-quite-right” code counts as interest towards the debt

[3]. The metaphor has since been extended and refers to any

imperfect artifact in the software development life cycle [5].

Technical debt can be classified as unintentional or

intentional. Unintentional debt is acquired inadvertently, for

example, due to low quality of work or the lack of adherence to

good programming practices. However, intentional debt is

accumulated for strategic reasons, e.g., compromising on

proper coding standards in order to deliver software on time.

Intentional debt is further classified as short-term or long-term

debt [6].

Another classification of technical debt is based on

traditional lifecycle phases such as testing debt, design debt,

and documentation debt [7]. Documentation debt is the result

of inadequate or outdated documentation. Design debt is the

result of any anomaly or imperfection in the source code.

Testing debts are tests that were planned but not implemented

or executed.

Over the last decade, technical debt has gained a lot of

attention from the software engineering research community.

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

172 Int'l Conf. Software Eng. Research and Practice | SERP'14 |

However, the minimal amount of empirical studies existent in

the field indicates that there is still need to bridge the gap

between research and practice [9]. This can be achieved by

carrying out more empirical studies involving practitioners and

identifying best practices from the software engineering

literature to address technical debt.

Figure 1: Technical Debt [8]

Technical debt if not handled, can become a problem to

organizations. Seaman et al. [10] enumerated some examples

of the consequences of technical debt as

 disastrous consequences

 large cost overruns

 quality issues

 inability to add new features without disrupting

existing ones

 premature loss of a system

This paper proposes different practices to prevent, reduce

and contain technical debt in an agile software development

environment context.

The rest of the paper is structured as follows: Section 2

addresses the impact of technical debt. Section 3 focuses on the

relation between quality assurance and technical debt while

presenting a quality assurance approach to managing technical

debt. Section 4 presents some recommendations for managing

technical debt. Finally, Section 5 concludes the paper.

2. The Impact of Technical Debt

At the start of a new project, it is common to intentionally

incur technical debt in order to achieve some goals. When

technical debt is incurred for strategic reasons, it is due to the

opportunity cost of releasing software now compared to some

point in the future. For instance, McConnell points out that

when time to market is critical, incurring technical debt might

be a good business decision. Other instances where debt can be

incurred may be due to time and resource constraints where the

software or feature needs to get out of the door and the

software will be “fixed” after the release. In addition to time-

to-market factor, he also explained how preservation of startup

capital contributes towards technical debt. In a startup

company, expenses that can be delayed should be, as opposed

to expending startup funds on technical debt now. Another case

where it might be justifiable to incur technical debt would be

near the end of a system’s lifecycle because when a system

retires, all the debts retire with it [6].

As explained earlier, technical debt is not always bad if it

allows a business to achieve a competitive edge and market

share. In such cases, it makes sense to delay the moment when

the software is brought in line with standards and best

practices. Good technical debt has one or more of the following

characteristics [11]:

 It has a low interest rate – technical debt with low interest

rate can be supported for a longer time frame as the

development costs won’t increase over time. Repaying the

debt at a later time might cost insignificantly more than it

will cost to repay it now.

 It is being regularly serviced - when technical debt is

regularly serviced, the amount of debt will decrease over

time, thereby increasing the quality of the software.

 The work that preceded it had a very high opportunity

cost – if there is a high opportunity cost related to the

debt, it is preferable to release the software and incur

some debt, rather than not releasing and losing money.

The decision to assume the debt must be made explicit and

should be the result of a collective decision based on the key

stakeholders concerned. Such a decision will normally be taken

after assessment of the risks and benefits identified. In addition,

the stakeholders must ensure that a process exists to manage

the debt and that it is paid back within a set period of time.

However, non-strategic debt can be detrimental to the

quality of the software. Such situations might include when the

debt is taken on without stakeholder approval and the impact of

the debt is not properly assessed. It is harder to track and

manage technical debt accumulated due to shortcuts taken as a

result of the lack of quality assurances processes [6]. This type

of debt is comparable to credit card debt as it can be easily

incurred and adds up very fast due to compounding interest.

Nonetheless, a process to pay back technical debt is needed.

The longer the debt repayment is deferred, the harder and more

costly it will be to pay it back as the interest charges keep

compounding. Technical debt is often quantified as principal

and interest. Principal refers to the cost of completing the task

at present. Interest is the extra cost added to the principal that

will be needed to complete the task at a later time. These are

the basic factors for calculating the Return on Investment

(ROI) on resolving the debt if the costs can be determined.

Over time, technical debt can lead to degeneration of the

system’s architecture. The lack of prompt debt payment can

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

Int'l Conf. Software Eng. Research and Practice | SERP'14 | 173

result in technical bankruptcy where an organization’s

resources are spent dealing with the inefficiencies created by

the debt that has accumulated over time and can no longer keep

up [12]. In the worst case, the software might need a complete

redesign or need to be rewritten, entire departments are

outsourced, customers and market shares lost and customer

confidence is lost as the company will be spending more

resources on debt servicing rather than focusing on new

features [13].

A famous example is Netscape Navigator, which

experienced architecture decay over a short time period.

Netscape developers wanted to release a newer version of the

software but could not because the code was harder to change

than expected and the system became unmaintainable. The

architecture was difficult to understand and it became almost

impossible to add new components [14]. Another example is

Visual Query Interface (VQI), a software package that

degenerated as the programmers made changes to the system

without following the architectural guidelines provided. The

programmers introduced design pattern violations which cause

unnecessary couplings, misplaced classes (i.e., classes placed

in the wrong package), and imported classes not used in the

package [15]. This degeneration is referred to as code decay

[13].

Code decay can have several root causes. One cause is

violating architectural design principles. For example, in a

strictly layered system, where a layer can only use the services

provided by the layer below. If a developer does not follow the

constraint, this change is considered a violation of the

architecture.

Other causes for code decay include:

 Time pressure that causes programmers to knowingly

postpone refactoring

 Writing code without following proper programming

conventions

 Debugging code improperly

 Taking shortcuts to get a working solution as fast as

possible

The above examples illustrate that technical debt gives rise

to code decay, which makes code changes harder than they

should be.

Hochstein et al. [13] reported that in order to find areas of

code decay, they used a tool to detect code smells which helped

to identify code areas where good design principles were

breaking down. A code smell is a surface indication that

usually corresponds to a deeper problem in the system [16]. As

a result, code smells are useful to identify areas accumulating

technical debt.

As illustrated above, technical debt can be disastrous if not

handled properly. The next section proposes different

techniques to handle technical debt with the aim of producing

better quality software.

3. Technical Debt and Quality Assurance

Technical debt can be used to reason about software

quality. Seaman et al. pointed out that metrics such as

cohesion, coupling, complexity and depth of decomposition for

software quality can be used to quantify technical debt. Some

examples include: the software has defects and needs to be

reworked, the software does not fulfill its requirements, all test

cases have not been executed, or missing documentation.

Example indicators of technical debt include the number of

defects in the system, the number of requirements that remain

unfulfilled, the number of test cases that need to be executed or

automated and documentation that requires completion

updating. Technical debt can be characterized by the amount of

work that needs to be done and associated costs in order to

address these problems [17].

In order to better select, adapt and use QA techniques most

appropriate for specific applications, Tian proposed the

following Quality Assurance classification scheme for defects

[18]:

 Defect prevention

 Defect reduction

 Defect containment

Defect prevention activities consisted of activities whose

aim is to prevent certain types of faults from being injected in

the software. These activities include eliminating technical

ambiguities and correcting human misconceptions about

functionality. Another activity is fault prevention or blocking

that involves directly preventing missing or incorrect human

actions.

Defect reduction activities have the objective of detecting

and removing faults once they have been injected in the

system. This is commonly achieved using inspections, testing,

static analysis or observations during dynamic execution.

Defect containment activities involve containing the

failures to local areas to limit their impact. Activities include

using fault tolerant techniques to break the relationship

between fault and failure.

The QA classification described above has been adapted to

technical debt. The following section will depict how technical

debt can be prevented, reduced and contained with the overall

aim of managing the amount of technical debt in the software,

thereby increasing its quality.

3.1. Technical Debt Prevention

The aim of technical debt prevention activities is to

proactively reduce the chance of technical debts being injected

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

174 Int'l Conf. Software Eng. Research and Practice | SERP'14 |

in the software. Different strategies are proposed to handle the

different sources of debt injections.

 Education and Training - In cases that human

misconceptions are sources of error, the software

professionals can be trained on the organization’s

development methodology, technology and tools, and

development process. Education and training will reduce

the probability of implementing the wrong solutions and

subsequent rework in design, coding and testing phases.

These issues are potential contributors to the technical debt

backlog.

 Pair Programming - Pair programming is an agile

technique whereby two software developers work side by

side at a workstation, one writing the code while the other

reviews the code. A study carried out by Cockburn et al.

found that pair programming improves design quality,

reduces defects and enhances technical skills [19]. Such

best practices will help reduce unclear, unreadable,

duplicated code which is often the source of technical debt.

 Test-driven Development - Test-driven development is an

approach to software development that requires writing a

failed automated test before writing the code that makes

the test pass. Once the code passes the test, the cycle is

repeated including refactoring the existing code to ensure

clean code that always works. Thus, test-driven

development reduces risk because developers have a better

understanding of what the software should achieve and the

code has fewer defects. Consequently, this code does not

contribute to the technical debt backlog.

 Refactoring - Refactoring is a technique for restructuring

code by improving its internal structure without affecting

its external behavior. Refactoring improves not only

aspects of code quality but also productivity [20].

Examples of refactoring involve deleting unused code and

duplicated code.

 Continuous Integration - Continuous Integration is a

software development practice where members of a team

integrate their work frequently, usually each person

integrates at least daily, leading to multiple integrations per

day [21]. Continuous integration speeds development and

the team is able to deliver at any moment a version of the

software suitable for release. In addition, it encourages

feedback between customers and the development team,

which assists with ensuring proper functionality before set

deadlines.

 Conformance to process and standards - When the source

of the debt is due to non-conformance to processes,

standards and conventions then enforcement either at the

organization or project level will help prevent technical

debt injections. Such activities theoretically contribute to

high quality software, thereby reducing the amount of

defects.

 Tools - Moreover, tools that can aid in reducing the chance

of debt injections should be utilized; for example, a

syntax-directed editor can help to reduce syntactical

problems.

 Customer Feedback - Getting customer feedback can help

clarify any requirements misinterpretations early. This

feedback will assist in preventing the wrong solution from

being implemented, thus increasing technical debt.

Prototyping is a tool that can be used to aid in getting

customer feedback by allowing them to interact with the

“working system” and communicating their satisfaction or

concern before the software is actually deployed [22].

 Others – There are other best practices that can contribute

to technical debt prevention:

o Bug bashes which involve the entire team putting

aside their daily activities to review and exercise

a part of the code base with the objective of

quickly revealing defects.

o Having dedicated teams whose primary focus is

on reducing technical debt [9].

o Having each development team dedicating one

iteration during a set release period towards debt

reduction [9].

o Allowing Slack – planning some lower priority

tasks that can be dropped if the team gets behind.

In this way, the team will deliver the most

important functions.

o Reflective improvement – developers take a

break from software development and try to find

ways to improve their processes. This helps to

pinpoint processes that are and are not working

and modify them to develop a strategy that works

better.

However, none of the techniques listed above are 100%

foolproof and cannot guarantee prevention of technical debt. In

addition, it is very difficult for a company to adopt each and

every best practice suggested above. For example, prototyping

can be a costly technique and might not be suitable for small

companies. A company with limited manpower might not find

pair programming a very attractive solution. Refactoring

requires some level of expertise and experience with the code.

Novice programmers may not be able to refactor large portions

of the code. A company might adopt one or more of the

suggested techniques and best practices, according to what they

think will be most fruitful to them, based on the resources at

their disposal and the types of system being developed.

3.2. Technical Debt Reduction

The aim of technical debt reduction activities is to remove

as much of the injected debt as possible. There are numerous

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

Int'l Conf. Software Eng. Research and Practice | SERP'14 | 175

good practices in agile software development that can benefit

technical debt reduction. Such agile practices include code

reviews (using static analysis tools), test automation and

customer feedback.

 Code reviews using static analysis tools assess the quality

of the code without executing the code to reveal violations

of recommended programming practices that might affect

the quality of the software [4]. These tools help to pinpoint

problematic code areas such as long methods, large

classes, and duplicated methods and help reduce technical

debt [23].

 Automating unit tests act as a safety net by providing

immediate feedback to the team. In addition, automating

regression testing in an automated build process permits

growth of solid code while quickly iterating. Automated

tests protect the software in the sense that it prevents

certain defects from reoccurring without being detected

[23].

 Customer feedback is an essential agile practice. After an

iteration, the new features should be demonstrated to the

customers for feedback. Such an initiative will ensure that

the development team is on the right track and not

accumulating any specification debt.

Performing regular code reviews and automated testing are

techniques that can be used to identify and reduce technical

debt. Involving the customer provides the added benefit of

validating the software before its release. However, despite the

availability of static analysis tools, it might not always be

possible to carry out extensive code reviews. Often, these tools

report many false positives that limit the effectiveness of the

tools. Similarly, when all unit tests cannot be automated due to

resource constraints, a team can accumulate test debt. Based on

their resource availability, a company can decide which of the

proposed techniques work best for them.

3.3. Technical Debt Containment

Technical debts that bypassed the debt prevention and

reduction activities intentionally or unintentionally remain

present in the software. It is common practice to have working

software deployed at a customer’s site with known technical

debt present. For these situations, technical debt containment is

the quality assurance approach that must be taken. It is

imperative to isolate the impact of known debts so that other

parts of the software are not impacted.

While there is a lack of techniques proposed in existing

literature to contain technical debt, N-version programming

(NVP) is one applicable approach.

 N-version programming – NVP is the independent

generation of functionally equivalent programs from the

same initial specification [24]. It is a technique that can be

adapted to contain technical debt by introducing

duplications in the software. Often, developers are hesitant

to refactor complex code for fear of introducing additional

defects. When there are independent versions of the

software, programmers will be able to refactor one version

of the code. If there is a failure in that particular version,

the software will still function correctly, due to the

multiple versions.

NVP is a technique that can be used for technical debt

containment. However, NVP has its limitations. First, it is a

technique that relies heavily on the accuracy of the requirement

specifications. Also, it is based on the assumption that the

software built differently will result in few similar errors.

Lastly, the cost with implementing N versions of a program

instead of one increases development cost [25]. These

restrictions may prevent a challenge to the adoption of NVP,

but the need to contain the impact of lingering debts makes it a

viable solution.

4. Recommendations For Managing

Technical Debt

Despite a company’s desire to prevent and reduce technical

debt, it is difficult to get rid of all the debt. Gradually, the

software development team needs to pay off the debt as a

commitment towards ensuring quality software. Laribee

proposed a four-phase approach to tackle technical debt [26]:

1. Identify the technical debt and its location.

2. Prioritize the debt with the help of the concerned

stakeholders and the team members.

3. Fix the debt.

4. Repeat phases 1-3.

Phase 1 is a crucial step as it is imperative to perform a

technical debt analysis to assess how much technical debt is

present in the code base and make it visible. Free tools such as

Sonar [27] can aid in the process of code quality transparency.

Sonar has a technical debt plug-in that identifies potential

issues before they affect delivery and shows the approximate

cost to pay back all the technical debt in a module or across

different modules as in Figure 2.

Figure 2: Sample Information Extracted from Sonar [23]

Such tools can help build up a technical debt list, each item

in the list representing an uncompleted task. For each debt

item, the list should contain a description of where the debt is,

why the tasks need to be addressed, estimates of the principal

and interest, and effort estimates. It is common practice to

maintain the list within the company’s defect tracking system

as a debt backlog.

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

176 Int'l Conf. Software Eng. Research and Practice | SERP'14 |

Once technical debts have been identified, the next step is

to communicate with the concerned stakeholders so that they

are aware of the issues. Next, the decision can be made on how

to prioritize the technical debt list such that the most critical

items are addressed first.

Seaman el al. [10] propose 4 distinct decision–making

approaches for prioritizing technical debt. In the Cost/Benefit

Analysis approach, the principal, interest and interest

probability of each technical debt item is assigned ordinal

scales of measurements such as low, medium and high, which

can help make coarse-grained preliminary decisions. For

example, a company may decide to tackle 75% of debt with

high interest and 25% of debt with medium interest and defer

the ones with low interest. Secondly, the Analytic Hierarchy

Process (AHP) assigns weights and scales to different criteria

which are used to measure technical debt. Then, a series of

pair-wise comparisons is performed between the alternatives to

get a prioritized ranking of the technical debt items. The

Portfolio approach is based on the return on maximization of

investment value and investment risk minimization to decide

what technical debts should be addressed first. Lastly, the

Options approach is analogous to investing in refactoring the

debt item with the long-term objective of facilitating

maintenance in the future and thereby saving money.

Snipes et al. assess deferred defects to determine the

amount of technical debt and prioritize fixes. [28]. They

identified the factors that influence the decision as follows:

 Severity - assesses the impact of the defect on the

customer’s normal system operations

 Existence of a workaround - defers the defects to a later

release and temporarily fixing the issue using an alternate

approach

 Urgency of fix required by a customer - occurs when the

customer requests a fix for a particular defect

 Effort to implement the fix - refers to the effort and time

required to fix and test the defect

 Risk of the proposed fix – refers to the extent to which the

code and functionality will be changed when the defect is

fixed

 Scope of testing required - determines whether regression

tests need to be run on the resulting defect fix

The factors listed above are of decreasing order of

importance.

After technical debt has been identified and prioritized, the

technical debt items need to be integrated into the existing

development backlog. Identifying and prioritizing technical

debts are the initial phases in the whole process. The real

challenge for the team is to actually work on the debt backlog

to reduce the debt and transform a system of marginal quality

into a sustainable, high quality set of artifacts.

5. Conclusion

Technical debt is part of every project and affects different

artifacts in the software development life cycle. It is important

that technical debt is visible to all concerned stakeholders. An

additional good practice is to repay the technical debt within a

tolerated time frame. Indeed, if not handled promptly, the

consequences can be drastic. Proactively applying prevention

and reduction QA activities will ensure that quality artifacts are

being produced. Reactively, the technical debt needs to be

identified, located and contained.

In this paper, we have proposed a set of quality assurance

activities that focus on prevention, reduction and containment

of technical debt. Prevention activities include pair

programming, test-driven development, continuous integration,

formal methods, amongst others; reduction activities include

customer feedback, code reviews and automated testing; and

containment activities include N-version programming.

This paper provides a single source for common best

practices for technical debt and can help organizations that

have newly adopted agile methods to better manage their

technical debt and prevent the debt backlog from growing.

More mature companies can also benefit from this work as they

may decide to include more best practices into their iterations

or shift from one technique to another and this list can help

guide their choices.

6. References

[1] K. Schwaber and J. Sutherland, Software in 30 Days:

How Agile Managers Beat the Odds, Delight Their

Customers, And Leave Competitors In the Dust. John Wiley

& Sons, 2012.

[2] L. Williams and A. Cockburn, “Agile software

development: it’s about feedback and change,” Computer, vol.

36, no. 6, pp. 39–43, 2003.

[3] W. Cunningham, “The WyCash portfolio management

system,” in Addendum to the proceedings on Object-oriented

programming systems, languages, and applications

(Addendum), Vancouver, British Columbia, Canada, 1992,

pp. 29–30.

[4] A. Vetro, “Using automatic static analysis to identify

technical debt,” in 2012 34th International Conference on

Software Engineering (ICSE), 2012, pp. 1613 –1615.

[5] C. Seaman and N. Zazworka, “IEEE/Lockheed Martin

Webinar on Identifying and Managing Technical Debt,” Nov-

2011. [Online]. Available:

http://www.nicozazworka.com/research/technical-debt/.

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

Int'l Conf. Software Eng. Research and Practice | SERP'14 | 177

[6] S. McConnell, “Technical Debt.” [Online]. Available:

http://www.construx.com/10x_Software_Development/Techni

cal_Debt/. [Accessed: 14-Apr-2013].

[7] J. Rothman, “An Incremental Technique to Pay Off

Testing Technical Debt.” [Online]. Available:

http://www.stickyminds.com/sitewide.asp?Function=edetail&

ObjectType=COL&ObjectId=11011. [Accessed: 14-Apr-

2013].

[8] G. Lipka, “The UX of Technical Debt,” Feb-2011.

[Online]. Available: http://commadot.com/the-ux-of-

technical-debt/. [Accessed: 14-Apr-2013].

[9] Z. Codabux and B. Williams, “Managing technical debt:

An industrial case study,” in 2013 4th International Workshop

on Managing Technical Debt (MTD), 2013, pp. 8–15.

[10] C. Seaman, Y. Guo, N. Zazworka, F. Shull, C. Izurieta,

Y. Cai, and A. Vetro, “Using technical debt data in decision

making: Potential decision approaches,” in 2012 Third

International Workshop on Managing Technical Debt (MTD),

2012, pp. 45–48.

[11] S. Chin, E. Huddleston, W. Bodwell, and I. Gat, “The

Economics of Technical Debt,” Cutter IT Journal, vol. 23, no.

10, 2010.

[12] T. Theodoropoulos, “Technical Debt – Part 1:

Definition.”

[13] L. Hochstein and M. Lindvall, “Diagnosing architectural

degeneration,” in Software Engineering Workshop, 2003.

Proceedings. 28th Annual NASA Goddard, 2003, pp. 137–

142.

[14] M. W. Godfrey and E. H. S. Lee, “Secrets from the

Monster: Extracting Mozilla’s Software Architecture,” in In

Proc. of 2000 Intl. Symposium on Constructing software

engineering tools (CoSET 2000, 2000, pp. 15–23.

[15] R. T. Tvedt, P. Costa, and M. Lindvall, “Does the code

match the design? A process for architecture evaluation,” in

International Conference on Software Maintenance, 2002.

Proceedings, 2002, pp. 393–401.

[16] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D.

Roberts, Refactoring: Improving the Design of Existing Code,

1st ed. Addison-Wesley Professional, 1999.

[17] C. Seaman and Y. Guo, “Chapter 2 - Measuring and

Monitoring Technical Debt,” in Advances in Computers, vol.

Volume 82, Marvin V. Zelkowitz, Ed. Elsevier, 2011, pp. 25–

46.

[18] J. Tian, “Quality Assurance Alternatives and

Techniques: A Defect-Based Survey and Analysis,” 01-Jun-

2001. [Online]. Available:

https://secure.asq.org/perl/msg.pl?prvurl=http://mail.asq.org/p

ub/sqp/past/vol3_issue3/sqpv3i3tian.pdf. [Accessed: 10-Mar-

2014].

[19] A. Cockburn and L. Williams, “The Costs and Benefits

of Pair Programming,” in In eXtreme Programming and

Flexible Processes in Software Engineering XP2000, 2000,

pp. 223–247.

[20] R. Moser, P. Abrahamsson, W. Pedrycz, A. Sillitti, and

G. Succi, “A Case Study on the Impact of Refactoring on

Quality and Productivity in an Agile Team,” in Balancing

Agility and Formalism in Software Engineering, B. Meyer, J.

R. Nawrocki, and B. Walter, Eds. Springer Berlin Heidelberg,

2008, pp. 252–266.

[21] M. Fowler, “Continuous Integration,” May-2006.

[Online]. Available:

http://martinfowler.com/articles/continuousIntegration.html.

[Accessed: 12-Mar-2014].

[22] E. Allman, “Managing technical debt,” Commun. ACM,

vol. 55, no. 5, pp. 50–55, May 2012.

[23] B. Barton and C. Sterling, “Manage Project Portfolios

More Effectively by Including Software Debt in the Decision

Process,” Cutter IT Journal, vol. 23, no. 10, 2010.

[24] L. Chen and A. Avizienis, “N-Version Programming: A

Fault-Tolerance Approach to Reliability of Software

Operation,” in Twenty-Fifth International Symposium on

Fault-Tolerant Computing, 1995, Highlights from Twenty-

Five Years, 1995.

[25] V. Bharathi, “N-Version programming method of

Software Fault Tolerance: A Critical Review,” in National

Conference on Nonlinear Systems and Dynamics, NCNSD,

2003.

[26] D. Laribee, “Using Agile Techniques to Pay Back

Technical Debt.” [Online]. Available:

http://msdn.microsoft.com/en-us/magazine/ee819135.aspx.

[Accessed: 22-Apr-2013].

[27] “SonarQubeTM.” [Online]. Available:

http://www.sonarqube.org/. [Accessed: 16-Jan-2014].

[28] W. Snipes, B. Robinson, Y. Guo, and C. Seaman,

“Defining the decision factors for managing defects: A

technical debt perspective,” in 2012 Third International

Workshop on Managing Technical Debt (MTD), 2012, pp. 54

–60.

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

178 Int'l Conf. Software Eng. Research and Practice | SERP'14 |

Towards Automatic GUI Testing Using Task and Dialog

Models

Eman M. Saleh

Software Engineering Department, Applied Science Private University, Amman, Jordan

Abstract - Testing GUIs for correctness can enhance the

entire system’s safety, robustness, and usability. The major

difficulty in testing a GUI comes from fact that it is impossible

to cover all possible interactions with all possible paths they

might lead to. This paper introduces a model-based testing

framework of GUIs that can automatically generate test cases

from the task and dialog models.

Keywords: Model-based UI testing; ConcurTask Trees;

Dialog models; State charts>

1 Introduction

 Graphical user interfaces (GUIs) are the most dominant

way in interacting with today's software systems. The ease of

using computers and handheld devices through GUIs makes

them a daily need for people to do their work with a small

amount of training, or even no training at all. On the other

hand, a special attention should be taken in designing and

implementing the user interface as it represents the first line

of interaction between the users and the underlying software.

This implies the importance of testing GUIs as they affect

both the acceptability and the success of the software as well

as the entire system's safety, robustness and usability [1].

 Despite their widely usage and their increased

importance; GUIs remain the least considered aspect in

software testing research area. Traditional testing techniques

that are used to test conventional software are not appropriate

to test GUIs which is due to two main reasons [1]: (1) The

extremely large input domain when considering user clicks,

selections and screen touches at all possible valid and invalid

input situations which leads to test case explosion problem [2]

(2) traditional coverage criteria do not work well for GUIs.

For example considering white box coverage criteria do not

work with testing GUIs because GUI software differs from

the underlying application code in its level of abstraction so

mapping between GUI events and the underlying code is not

straightforward [1]. (3) Test oracles usage in traditional

software differs from the way should be used for testing

GUIs; in traditional software testing test oracles are used to

compare test results against the oracle (expected results) after

the testing is completely done.

 Model-based testing enables the testing of an

implemented software artifact against a model that represents

the expected results or "what it should be" which is known as

the oracle. In the case of model-based user interface testing,

the models should be expressed in an abstract way and, on the

other hand, it should contain elements that are closely related

to the GUI structure and behavior. Models that are developed

during the analysis phase of the software engineering process

are too abstract to express the UI in an adequate way, such as

the task model or the use-case model.

 In this paper the model-based GU testing framework is

based on the ConcurTask Tree (CTT) task model [3] and a test

oracle, namely, the Dialog-States Model (DSM) [5], which is

a dialog model derived automatically from the task model and

represents all interactions and state transitions for a given

(CTT). The states in the DSM represent abstract screens or

windows and the navigation between them for the application

under test.

 This paper is structured as follows: sections 2 introduces

related work to model-based testing in general, section 3

introduces CTT task models and the Dialog States Model

(DSM) and section 4 describes how the DSM can be used as

an oracle in a model-based testing technique of GUIs; the

paper ends with conclusions and ideas for future work in

section 5..

2 Related work

 Test automation using models has been extensively

studied in recent years; especially the use of UML models.

The closest work is the work in [7] where test cases are

derived from UML state charts. The main difference between

their work and the proposed work in this paper is that their

sate chart is derived by transforming the textual use cases

descriptions while we derive the state chart from the

navigational behavior of the GUI relying on the task model

(CTT) which is enriched with temporal operators that do not

only specify the tasks that are carried out by the actors but

also the order and information dependencies between these

tasks. Another work that matches the idea of this paper is

IDATG [8] (Integrating Design and Automated Test Case

Generation) environment for GUI testing. IDATG supports

the generation of test cases based on both a model describing

a specific user task with is similar to our task model by

specifying the order of tasks execution and a model capturing

the user interface behavior which is also similar to the DSM

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

Int'l Conf. Software Eng. Research and Practice | SERP'14 | 179

used in this paper for to capture the behavior of the system,

our framework goes beyond the idea of the behavior by

defining a more abstract model that can derive test cases for

any user interface taking into consideration multiple target

platforms; ideally this is inspired by the fact the DSM model

was built with multi-platform GUIs are to be generated [9].

 In [10], Marlon Vieira, et. al, proposed a technique to

derive test cases from activity diagrams after annotating them

with test data requirements; this annotation is time consuming

and subject to errors which may lead to faults in the generated

test cases, compared to the proposed method of this paper, the

transitions on the Dialog States Model (DSM) are computed

automatically based on the CTT task types and the semantics

of the temporal operators between the tasks. The details of

this algorithm are out of the scope of this paper and can be

found in details in our previous work in [9].

3 CTT Formalism and the Dialog-

States Model

 Our methodology is built around model based design and

development of user interface, hence, we assume that the user

interface is generated by defining set of models starting by the

CTT task model is our starting point but is not suitable as a

test oracle nor to derive test cases since it is an abstract

representation of the tasks performed while interacting with

the GUI. It may not help to represent the event response states

of the GUI. As we mentioned the model to be used as a test

oracle should be closest to GUI nature (e.g. events, transitions

and new states), for this purpose the test cases are to be

derived from the Dialog-States model. The following sub-

sections will explain briefly both of these models.

3.1 The CTT Task Model

 CTT notation [3] is a hierarchical task model, it is

considered as the most usable specification for task modeling

in multiplatform model-based UI design and development

[11]. It provides a graphical syntax, a hierarchical structure

and a notation to specify the temporal relation between tasks,

an example of CTT task model is shown in Fig. 1.

Fig. 1. Simple Example of CTT Task Model

 With this notation, tasks can be classified into four

categories: abstract tasks ,interaction tasks ,user

tasks and application tasks . Tasks at the same level can

be can be connected by temporal operators like choice ([]),

independent concurrency (|||), concurrency with information

exchange (|[]|), disabling ([>) , enabling (>>), enabling with

information exchange ([]>>), suspend/resume (|>) and order

independence (|=|). The precedence of these operators from

highest to lowest is: [] > {|||, |[]|}> {[>,|>} > {>>,[]>>} [28].

3.2 The Dialog-States Model

 We originally defined the Dialog-States model as a

transition point from the abstract model toward more concrete

models [5] that represent the final GUI. The idea behind this

is to define the navigational structure of the GUI in a platform

independent matter which implies the possibility to customize

it through transformations to a concrete GUI that suits the

target platform or device, where a platform is triple of:

<hardware device, Operating System, Users>.

 The DSM is represented as StateCharts where it is

automatically derived from the task model using the

algorithm described in [9], it finds abstract screens generated

by analyzing the CTT task model depending on the semantics

of the temporal operators. The algorithm finds all states

including the start and the final states; another algorithm finds

all transitions as well as, all guards that label these transitions.

 The following Example, in Fig. 2 which is extracted

from [5] shows the corresponding DSM for the ConcurTask

Tree in Fig. 1. As mentioned before an algorithm is used to

derive the states and the transitions between them

Fig. 2. The Dialog-States model for the CTT in Fig. 1 [5]

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

180 Int'l Conf. Software Eng. Research and Practice | SERP'14 |

4 Model Based GUI Testing Using

DSM

 Basic requirements for an automated software testing

criterion are a test case generator, a coverage criteria and a

test oracle.

 In the proposed framework the DSM represents the test

oracle as it specifies the expected behavior of the GUI. In

GUIs test oracle usage need to be interleaved with test

execution as various user actions may lead to different states

of the system.

 Test coverage is the most important aspect in

conventional software testing, and more important and

difficult in GUI testing as it is hard to exhaustively test every

action performed by the use (mouse movements, clicks,

double clicks, menu selections, …etc.) which might lead to

test case explosion problem. To cope with this we propose to

automatically derive test cases from the DSM upon a test

coverage criterion defined by the tester.

 The DSM is capable to define and extract test cases

depending on basically three test coverage criteria:

1. State coverage: where the minimum requirement of

the derived test sets is to cover every state defined on

DSM, to prevent test case explosion and to minimize

the number of test cases every state has to be

covered once by the test suite.

2. Transition coverage: Where every transition between

two states has to be covered at least once.

3. Path coverage: Every path in the DSM has to be

covered at least once by the test suite. This implies

both state and transition coverage.

5 Conclusion and Future Work

 In this paper we presented a framework to automatic test

case generation of GUIs using a model based approach. The

framework is based on the CTT [3] model and the DSM [5].

The main contribution is solving one of the problems of

model-based technique; which is the need for creating a model

that that will serve as the test oracle; this is due to the

automatic derivation of the DSM. We also show how the

derivation nature of DSM will help to derive test cases based

on different coverage criteria.

 The DSM was built around the idea of designing of multi-

platform user interfaces with any screen sizes taking into

consideration devices with very small screen size; hence, the

DSM derivation algorithm suffers from the large number of

states derived. Future work is needed to modify the DSM

derivation process to minimize the number of the generated

states and hence the number of generated test cases.

 Extensive work is needed to implement a testing tool that

integrates the DSM with an IDE in order to run tests and find

test results by interleaving the execution of the test oracle

(DSM) and the actual GUI interactions.

6 Acknowledgment

Eman Saleh is grateful to the Applied Science Private

University, Amman, Jordan, for the financial support granted

to cover the publication fee of this research article.

7 References

[1] A. M. Memon, M. E. Pollack, and M. L. Soffa,

“Hierarchical GUI Test case generation using automated

planning,” IEEE Trans. on Soft. Eng. (TSE), vol. 27, no. 2,

pp. 144-155, February 2001.

[2] C. R. Paiva, N. Tillmann, J. C. P. Faria, and R. F. A. M.

Vidal, "Modeling and Testing Hierarchical GUIs", in

Proceedings of the ASM 2005 - 12th International Workshop

on Abstract State- - 12th International Workshop on Abstract

State Machines, Paris - France, March 8-11,2005.

[3] F. Paternò, C. Mancini, and S. Meniconi,

"ConcurTaskTrees: A Diagrammatic Notation for Specifying

Task Models", in Proceedings of the Interact'97, 1997.

[4] Jan Peleska and Wen-ling Huang: "Exhaustive Model-

Based Equivalence Class Testing". In Yenigün, Hüsnü and

Yilmaz, Cemal and Ulrich, Andreas (eds.): Testing Software

and Systems, Proceedings of the ICTSS2013. Springer,

LNCS 8254, pp.49-64, 2013.

[5] Eman Saleh, A. kamel, and A. Fahmy, “Dialog States a

multi-Platform Dialog model”, ECS journal, pp. 1-8, vol. 33,

Sep. 2009.

[6] P., A. C. R. P., Automated Speci_cation-Based Testing

of Graphical User Interfaces," Ph.D. thesis, Engineering

Faculty of Porto University, Department of Electrical and

Computer Engineering (2007). URL:

http://www.fe.up.pt/~apaiva/PhD/PhDGUITesting.pdf.

[7] P. Fröhlich, J. Link, “Automated Test Case Generation

from Dynamic Models”. In: Bertino, E. (Ed.): Proceedings of

the ECOOP 2000 pp.472–491, 2000.

[8] A. Beer, S. Mohacsi, and C. Stary: “IDATG: An Open

Tool for Automated Testing of Interactive Software”.

Proceedings of the COMPSAC '98 - 22nd International

Computer Software and Applications Conference, pages 470-

475, August 19-21, 1998

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

Int'l Conf. Software Eng. Research and Practice | SERP'14 | 181

http://www.springer.com/computer/swe/book/978-3-642-41706-1
http://www.springer.com/computer/swe/book/978-3-642-41706-1
http://www.springer.com/computer/swe/book/978-3-642-41706-1

[9] Eman Saleh, Amr Kamel and Aly Fahmy, “An MDE

Design Approach for Developing Multi-Platform User

Interfaces”, WSEAS Transactions On Computers Journal,

Issue 5, Volume 9, ISSN: 1109-2750, ACM press, pp. 536-

545, May, 2010.

[10] Marlon Vieira, et. al. "Automation of GUI testing using

a model-driven approach", Proceedings of the 2006

international workshop on Automation of software test, pp. 9-

14, ACM, 2006.

[11] Giulio Mori, Fabio Paterno`, and Carmen Santoro,

"Design and Development of Multidevice User Interfaces

through Multiple Logical Descriptions", IEEE Transactions

on Software Engineering, VOL. 30, NO. 8, pp. 1-14, August,

2004.

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

182 Int'l Conf. Software Eng. Research and Practice | SERP'14 |

An environment for automatic tests generation from use case
specifications

Carolina D. Cunha1 and Mark A. J. Song1
1Computer Science Department, PUC MINAS, Belo Horizonte, Minas Gerais, Brasil

Abstract— This paper proposes an environment for the
specification of use cases (UCs) and their derivation in
automated functional tests for web applications. The pro-
posed environment is based on our own domain specific
language (DSL), formalized by means of a BNF grammar
(for the Xtext framework), offering all the amenities and
usability of the Eclipse IDE. The proposal seeks to tighten
the relation between system specifications and tests, aiming
to facilitate and incentivize the use of automated tests and
their continuation, since they are frequently abandoned due
to cost and deadline limitations. All of the tools used in
the process, from specification to generation, execution and
management of tests, are free and in the public domain.

Keywords: functional-tests, use-cases, automation

1. Introduction
Tests are fundamental activities in software development,

because they are the last product evaluation resource before
delivery to end users. Among the various types of tests,
functional tests, in which systems are evaluated concerning
their inputs and outputs, without considering their internal
workings, stand out. Because they are based on system’s
specifications, functional tests are largely used, because
software products must behave like what was defined with
users during requirement analysis [1].

The demand for faster development of software products
while retaining quality calls for the very frequent execution
of tests, especially regression tests, to assure that new
functionality did not compromise the behavior of previously
implemented and validated requirements [2]. Although re-
gression testing is important, it is one of the most costly
stages of software development and maintenance. According
to [3], software tests can account for 30 to 50% of total
development cost, and according to [4] it is estimated that
regression testing is responsible for up to 80% of total testing
costs, and up to 50% of total software maintenance costs.

The realization of automated tests, in addition to reduc-
ing time spent testing the software, allows for an indirect
increase in software quality, since efforts can be focused
in other types of tests or in tests that cannot be automated
[5]. Automating repetitive tasks not only reduces costs, but
also improves precision, since humans are slow and prone
to error when dealing with such tasks.

It is perceivable that the generation of functional test cases
is still a predominantly manual and arduous task [6], as is
their execution, according to experience obtained in large
companies - an especially complicated scenario in large-
scale and long-lasting projects [5].

For test automation, test scripts are written that replicate
manual tests. The generation of functional test scripts can
be done by manual coding or by a recording tool (like
the Selenium IDE [7]), using the "Capture and Replay"
technique.

At first sight, the technique seems like a feasible solution,
because it requires no programming skills. However, if a
test needs to be altered, so does the recorded script - which
would require such skills - or a new recording must be
manually made [5]. Besides, scripts generated by those tools
are linear, with hard-coded inputs and comparisons, with no
possibility of reusing a script to compose new tests, not to
mention being hard to write and maintain. Furthermore, the
link between original and generated code is weak, making
it difficult to pinpoint specific reasons for an error identified
during testing.

In spite of the advantages in using automated code,
they are considerably costly to maintain, because for every
alteration in the system under test (SUT), tests must be
reviewed and updated as needed. If they fail to be updated
due to cost or deadline reasons, they become worthless.
According to [8], only a small part (sometimes less than
20%) of tests are automated because of these difficulties.

One way to reduce testing efforts while still guaranteeing
effectiveness would be to automatically generate Test Cases
(TC) from artifacts that were previously used during devel-
opment [9]. One of the most widely used ways to capture
software requirements is through Use Case (UC) description,
a central mechanism recommended in Unified Process (UP)
and in many modern methods [10], [11]. TCs derived from
UCs can be used to check if system requirements (UCs)
were correctly implemented [3], [9].

The goal of this work is to generate test scenarios from
UCs and, from these scenarios, generate executable TCs
that are converted into automated test scripts that retain a
connection to the specification.

2. Related Work
Many studies seek to use UCs to generate TCs or test

scenarios. In [9], test scenarios with sequencing based on

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

Int'l Conf. Software Eng. Research and Practice | SERP'14 | 183

UC’s textual pre and post conditions are generated and
described in controlled language. Generated scenarios have
a high abstraction level, opposite to what is proposed here,
a more concrete-level approach.

In [10], textual UCs described in a controlled language
and a domain model are used as inputs. Data inconsisten-
cies, like entities being described with multiple names, UC
operations that do not refer to a concept operation in the
domain model, among others. Scenarios are generated by
UC composition, and their execution is simulated in a state
machine with a tool called UCEd. Like in [10], we propose
a domain model with possible value information and intend
to generate scenarios with UC sequencing, but for real test
execution.

In [12] and [13], a UC specification language named
SilabReq, based on Xtext [14], is presented. Domain model,
system operation list, UML UC model and state, sequence
and activity diagrams are generated from UCs. [13] proposes
dividing the specification into different abstraction levels,
since UCs are used by people of different roles, with differ-
ent needs, during software development, ranging from end
users, requirement engineers, to designers, developers and
testers. Like [12] and [13], we propose a UC specification
language, with varied abstraction levels, using Xtext as base.
However, since our focus is generating executable tests, the
proposal encompasses elements beyond what is explored in
SilabReq.

According to [15], to contemplate the needs of every role
involved in a software development project, it is necessary
to specify UCs in many notations. A notation set is thus
proposed, based on structured text, and interaction and
activity diagrams, with defined rules to convert one into the
other. A test-friendly notation is mentioned as an important
and integral part of the set, but was not mentioned in the
paper, apparently because it was not worked on by the group.

In [16], a tool called TestGen is used to generate activity
diagrams and possible scenarios from UCs. A correctness
study is conducted for the generated TCs using mutant
analysis. Our proposal also uses the aforementioned tool,
but distinguishes itself by generating executable test scripts.

In [17], UCs are specified in an environment called
Text2Test, based on the Xtext framework, in which vali-
dations vary according to user profile. We also propose an
Xtext-based environment with validations, but focusing on
test execution.

[2] presents Webspec, a visual language with diagrams,
used to capture browsing, interaction and interface character-
istics for web applications. Webpsec was built as an Eclipse
plugin and uses mockups (UI doodles) for simulations. It
enables the generation of code and Selenium tests. Like [2],
our solution generates executable tests for Selenium and uses
Eclipse, but is based in a descriptive language instead of
diagrams.

Finally, in [18], an approach to generate test scenarios

from UCs with contracts formalized in OCL and sequence
diagrams. The required formalization in [18] elevates the
technical level necessary to understand and maintain UCs.

3. Proposed Approach
For the present work, we developed a DSL for UC descrip-

tion, formalized in a BNF grammar (fig 1). The grammar,
fed to the Xtext framework, is used in the generation of the
language’s concrete syntax (by means of a meta-model), for
the proposed environment.

We opted to use the "Fully Dressed" use case template,
presented in [19], which has a positive response in practical
experiments reported by the author. This template uses
one text column and numbered steps with a convention
of numbers and letters for alternate steps. This numbering
structure supports identification and generation of scenarios.

UCs can be described with varying levels of detail, ac-
cording to the project’s stages. In [11], three detailing levels
for writing UCs are presented, and it is suggested that UCs
be written in an essential style especially in the beginning
of specification - when the focus must be on intention, and
not on UI - and in a concrete/detailed style in the following
stages, when the UI project is available.

In this paper it is proposed that every step of the UC
in the abstract level be followed by its detailing, where UI
details are inserted. By adding UI information to UC steps,
test scripts can be generated. The use of an environment
where UCs are kept linked to tests helps reflecting into the
latter changes made in the former. Even if the changes are
not entirely automatically realized, they become motivated
by the connection of UC steps to their detailing and by
validation-generated warnings. Besides, UCs produce useful
debugging information when a test fail (fig 8). So, as can
be seen in figure 1, UCSteps are composed of Steps, that
can be of types: Action (User interactions with the screen),
Verification (Assertions that validate system responses) or
Storage (Storing values for later use).

In addition to UCs, UIs must also be described - with
their elements and menus - optionally with a domain model
(data dictionary), that helps to resolve ambiguity, registering
composite terms and the relationship between the elements.
Changes to the dictionary or UI generate warnings to users
if they break references in UC steps (or vice-versa) (fig 5).
Fields and messages are referenced in the use cases through
internal IDs. When changes occur, they only need to be re-
flected in the UI specification, which facilitates maintenance
(PageObject pattern [20]).

When indicating an input value to be inserted into a UI
element, fixed values can be used directly, or rules for dy-
namic generating input in execution time can be stipulated.
Dynamic values can stem from field type description (type,
minimum and maximum values), from an expression or from
a list of values. The rule specification for dynamic value
generation can be made in a UC step, in a determined

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

184 Int'l Conf. Software Eng. Research and Practice | SERP'14 |

Fig. 1: Some rules of proposed DSL .

screen field or a determined property in the data dictionary.
If specified in the dictionary, it is possible to vary the
specification for ranges, called equivalence classes. Should a
rule be used in multiple UCs, it should be defined in a single
location (the dictionary or the screen) and be referenced
in the UC steps. If this rule is used in various screens, it
becomes more interesting be defined in the data dictionary

Test generation must be run every time an alteration
to the specification is realized. For test generation, it is
first necessary to generate test scenarios, traversing path
possibilities in the basic and alternative flows (an example
is shown in section 4).

Among the many options to generate the paths of a UC,
like a graph or FSM (finite state machine) conversion, we
opted to treat the UC like an activity diagram, because it
is easily understood by users, helping them visualize and
validate the completeness and correctness of UC paths.

3.1 The environment
This paper presents an environment for the specification

of UCs - and their unfolding into TCs - based on the
open-source framework Xtext. Through this framework, it
is possible to obtain a specific editor for a language, on the
Eclipse IDE [21], with all the characteristic support, which
favors productivity and usability features, like: support to
"folding", "autocomplete", "syntax highlighting", "structure
outline" and "cross-referencing", in addition to easily man-
aging artifact versions.

The environment validates, in editing time, the informed

text, according to the supplied grammar. During data input,
the allowed options in each point are presented ("autocom-
plete" resource). When it is a cross-reference point, options
for the referenced type are offered. When specifying a menu
access, for example, a list containing all declared menu
options is shown. Semantic validations are also considered
during editing, and added to the code generated by the
framework. An example of such validation is the verification
that every mandatory field (indicated by ’*’) were filled, in
a UC’s steps, before the step that requires submitting the
screen. When an error is found, it is indicated in the text and
in a tab that helps fixing it ("Quick Fix" resource) (fig 5).
Due to the fact that validations happen in editing time,
the author can iteratively refine the UC. Standardization
in writing UCs is aided and guided by the environment,
improving its quality and facilitating the identification of its
components, that can be used for automatic transformations
afterwards [12].

For scenarios generation, we opted for the TestGen [16]
tool, which takes the high-level UC steps as input and
generates test scenarios (.tol files) and an activity diagram
(.xmi file) as outputs, for each UC. Test scenarios are
generated for every path obtained from the diagram.

Test scripts are generated in Java, and begin their execu-
tion using JUnit [22]. The scripts use, for interaction with
the UI, the Selenium WebDriver [7] tool, for simulating user
navigation. This tool was chosen because it is a free tool and
in the public domain.

Test executions are done in a declarative way, using the

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

Int'l Conf. Software Eng. Research and Practice | SERP'14 | 185

Fig. 2: Proposed environment structure.

UC name. It is also possible to execute all or a set of tests,
formed by UCs that correspond to keywords informed in
the execution. Keywords related to each UC are previously
added to the specification, in addition to UC name. It is
possible to test a UC’s main scenario or every possible
scenario. UC sequencing is allowed, by stating so in the
pre-conditions or within steps of the scenario. UCs invoked
from other UCs have the main scenario executed, unless
extensions are indicated he should go through.

For each execution, dynamic values are generated accord-
ing to the rule specified for each field.

Results are stored in the TestLink [23] environment,
because it is a free and complete tool for test management,
that allows users to centralize automated and manual tests,
keep an execution history (with evidence logging), and
obtain management reports. Each execution is recorded,
along with its results. Errors results in the logging of the
following evidence: a screenshot and a Java error stack
trace, containing information about the UC, scenario and the
step in which the error occurred, in addition to the runtime
flaw (fig 8). These evidences, with the SUT’s logs, help
identifying what caused the errors.

Figure 2 shows the structure of the environment proposed
and artifacts used in each phase.

4. Experiments
In this section we present a viability study, for the UC

"Create Student", presented in figure 3. Data dictionary and
user interface specification are also presented (fig 4).

Fig. 3: Example of UC: Create Student.

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

186 Int'l Conf. Software Eng. Research and Practice | SERP'14 |

Fig. 4: Example of data dictionary and UI specifications.

Simulating a specification modification motivated by an
alteration of the SUT, it was removed, from the IU descrip-
tion, the field "homePhone". An error in the UC that refer-
ences the removed field is pointed out by the environment
(fig 5).

Fig. 5: Error pointed out by the environment.

Scenario generation for the UC CreateStudent resulted in
4 scenarios, as can be seen in figure 6. Test scripts were
generated for the scenarios and tests were ran with positive
results.

So, to simulate the discovery of an error in a regression
test, we inserted a flaw in the SUT, in the routine that reads
course data, causing a collateral effect in the routine that
adds a student, which conducts some validations regarding
courses to allow the addition of a student.

Figure 7 shows the execution results: the first one ended
normally and the second one failed with an error. By clicking

Fig. 6: Scenarios generated for the UC Create Student.

on the UseCaseName_StackTrace evidence, details about the
error can be seen (fig 8). As can be noticed, class names that
appear on the error stack bring useful information to aid in
discovering the reasons behind the error, pointing to which
step/scenario/UC the error occurred in. In this case, in step
4, scenario 1_2_3_4 of the CreateStudent UC.

5. Conclusion and Future Work
It was concluded that using the proposed environment was

feasible for a real system, according to case study. This study
covered the CRUD functionality, and, in a second phase,
will treat varied and more complex features. Between the
two stages, it was decided to develop some mechanisms
to facilitate the specification, as a new kind of step that
informs all fields of a screen and submit it, a way to
describe variations of a screen by means of extensions, and
a mechanism to parameterize instances of similar use cases.
Some limitations were found during the experiments, like the
non-treatment of asynchronous steps and lack of permission
for variations of more than one level, inside the alternate
flux, situations that can be seen in UC22, in [19].

As future work, first and foremost, we intend to consider
this second level of variation (which involves altering the
TestGen tool) and the above mentioned enhancements. Addi-
tionally, we intend to: develop a mechanism to automatically
capture the screen structure; allow the execution of tests for
only UCs that suffered changes, between two versions; allow
the execution of tests with "pairwise" technique, dealing with
boundary-value analysis and equivalence class partitioning
techniques (the element specification format already allows
the generation of this variation); deal with screen modeling,
like in [2], since the employed technologies are related;
generate mechanisms to facilitate importing specifications
created with other tools; generate the activity diagram in
formats compatible with free UML tools, using XMI as
base.

6. Acknowledgements
We would like to thank FAPEMIG for the financial

support.

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

Int'l Conf. Software Eng. Research and Practice | SERP'14 | 187

Fig. 7: Execution results.

Fig. 8: Error evidence in the execution of the CreateStudent UC.

References
[1] R. Pressman, Software Engineering: A Practitioner’s Approach,

7th ed. Bookman, 2011.
[2] E. R. Luna, G. Rossi, and I. Garrigós, “Webspec: a visual language

for specifying interaction and navigation requirements in web applica-
tions,” Requirements Engineering, vol. 16, no. 4, pp. 297–321, 2011.

[3] J. Heumann, “Generating test cases from use cases,” The rational
edge, vol. 6, no. 01, 2001.

[4] M. J. Harrold, “Reduce, reuse, recycle, recover: Techniques for
improved regression testing,” in Software Maintenance, 2009. ICSM
2009. IEEE International Conference on. IEEE, 2009.

[5] P. Pedemonte, J. Mahmud, and T. Lau, “Towards automatic functional
test execution,” in Proceedings of the 2012 ACM international con-
ference on Intelligent User Interfaces. ACM, 2012, pp. 227–236.

[6] L. Mariani, M. Pezzè, O. Riganelli, and M. Santoro, “Autoblacktest:
a tool for automatic black-box testing,” in Proceedings of the 33rd
International Conference on Software Engineering. ACM, 2011, pp.
1013–1015.

[7] Selenium, “Selenium,” http://www.seleniumhq.org, Mar. 2014.
[8] S. Thummalapenta, S. Sinha, N. Singhania, and S. Chandra, “Au-

tomating test automation,” in Software Engineering (ICSE), 2012 34th
International Conference on. IEEE, 2012, pp. 881–891.

[9] S. S. Some and X. Cheng, “An approach for supporting system-level
test scenarios generation from textual use cases,” in Proceedings of
the 2008 ACM symposium on Applied computing. ACM, 2008, pp.
724–729.

[10] S. S. Somé, “Supporting use case based requirements engineering,”
Information and Software Technology, vol. 48, no. 1, pp. 43–58, 2006.

[11] C. Larman, Applying UML and Patterns An Introduction to object -
oriented analysis and design and iterative develop, 3rd ed. Prentice
Hall, 2005.

[12] D. Savic, I. Antovic, S. Vlajic, V. Stanojevic, and M. Milic, “Language
for use case specification,” in Software Engineering Workshop (SEW),
2011 34th IEEE. IEEE, 2011, pp. 19–26.

[13] D. Savic, A. R. da Silva, S. Vlajic, S. Lazarevic, V. Stanojevic,
I. Antovic, and M. Milic, “Use case specification at different lev-
els of abstraction,” in Quality of Information and Communications
Technology (QUATIC), 2012 Eighth International Conference on the.
IEEE, 2012, pp. 187–192.

[14] Xtext, “Xtext,” http://www.eclipse.org/Xtext, Mar. 2014.
[15] M. Smialek, “Accommodating informality with necessary precision in

use case scenarios.” Journal of Object Technology, vol. 4, no. 6, pp.
59–67, 2005.

[16] J. J. Gutierrez, M. J. Escalona, M. Mejias, J. Torres, and A. H.
Centeno, “A case study for generating test cases from use cases,”
in Research Challenges in Information Science, 2008. RCIS 2008.
Second International Conference on. IEEE, 2008, pp. 209–214.

[17] A. Sinha, S. Sutton, and A. Paradkar, “Text2test: Automated inspec-
tion of natural language use cases,” in Software Testing, Verification
and Validation (ICST), 2010 Third International Conference on.
IEEE, 2010, pp. 155–164.

[18] C. Nebut, F. Fleurey, Y. Le Traon, and J.-M. Jezequel, “Automatic
test generation: A use case driven approach,” Software Engineering,
IEEE Transactions on, vol. 32, no. 3, pp. 140–155, 2006.

[19] A. Cockburn, Writing effective use cases. Pearson Education, 2001.
[20] PageObject, “Page object,” http://martinfowler.com/bliki/PageObject.html/,

Mar. 2014.
[21] Eclipse, “Eclipse,” http://www.eclipse.org/, Mar. 2014.
[22] Junit, “Junit,” http://junit.org/, Mar. 2014.
[23] Testlink, “Testlink,” http://testlink.org/, Mar. 2014.

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

188 Int'l Conf. Software Eng. Research and Practice | SERP'14 |

Experimental Evaluation of Hybrid Algorithm in
Spectrum based Fault Localization

A. Jonghee Park1,2, B. Jeongho Kim2, and C. Eunseok Lee2
1Samsung Electronics, Suwon, Gyeonggi-do, South Korea

2Sungkyunkwan University, Suwon, Gyeonggi-do, South Korea

Abstract— During debugging process in software develop-
ment cycle, fault localization is inevitable work. Diverse
approaches have been proposed, such as program slicing,
machine learning, and data mining for fault localization. In
this paper we propose an effective hybrid fault localization
algorithm based on a spectrum that enables fault detection
in every statement. This algorithm distinguishes the location
of a bug that causes a false positive score through the rela-
tionship between a test case and statement hit information.
We also provide a fault localization tool named SKKU Fault
localizer which enables source code instrumentation, test
automation, test result comparison, extraction of distinct
data, and fault ratio display. We applied it to the bug
detection in Siemens test suite. Empirical results show that
the hybrid algorithm not only decreases the amount of code
to be reviewed by the programmer but also increases the
effectiveness.

Keywords: Program debugging, Spectrum based Fault Localiza-
tion, Execution trace, Suspicious code, Fault localization

1. Introduction
Fault localization is time-consuming and costly, but, it is

a very important task in the software development process.
It is the hardest and most boring work for the programmer
but it is essential work, needed to get rid of program bugs.
To date, many studies have been carried out as people
in the software industry have always been interested in
fault localization. Firstly, program slicing [1] with a static
and dynamic method was introduced. After that, various
machine-learning methods were developed, such as artificial
neuron network [2], SVM [3] and K-NN [4], data mining
[5], and applied to the fault localization field. In addition,
a major method called spectrum-based fault localization
utilizes the relationship between the test result of a test
case, and statement hit information. Tarantula [6], AMPLE
[7], Jaccard [8], and Heuristic III [9] are representative
algorithms in spectrum-based fault localization, which we
will introduce in Section 2.

The main goal of this paper is to reduce the reading code
coverage that the programmer should review, and effectively
detect the exact location of any program bug. In addition,
all processes are to be conducted with minimum human
intervention. Then, we expect improved software product

quality as well as reduced human workload in debugging
activity. Therefore, we focused on spectrum-based fault
localization which can provide suspiciousness that shows
the probability of a program bug in every statement. In
particular, we proposed a Hybrid fault localization technique
which combines advantages from previous equations which
were introduced by former researchers. In addition, we ap-
plied distinct data extraction technique to remove redundant
duplicated data among test result.

The rest of this paper is as follows. In Section 2, we
present some backgrounds and related work on spectrum-
based fault localization. In Section 3, we propose methodol-
ogy including the Hybrid technique and SKKU Fault local-
izer that we have developed for fault localization automation.
In Section 4, we discuss the results of experimentation
from two perspectives regarding reading code coverage and
correctness of fault localization. Finally we concluded in
Section 5, and presented future work.

2. Related work
Spectrum-based fault localization provides fault suspi-

ciousness ratio by analyzing the relationship between a
test result (pass or fail) and the visiting information of a
statement. We assume that if failure test case happened, a
fault exists among statements that were visited during a test
in runtime. However, we cannot expect to determine the
exact fault location only by the fail test case. Therefore, the
pass test case was also utilized, to narrow down the fault
statement.

Table 1. describes some notations that are commonly used
in the fault localization field. hi contains binary information
as to whether the statement was visited or not. ei contains
binary information to describe the test result (pass or fail). If
test case (Ti) which is one of the test cases in the test pool,
was executed in runtime and the test result was fail, a certain
statement (si) can be described as a11 (this line was visited)
or a01 (not visited). In the same way, if the test result was
pass, a certain statement (si) can be described as a10 (this
line was visited) or a00 (not visited). Therefore, according to
test result, every statement will be counted with four types
of notation (a11, a10, a01, a00).

Representative equations have previously been introduced
in spectrum-based fault localization methods, such as Taran-
tula, AMPLE, Jaccard, CBI [10], Ochiai [7] and Heuristic

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

Int'l Conf. Software Eng. Research and Practice | SERP'14 | 189

Table 1: Relation between statement hit and test result
Value Description

Notation hi ei Statement hit Test result

a11 1 1 O Fail

a10 1 0 O Pass

a01 0 1 X Fail

a00 0 0 X Pass

III. They calculate suspicious fault ratio in a different way,
as below.

Tarantula Sj =
a11

a11+a01

a11

a11+a01
+ a10

a10+a00

(1)

J. A. Jones and M. J. Harrold (2005) developed Tarantula
[6] which is aim to show suspiciousness in every statement.
In addition, they conducted an experimental program which
is based on C language.

AMPLE Sj = | a11
a01 + a11

− a10
a00 + a10

| (2)

AMPLE [7] was developed to collect information about the
hit spectra of method call sequences. Therefore, it is known
to check faults in object-oriented language, such as Java and
C++ language.

Jaccard Sj =
a11

a11 + a01 + a10
(3)

Jaccard [8] developed from similarity coefficients in the
mathematics field. It normally was used to find meaning-
ful data among sets that consist of nominal elements. In
particular, it was used in the Pinpoint framework.

Heuristic III Sj = [(1.0)∗nf1+(0.1)∗nf2+(0.01)∗nf3]

− [(1.0) ∗ ns1 + (0.1) ∗ ns2 + α ∗X(F/S) ∗ ns3] (4)

Wong et al. (2010) recently introduced Heuristic III [9]. They
considered additional failed and passed test cases, and how
they contribute to locating program fault. They divided failed
and passed test cases into three groups (see more details in
reference paper). In addition, they employed scaling factor
α. Heuristic III (a), (b) and (c) were made according to
the α value 0.01, 0.001 and 0.0001, respectively. Through
various experiments, they presented Heuristic III (c) as the
best equation.

3. Methodology
In spectrum-based fault localization field, there are ap-

proximately 30 types of existing equations [11][12]. We
observed their behaviors and found out the characteristics of
each algorithm. For the same software program, the suspi-
cious fault ratio was different in every equation, according to
their peculiarity. In this paper, we considered each equation’s
strength and finally proposed a Hybrid algorithm. To prove
the proposed Hybrid equation, we developed the SKKU
Fault localizer.

3.1 Hybrid algorithm
Hybrid algorithm is basis of two assumptions.
• Assumption 1: Each algorithm has strength and weak-

ness at the same time.
Therefore, once we get advantages of their algorithms,
general outperformed Hybrid algorithm can be gener-
ated.

• Assumption 2: To remove redundant duplicated test
result makes better effectiveness of suspiciousness.
Test result data is huge and contains redundant data.
Once we remove unnecessary data, it localizes exact
bug location.

We figured out that Tarantula and Jaccard show zero
suspiciousness when the numerator a11 was zero. This
means that suspiciousness should be zero in statement (si), if
there are no fail test cases. Otherwise, it shows suspicious-
ness over zero even if all test cases were hit. In addition,
AMPLE described zero suspiciousness, if all test cases were
visited in statement (si). We realized that this characteristics
makes variation of fault localization effectiveness when we
applied those algorithms to several test programs. Finally,
we develop the Hybrid algorithm to combine the Tarantula,
AMPLE, and Jaccard characteristics as follows.

Hybrid Sj =

if | a11

a01+a11
− a10

a00+a10
| = 0, 0

else
a11

a11+a01
a11

a11+a01
+

a10
a10+a00

+ a11

a11+a01+a10

(5)

We present the mid function in the example in Figure 1,
which is well known for describing fault localization. There
is a program bug in the 7th statement. Only three test cases
hit that statement, in addition to one test case being failed,
and the others being passed. This means that four types a11,
a10, a01, a00 mapped to 1, 2, 0, and 4. Based on the formula,
Tarantula shows 0.84, and Hybrid indicates 1.33. In addition,
Tarantula has six statements to be reviewed (over than zero
suspicious fault ratio), and Hybrid has only three statements.
It shows the Hybrid equation not only reduced the reading
code coverage, but also detected the exact fault location in an
early rank. Removing redundant data, such as T1, T2 (T7
is not redundancy cause test result was fail.) is important
because redundant data affects suspiciousness. Only distinct
data, such as T1 shall be used for fault localization.

3.2 SKKU Fault localizer tool
Software debugging is time-consuming work, where the

programmer rectifies error; but it is essential work, in order
to fulfill the required quality of software, and completeness
of product. Therefore, those who work in Research and De-
velopment develop their own tools, or purchase commercial
tools. However, those tools are not customized as much as
they want, and even, require manual intervention from the
user in many places, while they operate the tool. Therefore,

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

190 Int'l Conf. Software Eng. Research and Practice | SERP'14 |

Fig. 1: Source code, test cases and suspiciousness statement
(Mid function)

Fig. 2: Suspicious fault ratio of Talantula, AMPLE, Jaccard,
and Hybrid

this paper introduces the SKKU Fault Localizer tool. If
there is original source code, this tool can be applied to
applications operated by Windows OS.

SKKU FL tool has many benefits, as follows. First,
it saves time, because many procedures are automated,
such as build source code, instrumentation, execution test,
and visualization of suspicious fault ratio. Furthermore, it
minimizes user invention, when the user utilizes the tool.
Second, it reduces source codes that the developer needs
to examine. Generally, when problem was happened, the
developer debugs every statement that the program passed.
However, SKKU FL tool executes many test cases, and
automatically displays the most suspicious line. Then, the
developer just checks the highly suspicious lines, which
are shown with red background fill. Third, it supports a
function to extract the test result as an Excel file. Then, it
can be utilized in analyzing a test case and fault localization
information data.

The SKKU FL tool GUI consists of an input space for
source code, database file, answer sheet and test suite from
the user, and displays space for test cases and test results

of source code. It provides a function to extract Excel file
that belongs to the display space (Test case, Source code,
Result).

Fig. 3: Input screen : test case

• Input space: location of source code, database, answer
sheet, test case, algorithm of suspicious fault ratio, start
and load button

• Display space: view of test case, source code added
suspicious fault ratio and rank

Fig. 4: Display screen : source code and suspicious fault
ratio

In Figure 4, it displays line number, statements and passed
information as well as colored suspicious fault ratio. Yellow
means it is potential risky code, and red means it is highly
risky code. As a result, it isolates the fault location, even
guides the path where statements are passed, and reducing
code lines unrelated to the fault. The functionality of SKKU
FL tool has been continuously updated, in order to apply

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

Int'l Conf. Software Eng. Research and Practice | SERP'14 | 191

Table 2: Test case format
TC_ID Test

result
arg1 arg2 arg3 Expected

value
Actual
value

TC_0001 Pass 3 3 5 3 3

TC_0002 Pass 1 2 3 2 2

TC_0003 Pass 3 2 1 2 2

TC_0004 Pass 5 5 5 5 5

TC_0005 Pass 5 3 4 4 4

TC_0006 Fail 2 1 3 2 1

various test programs, such as the Siemens test program, as
well as to utilize database.

3.3 Test case design
The test case is managed in an Excel sheet, and it defines

the TC_ID with a unique identifier, test result, arguments
value, expected value, and actual value returned from the
program. The test result and actual value are automatically
inserted by SKKU FL tool, because it can decide pass and
fail, by comparing the expected and actual value. If semi-
auto is checked, the test result will be inserted by user
decision.

3.4 Test process
The SKKU FL is operated in the following seven steps.
• Step 1: The user should select the test cases and source

code to be examined. (This can be replaced with a
database, if there is previous test case pool, such as
test results and statement hits.)

• Step 2: Select an algorithm, such as Tarantula, AMPLE,
Jaccard, Heuristic III (c), and Hybrid. If it is hard to
reach a pass or fail verdict in the test result in the target
application, check the Semi-Auto checkbox. Then it
will ask for user input for the verdict after the test case
is finished, in order to decide pass or fail.

• Step 3: Load the test case to the display screen.
• Step 4: Select as many test cases as you want to test,

and click the Start button.
• Step 5: The tool instruments the original source code,

and makes a binary file, through building an instru-
mented source code. After that, it passes parameters,
in launching the binary file. Next, it monitors the test
program running and recording line information, which
is passed, until the program is terminated.

• Step 6: Compare the expected value with the actual
value that the program returned. SKKU FL tool auto-
matically decides pass or fail, if it does not require a
user decision. Otherwise, it asks for user input, as to
whether it is Pass or Fail.

• Step 7: SKKU FL tool computes suspicious fault ratio
by using the line of statement passed and test result of
pass or fail and finally displays suspicious fault ratio.

Fig. 5: Process of the SKKU Fault localizer tool

4. Experimental results
4.1 Test environment

To set up the test environment, two major procedures are
required. The first procedure is that test case designer creates
a test case file, as introduced in Section 3. When making
the test case file, we used the Siemens input file that they
provided as a text file. After that, all test cases are run using
the original source code, in order to collect the correct test
result, which will be used to obtain a pass or fail verdict test
result.

Fig. 6: Test case design architecture

The second procedure is that test executor runs SKKU
Fault localizer, and collects the test result. We choose a faulty
version source, and load the test case from the test case
pool. After that, all test cases are run, and suspiciousness is
obtained, using various algorithms.

4.2 Siemens test suite
We used 123 faulty versions in Siemens test suite seven

test programs [13][14] among 132 faulty versions, which
contain a single bug, seeded from the original non-faulty
version. Test programs were designed to apply realistic
software program commonly used in industry. We used only
the available test programs. Therefore, we excluded 9 faulty
versions: version 4 and 6 of printtokens because there is no

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

192 Int'l Conf. Software Eng. Research and Practice | SERP'14 |

Fig. 7: Fault localization architecture

Table 3: Siemens test program
Program Ver. LOC Test Cases Description

printtokens 7 565 4140 lexical analyzer

printtokens2 10 510 4071 lexical analyzer

replace 32 563 5542 pattern recognition

schedule 9 412 2650 priority scheduler

schedule2 10 307 2680 priority scheduler

tcas 41 173 1578 altitude separation

totinfo 23 406 1054 information measure

change between the original and faulty version and version 6,
10, 19, and 21 of totinfo and version 38 of tcas and version
12 of replace because there is only change in declaration
variable, such as define statement. We also exclude version
9 of schedule2 because there is no fail test case. Each
faulty version was aimed at various human errors that they
usually make in their work [15], such as missing code, wrong
position of switch-case, or wrong boundary value.

4.3 Results and analysis
We have performed an experiment using the Siemens

test suite. There are two aspects, when comparing the
effectiveness regarding fault localization among equations.
One is EXAM score which was proposed by Wong et
al. (2010). EXAM score consists of Best and Worst. Best
means that during review, the fault statement may be found
first, between the same suspiciousness. Worst means that
the fault may be found last. The other aspect is the RCC
(Reading code coverage) that we proposed. This means
that a statement that has a suspiciousness of over zero
should be reviewed by the programmer. Of course, in both
measurements, the score is better when it closes to zero.

A comparison of effectiveness between the previous stud-
ies and Hybrid is shown in Figure 8∼10. We choose
Tarantula and Heuristic III (c), to avoid describing many

Table 4: Measurement method
Name Formula Description (lower is the best)

EXAM (Best) Br /Total line Br : Rank of Faulty line

EXAM (Worst) Wr /Total line Wr : Rank of faulty line +
number of same rank lines - 1

RCC (Reading
code coverage)

Z+/Total line Z+ : number of lines over than
zero suspicious ratio

Fig. 8: Original EXAM score (average)

Fig. 9: Distinct EXAM score (average)

Fig. 10: RCC (Reading code coverage on average)

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

Int'l Conf. Software Eng. Research and Practice | SERP'14 | 193

Fig. 11: Examaple of how Hybrid makes a distinct data (faulty version 1 of tcas)

previous algorithms. From Jones et al. (2005), the Tarantula
method is more effective than set-union, set intersection and
nearest-neighbor. Wong et al. (2010) presented Heuristic III
(c) as being more effective than Tarantula in EXAM (Best)
and EXAM (Worst). Through Figure 8: Original EXAM
score, Heuristic III (c) outperforms Tarantula and Hybrid on
average in both EXAM (Best) and EXAM (Worst). Hybrid
only outperforms Tarantula in EXAM (Best). However, in
the case of Figure 9: Distinct EXAM score, Hybrid is more
effective than Tarantula and Heuristic III (c) in both EXAM
(Best) and EXAM (Worst). Therefore, the Hybrid technique
is more effective overall in EXAM score.

With respect to RCC, Hybrid always outperforms Taran-
tula and Heuristic III (c). In Figure 10, approximately 34%
of the code has suspicious fault ratio. This means that when
bug was found during testing the programmer should just
review a third of the original source code. Hybrid decreased
the reading code coverage to be checked.

4.4 Additional consideration
We found that there are similar test cases that contain the

same test result, among thousands of test cases. To increase
the effectiveness, we thought that distinct data (not a same
statement hit information and test result) makes a better
EXAM score, than the original experiment. In particular,
faulty version 1 of tcas, there are 1578 test cases when
calculating suspiciousness. Many redundant duplicated test
data make lower suspiciousness. In Figure 11 shows that
after applying distinct technique, test cases were reduced to
only 9. Therefore, before calculating suspiciousness, except
for unique one, the other test cases that have same statement
information and result should be removed.

After removing duplicated data in the original data, Fig-
ure 12 indicates that most EXAM scores were decreased
in every algorithm. In particular, Hybrid EXAM (Best) was
improved by 17 percent over the original EXAM score.

Table 5: Comparison of EXAM score (average)
Tarantula Heuristic III (c) Hybrid

EXAM Original Distinct Original Distinct Original Distinct

Best 2.892 2.434 2.444 2.502 2.875 2.409

Worst 7.216 6.885 6.590 7.147 7.226 6.831

Fig. 12: Comparison of EXAM score between original and
distinct data

5. Conclusion and future works
We proposed Hybrid algorithm and developed SKKU

Fault localizer tool, in order to not only localize the exact
fault location, but also to reduce the reading code coverage.
Hybrid was proposed to overcome each characteristic of
equation characteristic because there was no superior al-
gorithm in every test program. Hybrid shows that it was
more effective generally among existing algorithms. We
presented distinct test data to clarify unique test data and
get rid of redundant test data which degrades performance of
algorithm performance. Furthermore, SKKU Fault localizer
can help people to automatically perform all test procedures.
In addition, it is easy to install and simple to operate the

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

194 Int'l Conf. Software Eng. Research and Practice | SERP'14 |

GUI, because it is based on Windows OS.
For future work, we would like to extend the Hybrid

algorithm to all of the Unix test suite, as well as a large-scale
real world program. At the same time, we will analyze the
program characteristics, in order to improve Hybrid algo-
rithm according to the program. In addition, we figured out
that distinct test data makes the algorithm better. However,
it is still time-consuming and burdensome work for the
software quality assurance department in a company. People
who are in charge of software quality would like to do
regression test, to avoid reproducing the same problem. They
really want to reduce the amount of test cases that have the
same capability as the original test cases. Therefore, we will
do research regarding the reduction of test case.

6. Acknowledgment
This research was supported by the National Research

Foundation of Korea(NRF) grant funded by the Korea gov-
ernment(MEST)(No. 2012008240)

References
[1] Agrawal, Hiraral, et al. “Fault localization using execution slices and

dataflow tests.” Proceedings of IEEE Software Reliability Engineering
(1995): 143-151.

[2] Wong, W. Eric, and Yu Qi. “BP neural network-based effective
fault localization.” International Journal of Software Engineering and
Knowledge Engineering 19.04 (2009): 573-597.

[3] Ascari, L. C., et al. “Exploring machine learning techniques for fault
localization.” Test Workshop, 2009. LATW’09. 10th Latin American.
IEEE, 2009.

[4] Renieres, Manos, and Steven P. Reiss. “Fault localization with nearest
neighbor queries.” Automated Software Engineering, 2003. Proceed-
ings. 18th IEEE International Conference on. IEEE, 2003.

[5] Nessa, Syeda, et al. “Software fault localization using N-gram analy-
sis.” Wireless Algorithms, Systems, and Applications. Springer Berlin
Heidelberg, 2008. 548-559.

[6] Jones, James A., and Mary Jean Harrold. “Empirical evaluation of
the tarantula automatic fault-localization technique.” Proceedings of
the 20th IEEE/ACM international Conference on Automated software
engineering. ACM, 2005.

[7] Abreu, Rui, Peter Zoeteweij, and Arjan JC Van Gemund. “An evaluation
of similarity coefficients for software fault localization.” Dependable
Computing, 2006. PRDC’06. 12th Pacific Rim International Symposium
on. IEEE, 2006.

[8] Chen, Mike Y., et al. “Pinpoint: Problem determination in large,
dynamic internet services.” Dependable Systems and Networks, 2002.
DSN 2002. Proceedings. International Conference on. IEEE, 2002.

[9] Eric Wong, W., Vidroha Debroy, and Byoungju Choi. “A family of
code coverage-based heuristics for effective fault localization.” Journal
of Systems and Software 83.2 (2010): 188-208.

[10] Liblit, Ben, et al. “Scalable statistical bug isolation.” ACM SIGPLAN
Notices. Vol. 40. No. 6. ACM, 2005.

[11] Wong, W. Eric, and Vidroha Debroy. “A survey of software fault
localization.” Department of Computer Science, University of Texas at
Dallas, Tech. Rep. UTDCS-45-09 (2009).

[12] Naish, Lee, Hua Jie Lee, and Kotagiri Ramamohanarao. “A model
for spectra-based software diagnosis.” ACM Transactions on software
engineering and methodology (TOSEM) 20.3 (2011): 11.

[13] Do, Hyunsook, Sebastian Elbaum, and Gregg Rothermel. “Supporting
controlled experimentation with testing techniques: An infrastructure
and its potential impact.” Empirical Software Engineering 10.4 (2005):
405-435.

[14] The Siemens test suite. SIR (Subject Infrastructure Repository)
website. [Online]. Available: http://sir.unl.edu/portal/index.php

[15] Hutchins, Monica, et al. “Experiments of the effectiveness of dataflow-
and controlflow-based test adequacy criteria.” Proceedings of the 16th
international conference on Software engineering. IEEE Computer
Society Press, 1994.

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

Int'l Conf. Software Eng. Research and Practice | SERP'14 | 195

Prioritization of Artifacts for Unit Testing Using Genetic Algorithm
Multi-objective Non Pareto

Eduardo Noronha de Andrade Freitas1, Auri Marcelo Rizzo Vincenzi2, and Celso Gonçalves Camilo-Júnior2
1Department of Informatic, Instituto Federal de Goias, Goiânia, Goiás, Brazil
2Institute of Informatic, Universidade Federal de Goiás, Goiânia, Goiás, Brazil

Abstract— The choice of units for application of write unit
testing in level of methods can be seen as a combinatorial
problem. The time demanded to write unit tests becomes
a challenge for the testing professional considering the
constraints of time existent. Adopting the time to write unit
testing as a cost, the goal this work is to present a multi-
objective evolutionary approach that look for a subset of
artifacts such that minimizes the cost at the same time that
maximizes their strategic importance. Both metrics, static
and dynamic such as cyclomatic complexity, operational cov-
erage, and frequency of modification were used to define the
strategic importance. The motivation to use multi-objective
evolutionary approach is that growth of fault proneness is
inversely proportional to the cost. The experiments were
done in real context of industry system, and the results found
confirmed the benefits of proposal.

Keywords: Software testing, unit testing, effort test, prioritiza-
tion unit test, Search Based Software Test (SBST), multiobjective
evolutionary optmization.

1. Introduction
Among the activities of the Software Engineering, the ver-

ification and validation are the more expensive, representing
50% to 80% of the total cost of a project, and software
testing is the most common practice for software verification
and validation.

The development of unit testing in this context is an
especial challenge for the professionals who find themselves
in difficulty in deciding which artifacts must be the firsts,
once the resources available to conclude this activity are
limited. In this sense, the development and the application
of unit test on the whole system with high level of coverage
may be impractical, if considered the resources constraint.
The identification of artifacts really relevant of system be-
come essential and strategic. It is especially in the case of
legacy systems, large systems, and systems with high level
of maintenance.

In this work, the problem of prioritization of effort of
unit tests will be discussed with techniques of Search Based
Software Engineering (SBSE) [7]. In SBSE the problems
are modeled as optimization problem, and after that they
are solve utilizing concepts, techniques, algorithms, and

strategies of search. The objective is to identify among
all possible solutions a set of solutions, which will be
sufficiently good according to a set of appropriate metrics.

The validation of the proposed approach was carried
out some software companies seeking a process of real
experimentation in context of high criticality. Some decision
variables were considered to the experimentation of the
algorithms such as: cyclomatic complexity, frequency of
changes found on repository, and operational coverage. The
constraint of the problem will be considered in terms of
hours, considering the availability of time to the development
of unit tests to homologation of a new release of the system.

The rest of the paper is organized as follows: In the
Section 2 is presented the concept of software testing and
evolutionary optimization utilized to the development this
work. In the Section 3 is described the characterization of
the problem of selecting code units and its complexity. In the
Section 4 is presented the details of the approach and of the
experiments realized. Finally, in the Section 5 is presented
the conclusion of the work developed.

2. Fundaments
The goal this Section is to present part of the concepts

utilized in the development of the work.

2.1 Software Testing
According Delamaro et al. [5], the software testing con-

sists in an activity of quality assurance in order to verify
if the product in development is in conformity with your
specification. The [8] defines software testing as a dynamic
verification of the program’s behavior, utilizing a set of finite
test, correctly selected of the executions’ domain, to verify
if it’s according with the expected.

Many techniques and test’s criteria had been developed to
permit the selection of a subset of the entrance domain to
be effective in reveal the presence of the existent defects.
This occurs because mostly of time the exhaustive test is
impracticable due to constraints of time and cost.

According to Pressman [9], the testing activity can be
considered as a incremental activity realized in three phases:
unit testing, integration testing, and high level testing.

Unit tests, also called of unit testing has its focus in the
minor code unit in order to ensure that the implementation’s

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

196 Int'l Conf. Software Eng. Research and Practice | SERP'14 |

aspects are correct. In this phase, seeks to ensure greater
coverage and maximum defect’s detection in each module.

The scope this work is focused on building an alternative
to find among the artifacts at the unit level, which should be
selected to the development of structural tests in the method
level. The prioritization must be carried out considering
the possibility of combining two or more code’s unit as
priority for a specific moment. So, this work doesn’t focus
the prioritization of test cases.

2.2 Evolutionary Optimization
In mathematic or in computation, the term optimization is

used as reference to study of problems that seek maximize
or minimize a function by choosing values to the variables
of the problem.

However, some problems own combinatorial character-
istic and can be computationally intractable due the your
dimension of exponential order. In that case, the classical
optimization models become limited to present an optimal
solution in feasible time.

The concept of evolutionary computation has been used
by means of so-called evolutionary algorithms. They apply
the process of natural evolution defended by Charles Darwin,
as paradigm to implementation of the algorithms. The evo-
lutionary heuristics give up the warranty of global optimal
for ensuring a set of approximated solutions.

Some problems are considered as multiobjective. A multi-
objective problem consists in finding a set of variables
that satisfy some constraints, while optimizing two or more
objectives. The solution of a multi-objective problem is
composed by a set of solutions that represent a commitment
among the objectives, according to Azuma [1].

According to Coello [2], a multi-objective optimization
problem can be formulated as:

min[f1(x), f2(x), ..., fk(x)]] (1)

subject to m inequality constraints:

gi(x) ≤ 0i = 1, 2,,m (2)

and to p equality constraints:

hi(x) = 0i = 1, 2,,m (3)

where k is the number of functions, e x = [x1, x1, ..., xn]
T

the array of decisons’ variables. The problem becomes to
be to determine values among the set F of all the array’s
that satisfy the Equations 2 e 3, the particular set of values
x∗
1, x

∗
2, ..., x

∗
n that provide optimal values of all functions.

So, in context of prioritization of code unit, a solution is
considered as a set of code units.

One important concept in multi-objective optimization
is associated the dominance of the solutions. A solution
x dominates another solution y, if both condition follows

happen in a optimization problem: if the solution x is better
or equals to y in all objective functions, and The solution x
is é strictly better than y in at least one objective function.

There are two different spaces in multi-objective optimiza-
tion. The first one is associated with the variable of the
problem, while the second is associated with the objectives.

Each point enumerated in space of the variables corre-
spond to code units of a arbitrary system. The mapping these
points in solutions in objective space can be comprehended
by a strong analogy to classic Knapsack Problem. The de-
cision consists in choice the better combination of methods
to be exercised in unit testing. To do it, the function of
mapping will go utilizing some metrics that they contain
strong correlation interdependent with strategic importance,
according to will be detailed in Section 4.

In Figure 1 are presented some of these solutions. Each
solution present in the objective space may have 3 distinct
classifications: the first when in which the solution dom-
inates, is dominated, and when it is irrelevant. In Figure
1 a small example of mapping the space of objectives,
containing 2 goals is presented. On the first objective we
seek to find a set of code units with high values of strategic
importance associated. In the second objective the aim is
to find a set of code units that require the least amount
of time to develop unit tests. These requirements confer to
the problem a multi-objective characterization, once mostly
cases the higher the strategic importance of a unit takes
longer time for the development of unit testing.

Fig. 1: Analysis of the space of objectives, considering time
and cyclomatic complexity.

The solution A shown in Figure 1 represents a set of code
units that after the mapping to the space solution presents the
value 3 to complexity, requiring 1 unit of time (for example,
hours) to the development of unit testing.

Some methods are used to measure the objective
functions such as the weighted sum of the objectives,
and also, the method ε-restrict. In this work was adopted
a multi-objective evolutionary approach with a genetic
algorithm that uses weighted sum.s

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

Int'l Conf. Software Eng. Research and Practice | SERP'14 | 197

3. The Problem
The objective this Section is to present the characterization

of the problem of prioritization of software artifacts in level
of methods or function, and the challenge inherent to it.

In the context of software testing, specifically unit testing,
we seek to find a subset of code units (methods) that together
maximize the strategic importance in software. Another
objective consists in minimizing the time used to developing
test cases to these code units. The existence these two
conflicting objectives justifies the necessity of the use of
SBST to solve this problem, especially with multi-objective
approach.

To calculate all distinct ways to choice elements without
repetition is necessary to realize the sum of distinct combi-
nations of r elements, according to Equation 4.

n∑
r=1

C(n, r) =
n!

r!.(n− r)!
(4)

To illustrate the exponential behavior of the problem,
the Figure 2 shows the curve containing the number of
possible combinations to systems with different quantity of
code units.

Fig. 2: Exponential growth possibilities for selection of units
for unit testing code.

In Section 4 will be presented the main characteristics of a
multi-objective optimization problem, and how to prioritize
units of code to the development of unit testing can be solved
by this approach.

4. Proposed Approach
The activity of software testing has reveled challenging

problems. Identifying strategic interesting areas to reduce the
effort in testing is one of them. In Elberzhager et al. [6] is
presented a systematic mapping of existing approaches able
of reducing the effort in testing, one being the prediction of
areas with most prone to defects. The essence that approach

is the consideration of metrics. The key metrics adopted in
that studies reviewed were: product, process, object oriented,
and defects.

Also, others approaches to minimize the effort in testing
were found. In Shihab [11] is presented a comparative
analysis of some heuristics in order to prioritize software
artifacts for unit testing in legacy systems. According to
the study, the application of unit tests on artifacts that have
undergone corrective changes more frequently, have greater
potential to reveal defects. Other approach is found in Ray
and Mohapatra [10] in which a method is proposed to
prioritize testing effort in order to guide the tester during
the development life cycle of software. Amount of influence,
average execution time, structural complexity, and severity
and value, were considered relevant factors. In the work of
Czerwonka et al. [4] a system for failure prediction, risk
analysis and prioritization of tests is presented to supporting
the aspects of maintaining legacy systems from Microsoft,
particularly Windows Vista. However, it is also applied
prioritization of test cases.

The main shortcoming with these approaches is that it
isn’t seen as a combinatorial problem. The works that focus
on identifying priority artifacts to application of unit testing,
using simple heuristics, whose result is a list of artifacts
in descending order of importance. A trend in predicting
defects is explores the metrics and their combinations. How-
ever, a small number of papers have focused the combination
of static and dynamics metrics.

The objective this section is to characterize the proposal
of prioritization of code based in multi-objetive evolutionary
approach. The research made use of experiments to validate
the proposal. This section shows the context and strategy
for prioritization followed by a detailed of the experiments
utilizing Genetic Algorithm Multiobjective Non Pareto using
aggregating functions of same weights [3], combining all
objectives into a single one.

The proposed approach to selecting units of code for
application of unit testing is supported in Search Based Soft-
ware Engineering (SBSE) more specifically Search Based
Software Testing (SBST). Considering a system with several
modules, its dependencies, and a great quantity of methods,
the test’s planning for a new release must be optimized,
considering limited resources for the development of the
testing activies.

The amount of metrics available to be used to establishing
a strategy to optimize the selection of units of code is
very large. For this work was defined as the first objective
function the maximization of strategic importance of the
units selected. The main goal is to try to find out a se-
lection of units (methods) with higher strategic importance.
Basically, three main components are used to address it:
cyclomatic complexity, operational coverage, and frequency
of modification.

The mensuration of the strategic importance (si) of each

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

198 Int'l Conf. Software Eng. Research and Practice | SERP'14 |

method is calculated based on the product and process
metrics. Some works influenced the choice of the metrics
utilized by algorithm, as Ray and Mohapatra [10] which have
showed some important metrics such as time of execution,
influence’s value of a component, structural complexity,
responsibility per class and LCOM4, type and severity of
failures. In Shihab et al. [11], the authors present a compar-
ison of some heuristics to prioritize artifacts to application of
unit testing in legacy systems. The application of unit testing
in artifacts that receive corrective changes most frequently
own more potential to reveal failures. Thus, we aim at to
figure out which characteristics exist among units more re-
cently corrected. This analyze amongst the evidences shown
in [6] concluded that they own high values of cyclomatic
complexity. Based in this, the cyclomatic complexity was
used initially as a general guide for defect-prone.

The following metrics were considered to calculating the
strategic importance of a subset of units of code for appli-
cation of testing activies, mainly unit testing: Cyclomatic
Complexity, Number of corrective changes, and Operational
Coverage that measures the intensity the artifacts are exer-
cised in operational environment.

Some techniques and technologies were used to extract
metrics to permit the execution of techniques of prioriti-
zation. To obtain the quantity of changes was utilized the
software svnstat and the software jdiff. Also, was developed
a software to realize a parser in the files of the repository to
shows how many times an artifact was changed, and what
the intensity that modification. The intensity was measured
by number of lines of code changed.

The operational coverage was found utilizing the software
Cobertura, and execution of an instrumented version in
production environment. This metric was considered highly
important, once it allows identifying which lines of code
are really executed by user, and the frequency of utilization.
Thus, even an artifact which metrics that indicates the needed
of writing unit testing, it is discouraged if no actual use
in a production environment occurs. On the other hand, an
artifact can be strongly recommended to be tested, if it is
very exercised sin a production environment.

All metrics were extracted and persisted in a database
modeled specifically to allow the heuristics in their execu-
tions. The Figure 3 illustrates this process.

The first objective function is defined according to Equa-
tion 5.

si =
N∑
i=1

(NScc(i)∗Wcc(i))+(NSoc(i)∗Woc(i))+(NSfm(i)∗Wfm(i))

(5)
where:

si: Strategic importance;
N: Quantity of units (methods) in the system;
NScc: Normalized score of cyclomatic complexity of the

Fig. 3: Elitist Genetic Algorithm

method;
NSoc: Normalized value of operational coverage of the

method;
NSfm: Normalized value of Frequency of Modification on

repository of version of the method;
Wcc: Weight considered for cyclomatic complexity;
Woc: Weight considered for operational coverage;
Wfm: Weight considered for Frequency of Modification

on repository of version;
x: It receives value 1 if the artifact i has been considered,

and 0 otherwise.
For each artifact the normalized scores NS (NScc, NSoc,

NSfm) are calculated as in order to assign values between
0 and 100, according to example shown in Table 2. There
are 2 kind of metric: bigger is better, and smaller is better.
For the first one, the normalization is given by the following
equation:

NS =
(mv −min)

(max−min)
∗ 100 (6)

As an example, the metric of cyclomatic complexity pre-
sented in the Table 2, the higher its value is more interesting
to choose this artifact to the application of unit testing. For
the metric type the smaller is better, the normalization is
performed by the following equation:

NS = 1− (mv −min)

(max−min)
∗ 100 (7)

where:
NS: Normalized score;
mv: Absolute value of metric;
min: Lowest Absolute value of the metric between units;
max: Largest absolute value of the metric between units;

Each component (NScc, NSoc, NSfm) assumes a weight,
and the sum of the weights must be equal to 1.

Therefore, the selected units will be those whose combina-
tion maximizes the objective function presented. Logically,
if there is no restriction, all artifacts will be selected for

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

Int'l Conf. Software Eng. Research and Practice | SERP'14 | 199

employment of unit testing. However, this work owns as
second objective function the Equation bellow:

ar =

(
N∑
i=1

tt(i) ∗ x(i))− ha

ha
(8)

where:
ar: Availability of resources tt: time required for the devel-
opment of unit testing activities (planning, implementation
and execution) for the method i;
ha: hours avaiable.

The calculation of time tt is done based on the number of
lines of code, and assuming as productivity average, 1 hour
for every 10 lines of code. Therefore, if a method has 180
lines of code, the estimated time for the development of unit
activity for this test method will be 18 hours.

The objective is not to exhaust the discussion on what are
the best strategic components for selecting units of code,
but provide flexibility to the software testing community to
choose on different environment metrics that they consider
appropriate in the selection model.

In order to address some penality for the selection that
violates the time constraint, the fitness function may be
calculated as:

F = si+ (si ∗ ar) (9)

5. Experiments
For these experiments was considered critical software of

industry responsible for the integration of a chain of services
in accounting and tax segment. The software analyzed was
developed in Java and has 808 methods, totaling 11,300 lines
of code.

To obtain the operational coverage of the software was
generated an instrumented version of the system. This ver-
sion was put in a production environment for 4 months, and
approximately 4,000 users used it during this period of time.
Information for the last three months of the versions of each
artifact to calculate the frequency of changes in repository
were collected. The cyclomatic complexity of each artifact
was obtained from the latest stable version of the system,
using the software Sonar and metrics plugin.

Thus, considering arbitrarily the productivity in develop-
ing cases of tests as 10 lines per hour, these artifacts together
would demand an effort of work around 1,130 hours. For
sensitivity analysis using EA in this context, 100 experiments
were performed, each considering a different availability of
resources for the development of unit tests. These values
were established in terms of percentage of total 1,130 hours
varying from 1% to 100%.

It is expected that the optimization model minimizes the
amount of hours wasted by not exist or can’t find one or more
artifacts to be incorporated in the list of selected artifacts.
For example, if the time available for the development of

Table 1: Example of Representation of a Individual.
1 0 0 1 1 1 0 0 1 1

Table 2: Model of Normalization of Metrics.
Artifact Complexity Normalized Value

1 5 57.1
2 2 14.3
3 3 28.6
4 7 85.7
5 1 0.0
6 8 100.0
7 2 14.3
8 5 57.1
9 3 28.6
10 8 100.0

unit test is 300 hours, and the best combination of artifats
found by a heuristic demande 285 hours, 15 hours can be
considered in this case as a waste of resources.

The strategy chosen for representation of the algorithm
is binary. Each individual has n genes, and each gene can
assume the values 0 or 1, indicating the presence or absence
of an artifact in the solution candidate. The value of n is the
number of methods in the project being evaluated.

Initially, the algorithm randomly generates the initial
population by assigning each gene, a value: 0 or 1, according
to the adopted representation. After that it holds the evolution
of the population for generations. In each generation indi-
viduals are initially evaluated and assigned fitness to each
one.

According to the representation of individuals presented
in Table 1, this representation considers the presence of 6
artifact (positions 1, 4, 5, 6, 9 and 10) concerning genes with
value 1. Using the metric complexity of these artifacts as
an example, the model of normalization presents the values
showned in Table 2.

Once evaluated individuals, the feasibility verification of
each one is accomplished by ensuring that the time available
for the development of testing activities is sufficient to test
the artifacts represented in each individual. In cases which
an individual violates the constraint of time available, one
or more artifacts are removed from the individual, with the
objective of making it feasible.

The algorithm worked with operators of crossover of 1
point, mutation operator per gene, and method of the roulette
as selection operator to crossover, and the application of
elitism value of 1 for the canonical algorithm.

5.1 Analysis of Results
The Figure 4 shows the average behavior of the standard

deviation of the average time required for the development
of unit testing to the artifacts prioritized. The behavior of
the curve can be explained by the EA attempt to optimize
the combination of artifacts. With a smaller amount of time
available to allocate heuristic search in prioritizing artifacts

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

200 Int'l Conf. Software Eng. Research and Practice | SERP'14 |

with low amount of lines of code because they allow fine-
tune the complementation.

In the first executions, whose available time is reduced,
the selection of artifacts that consume more time for de-
velopment is practically impossible, and allocating smaller
artifacts to use the time available. This behavior is repeated
until the heuristic can optimize your choice.

Fig. 4: Standard Deviation of Size of Artifact.

Fig. 5: Analises of Loss of Time.

The Figure 5 shows the performance of the heuristics
compared to the non-use of the resource of time available,
here called waste. The comparison chart shows that the first
50 simulations considered by heuristic called here by SVN
[11], the EA proposed has been more effective in 31 of
them (62 %). In all the last 50 simulations EA presented,
the EA proposed own better results, totaling 81 simulations
with better gain in relation to another strategy.

Another important feature in the first simulation 50 is
related to the ability to complement the list of prioritized
using artifacts from those, which have a small number of
lines of code. This wide existence of artifacts with this
feature allows the so-called waste to be less.

Figure 6 shows the cyclomatic complexity of the solutions
during the experiments. It is noticed that the presence of
artifacts with greater complexity is perceived only from the

experiment with over 20% of available time. The artifacts
with this characteristic are avoided in the presence of low
availability of resources, since there is a direct correlation
between cyclomatic complexity and number of lines of code.

Fig. 6: Characteristics of complexity of the methods during
the Experiments.

6. Conclusions
The main goal this work was present a new approach

to prioritize artifacts in level of methods to application
of unit testing. The approach is based in Multi-objective
Evolutionary Algorithms as work of SBST. The framework
proposed is guided by a flexible and dynamic set of metrics
according to interest of the professional. In this work were
considered 3 metrics: cyclomatic complexity, operational
coverage, and frequency of changes on version’s reposi-
tory. The initial results were compared with one research
in literature. We hope to experiment others techniques of
multiobjective evolutionary algorithm as SPEA and NGSA.

We are conducting a research to try to figure out which
metrics own the better power to be used by this framework to
reveal defects. Techniques of data mining have been applied
to address it. The initial results has been promising. Also,
the experimentation of the implementation of EA in parallel
environment is being tested.

7. Acknowledge
Grateful thanks are owed to the company Oobj Technol-

ogy of the Information by its invaluable help in sharing the
data, systems, and some workers for the development this
work. This work was partially supported by FAPEG.

References
[1] R. M. Azuma. Otimização multiobjetivo em problema de estoque e

roteamento gerenciados pelo fornecedor. 2011.
[2] C. A. C. Coello. Recent trends in evolutionary multiobjective

optimization. In Evolutionary Multiobjective Optimization, pages 7–
32. Springer, 2005.

[3] C. A. C. C. Coello. A short tutorial on evolutionary multiobjective
optimization. In Evolutionary Multi-Criterion Optimization, pages
21–40. Springer, 2001.

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

Int'l Conf. Software Eng. Research and Practice | SERP'14 | 201

[4] J. Czerwonka, R. Das, N. Nagappan, A. Tarvo, and A. Teterev. Crane:
Failure prediction, change analysis and test prioritization in practice–
experiences from windows. In Software Testing, Verification and
Validation (ICST), 2011 IEEE Fourth International Conference on,
pages 357–366. IEEE, 2011.

[5] M. E. Delamaro, J. C. Maldonado, and M. Jino. Conceitos básicos. In
M. E. Delamaro, J. C. Maldonado, and M. Jino, editors, Introdução
ao teste de software, pages 1–7. Rio de Janeiro: Elsevier, 2007.

[6] F. Elberzhager, A. Rosbach, J. Münch, and R. Eschbach. Reducing
test effort: A systematic mapping study on existing approaches.
Information and Software Technology, 2012.

[7] M. Harman and B. F. Jones. Search-based software engineering.
Information and Software Technology, 43(14):833–839, 2001.

[8] IEEE. Software Engineering Body of Knowledge (SWEBOK). 2004.
[9] R. S. Pressman and D. Ince. Software engineering: a practitioner’s

approach, volume 5. McGraw-hill New York, 1992.
[10] M. Ray and D. P. Mohapatra. Code-based prioritization: a pre-testing

effort to minimize post-release failures. Innovations in Systems and
Software Engineering, 8(4):279–292, 2012.

[11] E. Shihab, Z. Jiang, B. Adams, A. Hassan, and R. Bowerman. Priori-
tizing unit test creation for test-driven maintenance of legacy systems.
In Quality Software (QSIC), 2010 10th International Conference on,
pages 132–141. IEEE, 2010.

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

202 Int'l Conf. Software Eng. Research and Practice | SERP'14 |

SESSION

SOFTWARE DEVELOPMENT STRATEGIES,
AGILE TECHNOLOGY, BUSINESS MODELS,

REUSE + CLOUD AND TOOLS

Chair(s)

TBA

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

Int'l Conf. Software Eng. Research and Practice | SERP'14 | 203

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

204 Int'l Conf. Software Eng. Research and Practice | SERP'14 |

Contemporary Build Systems
and Techniques for Improvement

Jason White and Kay Zemoudeh
School of Computer Science and Engineering,
California State University, San Bernardino,

California, United States

Abstract— A build system plays a critical role in the soft-
ware development process; particularly on large software
projects. Having a build system that is fast, reliable, and easy
to use can have a large, positive impact on a project. Itera-
tion times can be reduced, giving more immediate feedback
on changes; complete rebuilds can become less common or
non-existent; and describing the build can become easier
and more flexible.

Background on how build systems work will be given; the
strengths and weaknesses that apply to a vast majority of
existing build systems will be shown; and methods by which
contemporary build systems can be improved to achieve
significant gains in developer productivity will be discussed.

Keywords: Build System, Software Tool, Automation

1. Introduction
Build systems (or build automation software) are tools that

automate the execution of other tools, such as a compiler or
linker. This is useful for automatically performing the tasks
necessary to generate executables from source files.

In large software projects with thousands of source files
and millions of lines of code, the build system can easily
become a burden and bottleneck. A great deal of time and
money is spent by organizations to streamline their software
creation process. This involves reducing the time it takes to
transform source files into deliverables such as executables
or dynamic libraries. After all, software development is an
iterative process and the faster the build system can run, the
faster a developer can test their creation.

It is therefore highly beneficial to have a build system that
enables its users to work faster and more easily.

2. Background
2.1 Fundamentals

In its most basic and abstract form, a build system is
simply a job scheduler. It schedules jobs based on the
dependencies between them. If, for example, job B cannot
be performed until after job A is performed, then job A must
be performed first. Once job A completes, then job B can
be performed. The sequence of jobs should then be [A,B].

2.1.1 Graphs
As shown in Figure 1, this scheduling problem can be

represented using a Directed Acyclic Graph (DAG) where
each task is a node and each dependency is a directed edge.

A

B

Fig. 1: A very simple DAG where B depends on A.

Most build systems use a graph to model the dependencies
between nodes.

2.1.2 Nodes
Nodes can be further categorized as either tasks or re-

sources. [2] A task might be a shell command to execute
while a resource might be a file on the file system. In
Figure 2, tasks are represented by rectangular nodes and
resources are represented by elliptical nodes. A task takes
zero or more resources as inputs. Based on those inputs, a
task creates one or more resources as outputs. A task is then
dependent on the resources it uses.

A task does not necessarily have to be a shell command.
Tasks can be any procedure that produces one or more re-
sources. Similarly, a resource does not necessarily represent
a file on the file system. A resource can be any type of data.
This includes files, environment variables, shared memory,
and even the input or output from a device.

2.1.3 Edges
An edge between two nodes represents a dependency.

In Figure 2, two edges are drawn between the resource
‘A.h’ and the tasks ‘gcc -c A.c’ and ‘gcc -c B.c’.
Whenever the resource ‘A.h’ changes, both of the tasks that
depend on it should be re-executed.

Edges impose an ordering on when tasks can be executed.
An ordering only exists when there are no cycles or loops
in the graph. A graph has a cycle when a node ultimately
depends on itself. A graph containing a cycle is illustrated
in Figure 3. Build systems require an ordering so that builds

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

Int'l Conf. Software Eng. Research and Practice | SERP'14 | 205

gcc A.o B.o

a . o u t

gcc -c A.c

A.o

gcc -c B.c

B.o

A.c A.h B.c

Fig. 2: A DAG of a simple C program.

can be completed in finite time. Thus, cyclic dependencies
are usually forbidden.

Task

Resource

Fig. 3: A simple cyclic graph. Cycles are not always quite
so obvious.

Cyclic dependencies are often the result of having a
dependency on a resource which is too coarse-grained. Gran-
ularity is the extent to which an entity can be subdivided.
Consider a file on a file system. A file consists of bytes and
those bytes consist of bits. Suppose a task reads one region
of a file and writes to a disjoint region of the same file. If
the resource is considered to be an entire file, there would
be a cyclic dependency. On the other hand, if the resource is
considered to be a range of bytes within a file, then there is
no cyclic dependency. Thus, cyclic dependencies can usually
be resolved by adjusting the granularity of a resource.

2.2 Existing Build Systems
Quite a few build systems exist today. Some of them were

created to serve a singular purpose or project, some for use
with a certain language or domain, and some for the general
case.

Single-purpose build systems are ad hoc build scripts that
automate a build-related task. These are typically written
in shell script, Python, or Perl. For example, a shell script
containing a series of compiler commands is an ad hoc build
script.

Language-specific or domain-specific build systems are
designed specifically for a single programming language or
family of programming languages. These build systems may
work for any language, but they are engineered to work
closely with one or more languages and their idiosyncrasies.
For example, Apache Ant and Apache Maven are designed
with Java in mind while Boost.Build and Visual Studio are
designed primarily for C++.

General build systems are not tied to any particular
language or implementation of that language. They merely
run tasks based on the dependencies between them. Make,
SCons, and Tup are all general build systems. This paper
focuses on general build systems. However, many of the
ideas and concepts described here can apply to domain-
specific build systems as well.

2.3 Evaluating Build Systems
Existing build systems can be evaluated based on three

criteria: speed, usability, and reliability. [1]

2.3.1 Speed

For most existing build systems, when the size of a project
grows, so does the time it takes to update it. That is, the time
complexity is O(n) where n is the number of resources.

Ideally, the time it takes to update should depend only on
the number of changed resources. That is, O(m) where m is
the number of changed resources. In the worst case, where
m = n and every resource has been changed, the time taken
would be the same. However, in the average case, only one
or two resources will have changed between builds. Thus,
the amortized time will be on the order of O(1).

How the build system scales with the size of a project is
often more important than how well it can be parallelized.
If the build system does not scale well, then throwing more
processors at it will not bring significant gains.

2.3.2 Reliability

Reliability is the measure of how accurate a build system
is at detecting changes and producing or maintaining a set
of correct outputs given a set of corresponding inputs.

Reliability is heavily affected by the specification of
dependencies (or lack thereof). A perfectly reliable build sys-
tem would have all possible dependencies specified for every
node. Such dependencies may include files, environment
variables, command-line options, the current time, standard
system libraries, or even other running processes. Specifying
all possible dependencies is unrealistic and unnecessary,
however. Some dependencies rarely change, some are in-
consequential, and others are difficult to detect altogether.

Avoiding manual specification of dependencies and in-
stead opting for automatic dependency analysis aids usabil-
ity.

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

206 Int'l Conf. Software Eng. Research and Practice | SERP'14 |

2.3.3 Usability
The usability of a build system is how easy it is to

use. This includes running the command that invokes the
build system, creating or maintaining build scripts, or simply
learning how to use it.

The user of a build system can be a developer or another
piece of software. For either type of user, it should be as
easy and convenient as possible to use the build system. The
build system should never get in the user’s way by imposing
unnecessary restrictions or requiring tricky workarounds for
some obscure problem.

Unlike speed and reliability, usability is not as easy to
measure. It is a subjective topic and depends on the skills
and experiences of the user. It can, however, be measured
in terms of how much time is spent dealing with the trivial
matters of the build system by the average user.

2.3.4 Comparing Build Systems
The most influential build system, particularly with Unix

systems, is Make. It was created at Bell labs and initially
released in 1977. Since then, many variants and derivatives
of Make have been created. Today, the most widely used
variant is GNU Make.

Because Make is the de facto standard build system, many
build systems are compared against it. In this paper, build
systems will instead be compared against the Ideal Build
System. The Ideal Build System is one that is fast, reliable,
and easy to use. That is, updates do not depend on the total
number of nodes, but instead on the number of changed
nodes; dependencies never need to be manually specified,
but are automatically derived; and little time is spent getting
it to work. Of course, the Ideal Build System is, in reality,
an unfeasible prospect. Creating a build system to approach
these ideals is, however, quite feasible.

Comparisons of existing popular build systems to the Ideal
Build System are shown in Table 1. There is not a single
build system that does well in all three areas. Tup does well
in all areas except usability. Although, at the time of this
writing, Tup has been slowly improving in that area as well.
Unsurprisingly, Make does poorly in all three areas. With
Make’s widespread adoption and native inclusion in many
Unix-based systems, its usage does not appear to be waning.

3. Improving Build Systems
The three facets of a build system—its speed, reliability,

and usability—are not independent of each other. Each one
affects the other. Increasing speed may decrease reliability
and usability. Likewise, improvements to usability may take
place at the expense of speed and reliability. There are many
methods and techniques of improving speed, reliability, and
usability. Each of these methods have their own advantages
and disadvantages, and none of them are completely bullet-
proof.

3.1 Improving Speed
Increasing the speed of a build system is usually a

matter of minimizing the number of tasks to perform and
maximizing the throughput of the tasks that are performed.
This is done by employing incremental builds, parallel
builds, or distributed builds. Incremental builds reduce the
number of steps required to perform the build by reusing the
results from previous builds. Parallel builds and distributed
builds utilize multiple threads or machines to run tasks
simultaneously.

3.1.1 Discovering Changes
In order to enable incremental builds, the build system

must first know what changes have occurred since its last
invocation. As we will see in Section 3.2, the ability to
discover changes has a large impact on the reliability of
a build system as well.

Make, and most other build systems, discover changes the
naïve way. They simply compare the timestamps of every
output file with its corresponding input file. If the input
file is newer than the output file, then the output file is
updated using the associated shell command. This has the
disadvantage of needlessly querying the file system for the
modification time of every single file. For large projects,
even if nothing has changed, this can take a very long time.

3.1.2 Change Notifications
Instead of polling for changes, the build system should be

notified of changes. To be notified of file system changes,
a user-space program can tell the operating system that it
wants to be notified if a specific directory or file changes.
This can be done by using the inotify API on Linux,
the ReadDirectoryChangesW system call on Microsoft
Windows, or the kqueue/kevent system calls on Mac or
BSD. The build system can use a daemon (a process that
runs in the background) that waits for notifications.

This method has the disadvantage of missing changes
when the daemon is not running. Thus, the file system
must be polled for changes the slow way when the daemon
initially starts. This may be an acceptable trade-off, however,
because it would only occur the first time the build system
is invoked.

3.1.3 Change Journals
Certain file systems store a list of recent file changes on

each volume in a change journal. Change journals were
primarily designed for use by indexing or backup services.
Since change journals are maintained by the operating sys-
tem and not a user-space program, changes are not missed.
A user-space program can read the change journal and scan
for changes to the files it cares about.

The two main drawbacks of this approach are the re-
quirement of root access and the dependence on a particular

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

Int'l Conf. Software Eng. Research and Practice | SERP'14 | 207

Build System Speed Reliability Usability

Ideal Build System Updates always take minimal time,
regardless of project size.

All possible dependencies are de-
rived. Outputs are always correct.
Orphaned outputs are deleted.

Intuitive and easy to use. Little time
is spent getting it to work.

Make The time to update is dependent on
the total number of files.

Most dependencies must be man-
ually specified. Some tools exist
to generate implicit dependencies.
Complete rebuilds are common due
to incorrect outputs.

Uses a DSL (domain-specific lan-
guage). The syntax can be cryp-
tic and difficult to read and write.
Makefiles are not platform indepen-
dent.

SCons Updates are dependent on the to-
tal number of files. Some speed is
traded for reliability.

Checksums are used to detect file
changes. Implicit dependencies can
be automatically discovered for
C++.

Python scripts are used to describe
the build. Build scripts can be made
platform independent.

Tup Updates are only dependent on the
number of changed files.

Implicit file dependencies are auto-
matically discovered for any tool.

Uses a DSL as well as Lua. Im-
poses restrictions on where build
description files must be. Not all
features work on all platforms.

Table 1: Comparisons of popular build systems based on the criteria of speed, reliability, and usability.

file system. Build systems should not require administrative
privileges in order to discover changes to files it normally
has access to. Moreover, not all file systems support change
journals nor do all file systems implement change journals
in the same way. Depending on the environment, this may
not be a reliable method for detecting changes.

3.1.4 Parallelizing Tasks
The other main method of improving the speed of a build

system is the execution of build processes in parallel. For
example, C source files do not usually depend on each
other and can be compiled in any order. Therefore, they
can be compiled simultaneously without any conflicts. This
is a common optimization in most modern build systems.
Builds where multiple threads are utilized to execute tasks
in parallel are known as parallel builds.

Multiple networked machines can also be used to increase
the speed of a build. Subsets of the build can be farmed
out to other computers in a network. These types of builds
are called distributed builds. Distributed builds are typically
used to perform complete rebuilds as opposed to incremental
builds. Change notifications and reliable dependency man-
agement are not necessary or useful when running builds
from scratch. Therefore, this method becomes less important
if the build system can be notified of changes and if
dependencies are managed in a reliable manner.

Distributed builds have the disadvantage of executing in a
different environment where subtle differences can result in
different outputs, ultimately leading to unreliable builds. If
execution in an identical environment can be guaranteed, as
it is with parallel builds, then this disadvantage disappears.

3.2 Improving Reliability
The reliability of a build system is the direct result of

how it manages dependencies, detects new dependencies,

and discovers changes to those dependencies.
An unreliable build system might fail to run tasks because

it lacks dependency information or lacks the ability to detect
changes to certain dependencies altogether. For example,
Make does not detect changes to the Makefile itself. If
the Makefile is modified to change the options passed to a
compiler command, the change will not be detected and the
command will not be re-executed. This becomes problematic
when, at a later time, the linker is still linking old object
files because the compiler was never re-invoked with new
command-line options. Bugs resulting from this problem can
be particularly frustrating to track down.

3.2.1 Dependency Management
The reliability problems of Make stem from how it detects

changes to its internal graph. It does not know when a node
is added to or removed from the graph. Indeed, it cannot
know because it has no knowledge of what the graph looked
like from previous invocations.

This problem can be solved by storing the graph in a
persistent database. When the build system is invoked, it
can determine if nodes have been added or removed by
comparing the differences between the old graph and the
new graph. Special action can then be taken based on these
differences. Resources that were generated by removed tasks
can be deleted as they are no longer needed. This also
improves the usability of a build system.

3.2.2 Detecting New Dependencies
C and C++ source files can include other source files.

The output of the compiler command that compiles a source
file is also dependent on all the other files that the source
file includes. Dependencies such as these are called implicit
dependencies. As opposed to explicit dependencies, implicit
dependencies are not usually specified by the user. A build

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

208 Int'l Conf. Software Eng. Research and Practice | SERP'14 |

system should be able to detect and handle implicit depen-
dencies automatically.

Most current build systems use ad hoc tools for extracting
implicit dependencies. For example, gcc has the option -M
to generate dependency information for Make. SCons on the
other hand, uses regular expressions to scan source files for
#include directives.

Each of these methods have major disadvantages. They are
not general solutions and do not detect all possible implicit
dependencies.

A more general approach would be to intercept all system
calls that a process makes. For example, when a process
attempts to open a file in read mode, the build system
would know the task should have a dependency on that
file. Likewise, if the process attempts to write to a file,
the build system would know that an output file has been
created by that task. Detecting dependencies by intercepting
system calls would work for all tools, not just gcc for
example. However, intercepting system calls is not always
easy, efficient, or platform independent.

On Linux, the ptrace system call is primarily used by
debuggers to determine exactly what a process is doing and
which system calls it is making. Unfortunately, ptrace is
slow, difficult to use, poorly designed, and not available on
other platforms. Its performance implications alone make it
impractical to use for detecting dependencies where speed is
a necessity. The build system fabricate uses this method
for automatically detecting dependencies on Linux.

Another method for automatically obtaining dependencies
is called system call patching. When a process is created, its
code segment is scanned for system calls and replaced with
an instruction to jump to a subroutine of one’s choosing.
This subroutine can then establish a dependency and hand
control off to the real system call. This method is fairly
involved and requires writing at least part of a disassembler.
Additionally, the initial overhead of patching the system calls
can overshadow the total running time of the process. Thus,
long-lived processes benefit the most from this approach.

Another method for automatic dependency detection is
through DLL injection. A shared library is “injected” such
that it is loaded in place of another shared library. The
process then makes calls to the injected library instead of
the intended one. This could allow calls such as fopen()
to be intercepted and used to detect dependencies on files.
A disadvantage to this method is that it will not intercept all
desired dependencies for all processes. For example, not all
processes will use fopen from glibc; they may use the
system call open() directly.

For only detecting dependencies on files, a custom file
system can be used. On Linux, FUSE can be used to create
a file system in user-space. That is, a custom file system
is mounted in a specified subdirectory. Whenever another
process attempts to read or write files on this file system,
the FUSE server is notified and can decide what information

to return. Most importantly, the FUSE server knows the ID
of the process that is requesting file information. From this,
the build system can determine the files that a particular task
depends on and the outputs it generates. The disadvantage
of this approach is that it is not platform independent. For
Microsoft Windows, a custom driver must be created that
allows the creation of file systems in user-space. Dokan,
a port of FUSE, is available, but is unstable and prone to
crashes.

3.2.3 Detecting Changes
As discussed in Section 3.1.1, file changes can be dis-

covered from file system notifications. But we must also
be able to detect changes to other types of resources such
as environment variables. For the types of resources that a
build system cannot be notified of, a polling approach must
be used. If the build system stores the graph and the state of
all its nodes (see Section 3.2.1), changes to resources can be
detected by polling for them on each build invocation. This
is what Make does for detecting changes to files.

To reduce the number of changes that must be detected,
the granularity of resources can be adjusted. [2] By grouping
similar, rarely changed, resources together, such as standard
library header files, the size of the graph and the number
of changes that must be detected can be drastically reduced.
All the files in a single directory can be grouped together
into a single resource. When a change to the directory is
detected, all the tasks that depend on it can be updated.

Care must also be taken to detect changes to the build
description files themselves. Build description files can be
treated as a file resource and their parsing as a task. Thus,
if the file changes, it should be re-parsed.

3.3 Improving Usability
The usability of a build system is critical to the produc-

tivity of the user. There are two main sources that affect the
usability of a build system: how the build is described and
how the user interacts with it.

3.3.1 Build Descriptions
For all build systems, the user must be able to describe

the build—that is, the tasks to run and which resources those
tasks depend on. The usability of a build system is greatly
affected by how easy it is to write build descriptions.

Following in the footsteps of Make, many build systems
use a domain-specific language to describe the build. This
build description language is often very limited compared to
traditional programming languages. For example, in Make,
complex conditional statements are difficult to write because
‘else if‘ is not supported. Small problems such as this
can make domain-specific languages difficult to write and
maintain.

SCons uses Python to communicate instructions to the
build system. This provides great flexibility and extensibility.

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

Int'l Conf. Software Eng. Research and Practice | SERP'14 | 209

The processing power and flexibility available to Python
is near-impossible to mimic in domain-specific languages.
Using an established and widely used programming language
also has the added benefit of being easier to learn, maintain,
and write.

The only downside to using a general programming lan-
guage is the possibility of too much verbosity in the build
description. Domain-specific languages are tailored to the
task at hand and can provide terser build descriptions. The
syntax of general programming languages is not optimized
for describing builds. In practice, however, these are minor
issues that are quickly dwarfed by their expressive power.

3.3.2 Interaction
Making the build system, as a whole, easier to use also

greatly impacts its usability. This includes trivialities such
as how the build system is invoked, how often is invoked,
or simply how good the documentation is.

One major boost to usability is the automatic invocation of
the build system. By being notified of a file change, the build
system can automatically run the necessary tasks that are

dependent on the file. This could allow the build system to sit
in the background, automatically recompiling the necessary
files as they change, without ever being manually asked to
do so.

4. Conclusion
Significant improvements can be made to existing build

systems. By improving speed, build times for large software
products can be dramatically reduced. By improving reli-
ability, the need for complete rebuilds can be eliminated.
By improving usability, time spent fiddling with the build
system can also be eliminated. Such improvements would
help facilitate the creation of large scale software.

References
[1] Mike Shal. Build system rules and algorithms. http://gittup.

org/tup/build_system_rules_and_algorithms.pdf,
2009.

[2] Derrick Coetzee, Anand Bhaskar, and George Necula. A model and
framework for reliable build systems. http://arxiv.org/pdf/
1203.2704.pdf, February 2012.

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

210 Int'l Conf. Software Eng. Research and Practice | SERP'14 |

http://gittup.org/tup/build_system_rules_and_algorithms.pdf
http://gittup.org/tup/build_system_rules_and_algorithms.pdf
http://arxiv.org/pdf/1203.2704.pdf
http://arxiv.org/pdf/1203.2704.pdf

A Survey of Building Robust Business Models in
Pervasive Computing

Osama Khaled
Computer Science and

Engineering Department
The American University in

Cairo
Cairo, EG

okhaled@aucegypt.edu

Hoda M. Hosny
Computer Science and

Engineering Department
The American University in

Cairo
Cairo, EG

hhosny@aucegypt.edu

Sherif G. Aly
Computer Science and

Engineering Department
The American University in

Cairo
Cairo, EG

sgamal@aucegypt.edu

ABSTRACT

Pervasive computing is one of the most challenging and

difficult computing domains nowadays. It includes many

architectural challenges like context awareness,

adaptability, mobility, availability, and scalability. There

are currently few approaches which provide methodologies

to build suitable architectural models that are more suited

to the nature of the pervasive domain. This area still needs

a lot of enhancements in order to let the software business

analyst (BA) cognitively handle pervasive applications by

using suitable tasks and tools. Accordingly, any proposed

research topic that would attempt to define a development

methodology can greatly help BAs in modeling pervasive

applications with high efficiency. In this survey paper we

address some of the most significant and current software

engineering practices that are proving to be most effective

in building pervasive systems.

Author Keywords

Business Analysis, Elicitation, Design techniques,

requirements gathering, Survey
ACM Classification Keywords
D.2.1 [Requirements/Specifications]

D.2.2: [Design Tools and Techniques]

INTRODUCTION
The pervasive computing concept was first introduced by

Mark Weiser [1] in 1991 as if he was reading into the

future of computing in the 21
st
 century. He was convinced

that personal computers are not satisfactory for integration

into humans’ lives in a natural way. He was convinced that

computation will converge to become ubiquitous. In other

words, computation will be present "everywhere" and will

be featured by its invisibility to the human eyes, yet

available for people to use unconsciously. This vision may

have been impossible to achieve during the 90s of the last

century, but we do nowadays have all the technologies that

we need to achieve Weiser’s vision. We have advanced

wireless networks distributed in many areas, GSM

networks across all countries, hand-held and mobile

devices with integrated sensors, appliances with embedded

computers and wireless controllers, and more importantly

industry and universities are more willing to spend money

on research in these areas. MIT Oxygon, IBM, and AT&T

researches are just examples for huge research

investments [2].

The idea is attractive for many researches and has proven

its success in many forms. Mobile technology is

considered one type of pervasive computing, although not

fully ubiquitous, but is considered a very successful model.

Today, people are so closely attached to their cell phones

and to their applications. Moreover, people who

experience the luxury of modern new cars that sense their

owners, warn drivers on parking actions, or take preventive

actions to avoid accidents will really appreciate this

futuristic technology. People need this kind of technology

that facilitates their life without losing the main goal or

purpose that they want to achieve. It is only natural,

psychologically, to focus on goals and utilize activities to

achieve the purpose as described in the activity theory [3].

It is not just luxurious, but it frees the user’s mind for a

more important goal to be achieved.

Researchers that work in this domain face many challenges,

however. Pervasive computing descended from other

computing fields, like distributed systems, and mobile

technologies and hence inherited their existing challenges.

It is characterized by the common appearance of factors

like context-awareness, system adaptability, and volatility.

In addition to the above, researchers are concerned with

privacy, security, safety, and limited resources as main

issues that must be resolved. As understood from the term

ubiquitous, personal information may be collected and

distributed without permission from its owner. This can

raise legalization issues that must be resolved within the

information distribution laws. In addition, if security can

be breached for devices, appliances, or cars, this may cause

high risks to their users, which results in safety threats that

must be handled as well [4]. The challenge of limited

resources is inherited from the mobile technology, but it

will be more apparent with pervasive computing since the

processing requirements will constantly increase. This can

also lead to higher consumption for devices’ resources like

batteries.

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

Int'l Conf. Software Eng. Research and Practice | SERP'14 | 211

In pervasive computing, there are many smart objects that

have computation capabilities and can interact with each

other using different network channels and can sense the

changes in their surrounding world using their sensors and

this is called context-awareness. A pervasive application

can be stimulated by many things like light, sound,

movement, gravity, temperature, or system changes. If the

smart object reacts towards that change, then it has a

feature called adaptability. For example, a pervasive

computing solution can detect the existence of a teacher in

a class and based on the saved teacher’s profile, which

makes the class switch on the light and start the smart

board, then starts up the class computer.

Although many researches focus on filling the design gap

in pervasive computing by focusing on frameworks and

modeling languages, there are still other successful

practices that need some attention as well. Software

business analysts must be able to transform business

dreams into real implementations. Accordingly, the analyst

must know how to deal with business needs as well as

design constraints. This survey paper is an attempt to

provide as much information as possible about the current

software engineering practices in the domains of software

requirements engineering, high level design and

architecture, and design patterns that are useful for building

pervasive systems. We believe these knowledge areas are

equally important for today’s business analyst and

architect.

The paper is organized as follows. In section 2 we cover

software requirement engineering practices. Section 3

surveys the socio-cultural aspects of ubiquitous computing

and their reflection on design decisions. Section 4 surveys

some of the existing design and architecture practices.

Section 5 discusses some of the ongoing research work on

design patterns.

Requirements Engineering Approaches for Pervasive
Computing
Requirements Engineering (RE) is one of the most

important and difficult tasks in software engineering. It is

the step during which one realizes the needs for building a

new system. The analyst studies the technical, economic,

and cost-benefit aspects of system needs. The job of the

analyst is to come up with a clear analysis model of the

stakeholders’ needs that can be easily answered in the

design phase. As IBM [5] puts it : “business analysis is the

corner stone of any project success.”

The International Institute of Business Analysis (IIBA)

defines the business analyst’s role as “a liaison among

stakeholders in order to elicit, analyze, communicate and

validate requirements for changes to business processes,

policies and information systems. The business analyst

understands business problems and opportunities in the

context of the requirements and recommends solutions that

enable the organization to achieve its goals [6].”

Analysts can approach pervasive computing systems using

the traditional requirements engineering methods.

However, according to the IIBA, the business analyst must

improve the process continuously and provide high quality

systems and products [6]. The proposed requirements

engineering approaches evolve mainly around elicitation,

and analysis techniques proposed in the pervasive

computing domain.

Many researchers realized the need for special techniques,

which are more suitable for pervasive systems. Lyubov et

al. [7] claim that existing requirements engineering

techniques are not enough to engineer requirements for

pervasive systems. They propose procedures to help the

analyst in eliciting and analyzing requirements properly.

The following steps represent their approach

1. Identify system stakeholders and engage with them to

capture the required needs.

2. Build a detailed business model for the environment

derived from the information captured from stakeholders.

3. Hold workshops with stakeholders which are close to

brainstorming sessions where stakeholders set their

perceptions on the pervasive system.

The authors used the following pervasive system contextual

properties to serve as guidelines in the different

engagement sessions with stakeholders. These contextual

properties are:

1. The spatio-temporal context: it describes properties like

time, location, direction, and speed.

2. The environment context: which describes objects

around the user like services, persons, and noise.

3. The personal context: which describes the user’s

physiological and mental state.

4. The task context: which reveals the user’s explicit goals,

tasks, and actions.

5. The social context: which describes the user’s relations

with others and his/her role at work.

6. The information context: which describes the global and

personal space available.

There are other researchers who followed a similar

elicitation practice, but on a completely different theoretical

background. For example, Afridi and Gul [8] adapted the

activity theory in the field of psychology. The activity

theory says that when individuals engage and interact with

their environment, new tools are produced. These tools are

considered forms of mental processes, and as these mental

processes are manifested in tools, they become more

readily accessible and communicable to other people,

thereafter becoming useful for social interaction [3].

Another definition for the activity theory is that it is a

descriptive framework that considers an entire

work/activity system (including teams, organizations, etc.)

beyond just one actor or user. It Accounts for the

environment, history of the person, culture, role of the

artifact, motivations, complexity of real life action, etc.

The user performs an activity to achieve a certain goal. The

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

212 Int'l Conf. Software Eng. Research and Practice | SERP'14 |

theory includes cultural and technical mediation of human

activity, artifacts in use (and not in isolation). Activities

consist of goal-directed actions that are conscious.

Constituents of an activity are not fixed; they can

dynamically change [3].

Afridi and Gul [8] argue that elicitation techniques such as

group-driven elicitation or model-driven elicitation have

some drawbacks in context-aware systems as they do not

address the emergent time-model, the priorities of context-

aware scenarios nor the scenarios' constraints. Their

research proposed specific procedures that help in eliciting

requirements:

1. Enlist all the tasks in operations.

2. Define primary and secondary activities for the system

domain.

3. Develop an activity chart to complete the activity life

cycle.

4. Identify where to enable, the technology or activity. And

enlist the key activities for which context should to be used.

5. Define how context benefits the productivity and

efficiency in terms of resources (time, HR, equipment,

labor, physical activity, computation).

6. Establish context variables required for the context

awareness i.e. time, location, bandwidth etc.

The above procedure uses the same classical elicitation

techniques, but with special focus on context as the main

driver. It addresses also the cost-benefit of using context to

automate a mobile computing system.

Munoz and Pelechano [9] rather preferred to adapt the

existing UML analysis model and customize it for

pervasive computing systems. They introduce some

interesting approaches in the software development life

cycle. They proposed an analysis model approach based on

UML where the analyst has to build the services model, the

structure model, and the interaction model. The services

model is based on the UML class diagram, and they model

the behavior by using the state-transition diagram. They

went deeper and described the acting component inside

each service using the UML component diagram. They

also used the UML sequence diagram to describe the

interactions among services, and they recommended the

design of a single diagram for every interaction. They link

this approach with other steps towards the required system

architecture (Figure 1)

Figure 1: The six Model of Perv-ML [9]

Stéphane et al. [10]andHen-I [11]took a specific aspect of

the pervasive system to analyze. The first introduces a

methodology for Trust Analysis and describes techniques

to find inherent trust issues in the pervasive system that

helps, as claimed, in guiding the system design. The

second discusses safety issues and gives a deep analysis in

order to be considered in the system design.

Trust Analysis by Loprestiel etal [10] recommends eleven

trust issues categorized as subjective, data, and system.

They present their approach as a matrix-based analysis.

They propose 4 steps to realize and understand trust issues

fully. They say the analyst must write the pervasive

computing scenarios fully and ask subject matter experts to

review them. Then, the analyst builds a trust-analysis

matrix table that analyzes vignettes of the scenarios, and

checks the trust issue value against each vignette. After

that, the trust-analysis matrix goes into a peer-review

session to enhance the scenarios, which is the fourth step.

The fifth and the last step is to guide the design by

identifying the most significant areas that need attention

and match technology against design. The authors also

present a trust-analysis matrix for common technologies

used in pervasive computing which is quite interesting.

Francisca et al [39] introduced a different model for

requirements engineering which requires active user

interaction during the elicitation phase. The authors

introduced this approach through a visualization tool which

helps the user view the location of the devices in the smart

space as shown in Figure 2. They help the user put his

requirements through an elicitation process which the user

would have to specify:

1. The scope of the context

2. Define system specifications using predefined list of

characteristics in the system catalogue.

3. Refine system specification for those characteristics

which are not found in the catalogue.

4. Validate the gathered requirements

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

Int'l Conf. Software Eng. Research and Practice | SERP'14 | 213

Figure 2: Snapshot of prototype visualization tool [39]

Yong and Helal [11]refer to a specific criteria or aspect of

pervasive computing which is safety. They give a rich

analysis for different risk scenarios that may cause safety

hazards. For example, they describe the conflict that may

happen between two different appliances if there are side

effects in their computation of the temperature, which may

cause severe hazards. They describe other scenarios that

show different types of risks as well. Authors claim that

any solution focusing on safety must focus on four main

contributors in any pervasive computing environment:

device, service, user, and space. They describe and analyze

their role in pervasive computing in order to put proper

solutions for safety and minimize risk of hazards for these

items.

Socio-Cultural Analysis for Pervasive Computing
Analyzing cultural and social behavioral patterns takes a

considerable space in ubiquitous computing. Business

Analysts need to have a deep understanding of users’

intrinsic behaviors and reasons behind them. This

understanding represents the corner stones of all the work

directed towards building an efficient pervasive computing

solution.

Figure 3: Example of causal graphs representing two different

behaviors of a user in doing an activity. (a) and (b) represent

behaviors of a person doing 'Use bathroom', while (c) and (d)

represent behaviors of a person doing 'Get drink'. Nodes

represent events. [31]

Several studies have been conducted within that context.

For example, Chikhaoui et al. [31] introduce an attractive

approach to build personal profiles by understanding users’

behaviors and their relationships through a casual model.

The researchers visualize the model as an undirected graph

linking major behavioral patterns with each other to help in

design decisions as shown in Figure 3.

Another research by Kawsar et al. [32] attempts to

understand how people use technology in households

especially those connected with the Internet. Their findings

show that the role of devices such as desktop PCs

diminished to be used for special purposes like working

from home or game playing, while tablets and smart phones

are being used now on a larger scale especially with

internet-related services. Moreover, locations like kitchen

and bathroom are common places for several computing

activities.

In another similar example, Takayama et al. [37] studied

sources of satisfaction in home automation systems. Their

research team worked to answer some key questions related

to the purpose, meaning, and usability of the home

technology. The answers to these questions represent

important values of the user, which they found to include

things like personalization, and entertainment and making

impression for others.

Grönvall et al. [33] approached household ubiquitous

technology in healthcare applications based on a deep

understanding of the non-functional aspects surrounding it.

They focused their study on people, resources, places,

routines, knowledge, control and motivation. The outcome

of the research shows, for example, that patients and care-

networks need to be aware of their health situation through

learning and reflection on non-regular settings.

Tian et al. [34] studied user behavior in video-chatting

services and got to understand behavioral trends with

respect to many aspects such as the duration of the chat,

usage of the camera, and the misbehaving users. The study

shows that normal users directly face the camera in

opposition to misbehaving users who hide their faces. They

also show those strategies for selecting the proper partner

has to be developed as chat durations are short mainly

because of failing to select such a partner.

Mainwaring et al. [35] conducted a very interesting study to

understand the usage of digital cash solutions using Sony

FeliCa NFC (Near Field Communication) smartcard

technology in Japan. They found that the Japanese society

prefers to use this NFC technology rather than using credit

cards as they tend to save time which is consistent with

their cultural habits taught to people to avoid commotion as

much as possible.

Lin et al. [36] researches the privacy concerns of the users

who install Android applications with respect to

permissions needed to access phone resources. Their

approach focuses on bridging the gap between the

expectation of the user from the application through what is

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

214 Int'l Conf. Software Eng. Research and Practice | SERP'14 |

known as the mental model, and the actual features and

permissions needed by the application to access mobile

sensitive resources. This kind of understanding prompted

them to build a new privacy summary interface to help the

users take a proper decision via reading past

misconceptions of the users.

Kostoko et al [12] introduce an interesting conceptual

framework for privacy/public issues in pervasive systems

within urban areas. They divided the publicness into

public, social, and private aspects and related them to three

selected aspects of pervasive systems which are location,

technology, and information. The analysis of this approach

is shown in Figure 4. A Social degree means that it is

neither public nor private, and may indicate that there is a

group access rather than individual access. Figure 4 shows

situations at which locations, technology, and information

can be public, social, or private. For example, headphones

are considered a technology that imposes privacy. Train-

time table is a public piece of information. A person

talking in the elevator is in a social location.

Figure 4: Publicness spectrum. The vertical axis represents

the degree of publicness, while the horizontal axis describes

three main features of pervasive systems and the relationship

between them [12].

Architecture and Design Approaches in Pervasive
Computing
The technical community members agree that system

architecture and design are considered key success factures

for any system and solution. This section discusses the

design issues, profound architecture approaches which

address these design issues and more, technologies that can

be used with pervasive computation and finally different

architecture models which address key issues in pervasive

systems.

Pervasive computing is not new in terms of technology, but

is considered an innovative paradigm. It inherits its design

issues from distributed systems, and mobile

computing [12]. They characterize the fields that architects

should deal with to provide suitable designs. We will focus

here on the distributed system design issues as they are also

major design issues in pervasive computing. The following

points are considered the main design issues in any

distributed system [13]:

1. Heterogeneity: the system should be designed to work

through different types of computers, networks, operating

systems, programming languages, and applications

implemented by different developers

2. Openness: characterized by the number of published

key service interfaces, which are possibly built over

heterogeneous hardware and software resources

3. Security: is concerned with protecting data from being

leaked to unauthorized individuals, protecting data from

corruption and alternation, and ensuring accessibility to

data whenever requested

4. Scalability: this issue describes the degree of the system

efficiency whenever the number of resources or users

increases

5. Failure Handling: is concerned with detecting failure

points of the distributed system and the ability of the

system to handle them through masking them or tolerating

their failure, and how efficient it is when recovered from

failure.

6. Concurrency: the system design must ensure proper

performance and correct behavior of shared resources

under concurrent access from different clients.

7. Transparency: user should not be aware of the system

details and should deal with it as one unit. For example,

the user should not worry about the location of services,

and their failure. The user should not also worry about

replication of services.

8. Quality of Service: it is a very important design issue

which provides constraints on the provided services in

order to get the required quality. For example, there could

be deadlines for system response time. There could also be

boundaries for system availability and security.

Dargie et al. [38] identified a number of challenges specific

for any future ubiquitous computing system, namely:

1. Adaptive control: where ubiquitous devices may need

to make decisions using uncertain data

2. Reliability and accuracy: where future work needs to

address accuracy of recognition algorithms and the

possibility of making use of cloud computing resources.

3. Security and Privacy: how a device can recognize other

sensing devices and employee proper security and privacy

strategies as well.

4. Hybrid Intelligence: mixture of non-deterministic and

deterministic intelligence mechanisms to reason about

context types.

5. Unified architecture: where a rapid and common

architecture is required.

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

Int'l Conf. Software Eng. Research and Practice | SERP'14 | 215

6. Tool Support: the need is still there to have tools to

support rapid development of context-aware Systems

The question here is what are the design issues that are

critical for pervasive systems? There are two major design

constraints in pervasive systems, i) context-awareness and

ii) quality of service. The main characteristic of the

pervasive system is to adapt to context changes. This

means that a pervasive system must have the capability to

detect its surrounding environment (context) according to

the scope of the system, and adapt itself to changes that

may occur. Context-awareness covers design issues related

to device location, motion, network availability,

information access, device energy [2].

The quality of service is an inherited design issue from

distributed systems. However, quality issues are more

obvious in pervasive systems as processing, memory, and

disk space are just adequate for the mobile device to

operate. Moreover, client applications may be hosted on

mobile devices and appliances that in many cases change

their context, e.g. change location, which leads to

disturbance of the services as communication may be lost.

In addition, mobile devices use batteries that run out of

power according to the device utilization and to processing

activities that also lead to service disconnection [2]. Hence,

limitation, instability, and degradation of resources are all

reasons that impact the quality of service.

It is important to mention that the Service Oriented

Architecture (SOA) is considered an established approach

that addresses the above mentioned issues in distributed

systems. SOA is an architecture approach in which the

system functionality is represented as a service and

separated from the service consumers. The main

characteristics of the SOA architecture are [14]:

• Services have well-defined interfaces and policies

• Services usually represent business functions

• Services have a modular design

• Services are loosely coupled

• Services can be discovered

• Services’ location is transparent to service consumers.

• Services are independent from transport

• Services are independent from the platform.

Figure 5 shows the conceptual components of the SOA

architecture

Figure 5: SOA conceptual components [15]

Many researchers used web-service technology to

implement pervasive systems. Web Services technology is

considered a standard XML-realization for the SOA

architecture as it provides useful techniques that fulfill

SOA guidelines [13]. For example, Ruimin et al. [16] used

agent-based web services with web applications and mobile

devices in a client-server model so that server-based web-

services can recover if a client disconnects at any time.

Ranganathan and McFaddin [18] used workflows to

coordinate the execution of the web services in a pervasive

system. On the other hand, some Researchers see that web-

services incur an extra overhead of communication due to

using XML in its messages which requires additional

processing power to parse its content, and consume more

network bandwidth than binary remote procedure

calls [17].

There are other technologies that are designed specifically

for embedded systems and adapt to SOA architecture

guidelines. These technologies use native or binary

procedure calls. Harihar [19] depicts Jini as an existing

Sun Java-based technology already designed for embedded

systems. As explained, Jini can satisfy all pervasive

system’s characteristics such as ubiquitous access, context-

awareness, natural interaction, intelligence, security, and

reliability. Architects designed Jini so that it fits in any

hardware that has processing, memory, and network

connectivity. The technology is portable in a way that it

does not require a hardware driver nor a special protocol,

and is not designed for a specific operating system.

The goal of the Jini technology is to turn the network into a

flexible and easily administrated environment with respect

to its resources, which are acquired by users. Resources

can be either software programs, hardware devices, or a

combination of both [19]. For example, the architecture of

the Jini technology is based primarily on the lookup service

which links both the client and the service provider to allow

for service discovery. It adapts leasing in order to free

unused resources, or services, to make them available for

other clients (Figure 6) [19].

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

216 Int'l Conf. Software Eng. Research and Practice | SERP'14 |

Figure 6: Jini Discovery Architecture Model [19]

There are other technologies provided by Microsoft and HP

that are designed to implement pervasive systems.

Microsoft implemented UPnP (Universal Plug and Play) as

an open platform based on HTTP, XML, and SOAP. HP

implemented JetSend which provides peer-to-peer

capability between devices to allow information

exchange [19]. It is important to note that every

technology has its pros and cons and the selection of the

technology to use must be done very carefully.

There are some frameworks that target the development of

pervasive systems with different capabilities and are

designed for different purposes. For example, the JCAF

(Java Context Awareness Framework) [20] is a java based

framework for implementing context-aware applications. It

offers a high flexibility for programmers which allows

them to implement varieties of pervasive systems running

on different contexts. The framework followed some

design principles like flexibility of distribution with loosely

coupled services. It is designed also to show context-

adaptive behavior according to context events. It provides

privacy and security protection mechanisms for data

although pervasive environments are not secured by nature.

Additionally, they have programmer APIs for extensibility

in order to allow for different types of customizations.

Figure 7: The Runtime Architecture of the JCAF Framework

[20]

It is very useful to explore the JCAF runtime architecture to

understand some concepts in pervasive computation. Its

design stimulates thinking and shows a good level of

abstraction. The runtime architecture (Figure 7) is

composed of two tiers Context Service Tier and Context

Client Tier. The Context Service is responsible for

handling context in a specific environment and

communicating with other services (peer-to-peer). It is

ultimately a process running on the J2EE Application

Server. Inside the context Service, we see the Entity

Container which manages Entities. Entities respond to

changes in the context. An Entity Container handles

subscription to context events and notifies clients

accordingly. The Entity Environment provides the required

resources for entities. Access Control provides the required

authentication to access the entity environment.

A Context Client is a client that can access a context

service either via a normal request-response scenario, or by

subscribing to context events on specific entities. It can

monitor context changes via the sensors and update the

entity accordingly. It can also change the context if it is an

actuator in cooperation with other actuators.

Figure 8: CMF Context Ontology Main Elements [21]

JCAF is so generic and does not provide all required

advanced architecture functionalities for pervasive systems.

Korpipää et al. [21] worked on a framework with open

APIs called Context Management Framework (CMF)

designed for Symbian mobile phones. It allows real-time

context reasoning for information even if there is noise.

Researchers use an expandable ontology which clients can

use in different contexts. The framework design principles

are built over security and event-based interaction with

clients. The real power of the CMF framework is its

capability for reasoning based on context variables. Figure

8 shows the main categories that the CMF reasons against.

It is important to notice that the framework APIs allow the

client to interrogate with context information to reason,

subscribe for events, or change behavior according to the

context variables CMF Ontology’s main Vocabulary.

Other researchers focused on resource discovery and tried

to refine its behavior to make it more efficient. For

example, Kalapriya et al. [22] present a resource predictor

mechanism along with the resource discovery in order to

detect variability of resources if they are available.

Resources, if available, may vary based on their location,

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

Int'l Conf. Software Eng. Research and Practice | SERP'14 | 217

and accordingly a mobile device should detect their

variability as early as possible so that precautionary actions

can be taken if the resource cannot meet device task

requirements. They devised their research for mobile

devices, which may lose resources upon changing location.

They claim that it will also help in recovering from service

disconnection and handoff resources smoothly if

disconnected when changing location.

 Petrus and Ravula [23] worked on more or less the same

design issues as Kalapriya et al. [22]. Petrus and

Ravula [23] provide their view for a fault-tolerant pervasive

system by adapting principles of software architecture.

They argue that by providing services and resource

discovery, fault-tolerant, and component replication, the

system will be more stable. They provide their own

middleware solution which is called “Prism-MW” and they

argue that it resolves the key architecture principles to

achieve the required fault-tolerance. The research also

addresses the limited computational resources in any

pervasive system and the need for faster failure recovery.

Accordingly, they adapt an active replication technique,

which consumes more computational resources by nature,

but provides analytical algorithms to identify the

components to be replicated and achieves the best

performance with less failure and less computational

resources.

Hafez et al. [24] introduce context-aware architecture for

pervasive systems which allows required services to adapt

to quality of service requirements by clients. The research

work highlights three major design issues in existing

context-aware architecture solutions, namely: openness,

scalability, and extensibility. Their proposed solution

provides mechanisms for designers so that they can provide

services that match client quality of service requirements.

They offer a QoS-Broker, which is responsible for deciding

on whether the served client received the required QoS or

not. It also takes corrective actions and applies self-healing

to rectify the situation, which may reach up to replacing the

service with another one.

Finally, we discuss a modeling approach which gives the

architect a view with simple UML notations. Figure 1 had

shown an architecture modeling process by Muñoz and

Pelechano [9] which allows the architect to have three

models namely the Binding Providers Model, the

Component Structure Model, and the Functional Model.

The Binding Providers Model shows a set of devices or

software systems that provide similar functionality without

referring to the manufacturer specification (Figure 9). The

Component Structure Model shows the objects that will

build the system. For example there could be 3 lamps and a

single Fluorescent Panel for building a lightening system.

The Functional Specification Model describes the

interaction of objects described in the Component Structure

Model.

Figure 9 Some Elements of a Bindings Providers Model [9]

Researchers are aware that by resolving context-awareness

and quality of service issues, they achieve a major step

forward in providing a better pervasive system. Presented

ideas and concepts are considered innovative and

promising. All surveyed papers in this section depended on

architecture approaches to resolve these design issues in

addition to mathematical solutions. It is important to

mention that advancement in hardware technologies will

lead to better architecture solutions as well.

Patterns in Pervasive Computing
Design Patterns were first introduced in architecture

engineering. Alexender [25] in 1979 introduced the concept

in his book, The Timeless Way of Building. He defines a

pattern as “’Each pattern describes a problem which occurs

over and over again in our environment, and then describes

the core of the solution to that problem, in such a way that

you can use this solution a million times over, without ever

doing it the same way twice” [25]. Although he wrote his

book for architecture engineering, yet it became clearer that

its effect was found useful in software engineering as

well [25].

Later, in 1987, Kent Beck and Ward Cunningham published

a technical paper describing how they used Alexender’s

concepts of patterns to accelerate the development of a user

interface in one of their projects [26]. Patterns became then

more popular when the “Design Patterns Elements of

Reusable Object-Oriented Software” book was published

by the Gang of four [27].

It is really difficult to capture a design pattern. Although,

novel designs could be created from scratch, a design

pattern has to come from experiencing a design and

proving that it is worth using with other projects. A novel

piece of design could be very successful in one application

but it may fail in another. So, a design pattern will not be

captured unless it is used in more than one project inside

the same domain or other domains. These patterns need to

be documented for future use [25].

More researchers contributed in the pervasive computing

field to identify suitable and usable patterns. This area still

needs more attention from researchers, since their

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

218 Int'l Conf. Software Eng. Research and Practice | SERP'14 |

contribution will help in simplifying development of

solutions for complex environments by nature. We

describe a pervasive computing environment as complex as

it inherits this complexity from being distributed, and

depends on non-permanent resources. There are various

research papers that discuss patterns and their use in the

pervasive computing field.

Figure 10: In this example, services with the takeaway-

attribute are connected to a metro plan and a TV screen. The

coffee-machine and speakers providing playback services but

only allow direct interaction [28].

René Reiners [28] in his research work paves the way

towards a pattern language for pervasive computing. This

paper addresses the main design principles towards

defining pattern and anti-design patterns for pervasive

computing solutions. René Reiners gives definitions for

the Smart Object, Smart Service, Smart Environment, and

Take-away feature [28]. A Smart Object is defined as any

object or device that is augmented with additional

computational behavior to the object or device main

purpose [28]. A Smart Service could be any computing

service augmented to the physical object ranging from

simple informative services to sophisticated

applications [28].

In addition to the above explanation, objects can provide a

take-away facility that can be available for smart services

(Figure 10). This feature allows the offline collection of

information for further retrieval and processing. However,

the author highlights the risk of dealing with such a feature

when working with appliances [28]. Finally, the author

gives a definition of a Smart Environment which is a setup

of arbitrary kinds of services attached with an arbitrary

number of real-world objects. A Smart Environment can be

broken down into sub categories to reflect the purpose of

the provided services [28].

Kostakos et al. [12] described a conceptual framework for

designing and analyzing a pervasive system and identified

two patterns called Insulating technology and Secrets

revealed out of their work. The Insulating technology

pattern describes the use of technology that separates a user

from his physical environment. This separation may be

desirable or undesirable based on the user's context and

activity. The designer must identify the system patterns

where insulating technologies are appropriate and if not

defined then it means that there is no individual or group

privacy. The Secrets revealed pattern indicates situations

at which private or social information is made public. This

pattern may or may not be appropriate based on the user's

context and activity. The designer must however,

understand the situations that can make this pattern

desirable.

Other researchers gave an overview for HCI (Human

Computer Interaction) patterns in pervasive

computing. Wilde et al. [29] show concrete examples and

references for patterns that could be used for mobile phone

applications. Researchers could not however introduce a

single pattern for other areas like Smart Environment, and

Collaborative work, which are considered, with the mobile

phones, all the categories of patterns in pervasive

computing, as recommended by the authors. They give

real-world applications which were used in both the Smart

Environment and Collaborative work categories [29].

Sauter et al. [30] introduce an extension to the MVC design

pattern towards a task-oriented development

approach. They do this by extending the Service to Worker

design pattern which adapts the MVC approach. The

Service to Worker pattern tries to separate the business

logic from the user’s interaction with the implementation

for web applications. They focus mainly on developing the

required logic as separate from the design of the view

according to the target device [30]. This approach handles

the displayed attributes, style and actions performed to

achieve the required task at the end. It is important to point

out that this research has a concrete implementation in

J2EE with mobile phones.

One can notice that researchers in pervasive computing did

not introduce complete pattern languages in many

categories. There are of course pattern languages inherited

from other domain areas, which suit pervasive computing,

but the additional characteristics of pervasive computing

need to enrich this literature as well. An explanation for

this limitation although the concept was introduced in the

90, is due to the lack of diversified applications that utilize

all the pervasive computing theories. Pervasive computing

requires more open mobile smart objects and

services. Openness will allow for more applications, and

hence more patterns.

Conclusion
In this survey paper we presented a variety of concepts,

ideas, techniques, and practices in a number of pervasive

domain areas which we believe can be very helpful for

business analysts. The paper focused on associated

requirements engineering and design research work. A

business analyst may be able to use this knowledge to build

his/her business or technical analysis models.

Pervasive computation has been a wide and attractive field

for many researchers ever since Weiser dreamed about it.

Researchers have been working on all technical aspects that

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

Int'l Conf. Software Eng. Research and Practice | SERP'14 | 219

can lead to its prosperity. However, it is notable that most

of the researchers concentrated their work on the technical

aspects of this domain field, trying to resolve some of its

major design issues like context-awareness. A few

researchers focused on areas like requirements engineering

and patterns, in addition to other non-surveyed areas (e.g

business process engineering).

An explanation for that trend may be because this field is

still considered new and needs researchers to prove that it's

worth the investment. There are, of course, many

implementations for pervasive systems. But, they are still

on limited domains and most of them are specific to

manufacturers' technologies. This area needs more

corporate organizations to invest in it, and if this happens,

then the researchers will have a breadth of research

opportunities on all different software engineering

processes and practices. It is important to recall here, that

the most successful research is the one driven by the

business need.

Future research work should focus more on developing

context-awareness related practices on all levels. Lyubov

et al. [7] think that there is a need for requirements

engineering methods focusing on context-awareness

characteristics. It is also needed to have design pattern

languages for pervasive computing [28]. Moreover,

researchers need to keep working on resolving critical

design issues that hinder service quality. Along the way,

there is a need for new design approaches to provide better

context-awareness solutions.

REFERENCES
[1] Mark Weiser. The Computer for the 21st Century. In

Scientific American, (265) 3: 66--75, Year 1991

[2] M. Satyanarayanan. Pervasive Computing: Vision and

Challenges. In IEEE Personal Communications, (8) 4:

10-17, IEEE, Year 2001.

[3] Kaptelinin, Victor and Kuutti, Kari and Bannon, Liam.

Activity theory: Basic concepts and applications .

Human-Computer Interaction. editor(s) Blumenthal,

Brad and Gornostaev, Juri and Unger, Claus. Lecture

Notes in Computer Science, (1015) 189--201,

Springer-Verlag, Berlin/Heidelberg, Year 1995.

[4] Surendra Sharma. 2013. Embedded Systems -- A

Security Paradigm for Pervasive Computing. In

Proceedings of the 2013 International Conference on

Communication Systems and Network Technologies

(CSNT '13). IEEE Computer Society, Washington,

DC, USA, 472-477.

[5] Requirements Management and Definition.

http://www.ibm.com

[6] A Guide to the Business Analysis Body of Knowledge,

Release 1.6. International Institute of Business

Analysis (2006). http://www.theiiba.org

[7] Lyubov Kolos-Mazuryk, Gert-Jan Poulisse, and Pascal

van Eck. Requirements Engineering for Pervasive

Services. In Workshop on Building Software for

Pervasive Computing, OOPSLA 2005.

[8] Ahmad Hassan Afridi, Saleem Gul. Method Assisted

Requirements Elicitation for Context Aware

Computing for the Field Force. In Proceedings of the

International MultiConference of Engineers and

Computer Scientists 2008.

[9] Javier Muñoz and Vicente Pelechano. 2005. Building a

software factory for pervasive systems development. In

Proceedings of the 17th international conference on

Advanced Information Systems Engineering

(CAiSE'05), Oscar Pastor and João Falcão e Cunha

(Eds.). Springer-Verlag, Berlin, Heidelberg, 342-356.

[10] Stéphane Lo Presti, Michael Butler, Michael Leuschel,

and Chris Booth. 2005. A trust analysis methodology

for pervasive computing systems. In Trusting Agents

for Trusting Electronic Societies, Rino Falcone,

Suzanne Barber, Jordi Sabater-Mir, and Munindar P.

Singh (Eds.). Springer-Verlag, Berlin, Heidelberg 129-

143.

[11] Hen-I Yang and Abdelsalam Helal. 2008. Safety

Enhancing Mechanisms for Pervasive Computing

Systems in Intelligent Environments. In Proceedings of

the 2008 Sixth Annual IEEE International Conference

on Pervasive Computing and Communications

(PERCOM '08). IEEE Computer Society, Washington,

DC, USA, 525-530.

[12] Vassilis Kostakos, Eamonn O'Neill, and Alan Penn.

2006. Designing Urban Pervasive Systems. Computer

39, 9 (September 2006), 52-59.

[13] George Coulouris, Jean Dollimore, Tim

Kindberg. Distributed Systems Concepts and

Design. Fifth Edition. Addison-Wesley Publishing

Company (2012).

[14] James McGovern, Scott W. Ambler, Michael E.

Stevens, James Linn, Vikas Sharan, Elias K. Jo. A

Practical guide to enterprise architecture. Prentice Hall

Professional Technical Reference (2004).

[15] Ian Sommerville. Software Engineering. Ninth

Edition. Addison-Wesley Publishing Company (2011).

[16] Ruimin Liu, Feng Chen, Hongji Yang, William C.

Chu, and Yu-Bin Lai. 2004. Agent-Based Web

Services Evolution for Pervasive Computing. In

Proceedings of the 11th Asia-Pacific Software

Engineering Conference (APSEC '04). IEEE Computer

Society, Washington, DC, USA, 726-731.

[17] N. A. B. Gray. Comparison of web services, java-

RMI, and CORBA service implementations. In Fifth

Australasian Workshop on Software and System

Architectures. in Conjunction with ASWEC, 2004.

[18] Anand Ranganathan and Scott McFaddin. 2004. Using

Workflows to Coordinate Web Services in Pervasive

Computing Environments. In Proceedings of the IEEE

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

220 Int'l Conf. Software Eng. Research and Practice | SERP'14 |

http://www.theiiba.org/

International Conference on Web Services (ICWS '04).

IEEE Computer Society, Washington, DC, USA, 288-.

[19] Karthik Harihar and Stan Kurkovsky. 2005. Using Jini

to enable pervasive computing environments. In

Proceedings of the 43rd annual Southeast regional

conference - Volume 1 (ACM-SE 43), Vol. 1. ACM,

New York, NY, USA, 188-193.

[20] Jakob E. Bardram. 2005. The java context awareness

framework (JCAF) – a service infrastructure and

programming framework for context-aware

applications. In Proceedings of the Third international

conference on Pervasive Computing (PERVASIVE'05),

Hans-W. Gellersen, Roy Want, and Albrecht Schmidt

(Eds.). Springer-Verlag, Berlin, Heidelberg, 98-115.

[21] Panu Korpipaa, Jani Mantyjarvi, Juha Kela, Heikki

Keranen, and Esko-Juhani Malm. 2003. Managing

Context Information in Mobile Devices. IEEE

Pervasive Computing 2, 3 (July 2003), 42-51.

[22] K. Kalapriya , S. K. Nandy , Deepti Srinivasan , R.

Uma Maheshwari , V. Satish, A framework for

resource discovery in pervasive computing for mobile

aware task execution, Proceedings of the 1st

conference on Computing frontiers, April 14-16, 2004,

Ischia, Italy.

[23] Petrus, Sharmila Ravula, "Exploring the Role of

Software Architecture in Dynamic and Fault Tolerant

Pervasive Systems," sepcase, pp.9, First International

Workshop on Software Engineering for Pervasive

Computing Applications, Systems, and Environments

(SEPCASE '07), 2007.

[24] Hafez, Dina and Aly, Sherif G. and Sameh, Ahmed. A

Context and Service-Oriented Architecture with

Adaptive Quality of Service Support. . In I. J. Comput.

Appl., (18) 1: 37-51, Year 2011.

[25] Osama M. Khaled, Capturing Design Patterns for

Performance Issues in Database-Driven Web

Applications. M.Sc. Thesis, Computer Science

Department, the American University in Cairo, 2004.

[26] Beck, Kent and Cunningham, Ward. Using Pattern

Languages for Object Oriented Programs. Conference

on Object-Oriented Programming, Systems,

Languages, and Applications (OOPSLA). Year 1987.

[27] Erich Gamma, Richard Helm, Ralph Johnson, John

Vlissides .Design Patterns, Elements of Reusable

Object-Oriented Software. Addison-Wesley

Professional (1994)

[28] René Reiners. Towards a Common Pattern Language

for Ubicomp Application Design. PATTERNS 2010,

The Second International Conferences on Pervasive

Patterns and Applications (2010).

[29] Wilde, Adriana G, Bruegger, Pascal and Hirsbrunner,

Béat. An Overview of Human-Computer Interaction

Patterns in Pervasive Systems. In Conference i-USER

2010, IEEE, University Teknologi Mara, Shah Alam -

Malaysia, December (2010).

[30] Patrick Sauter, Gabriel Vögler, Günther Specht, and

Thomas Flor. Extending the MVC Design Pattern

towards a Task-Oriented Development Approach for

Pervasive Computing Applications. In Proceedings of

International. Conference on Architecture of

Computing Systems - Organic and Pervasive

Computing (ARCS 2004), Augsburg, 23.-26. March

2004, Spinger-Verlag, LNCS 2981, 2004, pp. 309-321.

[31] Belkacem Chikhaoui, Shengrui Wang, and Hélène

Pigot. 2012. Towards causal models for building

behavioral user profile in ubiquitous computing

applications. In Proceedings of the 2012 ACM

Conference on Ubiquitous Computing (UbiComp '12).

ACM, New York, NY, USA, 598-599.

[32] Fahim Kawsar and A.J. Bernheim Brush. 2013. Home

computing unplugged: why, where and when people

use different connected devices at home. In

Proceedings of the 2013 ACM international joint

conference on Pervasive and ubiquitous computing

(UbiComp '13). ACM, New York, NY, USA, 627-636.

[33] Erik Grönvall and Nervo Verdezoto. 2013. Beyond

self-monitoring: understanding non-functional aspects

of home-based healthcare technology. In Proceedings

of the 2013 ACM international joint conference on

Pervasive and ubiquitous computing (UbiComp '13).

ACM, New York, NY, USA, 587-596.

[34] Lei Tian, Shaosong Li, Junho Ahn, David Chu,

Richard Han, Qin Lv, and Shivakant Mishra. 2013.

Understanding user behavior at scale in a mobile video

chat application. In Proceedings of the 2013 ACM

international joint conference on Pervasive and

ubiquitous computing (UbiComp '13). ACM, New

York, NY, USA, 647-656.

[35] Scott Mainwaring, Wendy March, and Bill Maurer.

2008. From meiwaku to tokushita!: lessons for digital

money design from japan. In Proceedings of the

SIGCHI Conference on Human Factors in Computing

Systems (CHI '08). ACM, New York, NY, USA, 21-

24.

[36] Jialiu Lin, Shahriyar Amini, Jason I. Hong, Norman

Sadeh, Janne Lindqvist, and Joy Zhang. 2012.

Expectation and purpose: understanding users' mental

models of mobile app privacy through crowdsourcing.

In Proceedings of the 2012 ACM Conference on

Ubiquitous Computing (UbiComp '12). ACM, New

York, NY, USA, 501-510.

[37] Leila Takayama, Caroline Pantofaru, David Robson,

Bianca Soto, and Michael Barry. 2012. Making

technology homey: finding sources of satisfaction and

meaning in home automation. In Proceedings of the

2012 ACM Conference on Ubiquitous Computing

(UbiComp '12). ACM, New York, NY, USA, 511-520.

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

Int'l Conf. Software Eng. Research and Practice | SERP'14 | 221

[38] Waltenegus Dargie, Juha Plosila, and Vincenzo De

Florio. 2012. Existing challenges and new

opportunities in context-aware systems. In

Proceedings of the 2012 ACM Conference on

Ubiquitous Computing (UbiComp '12). ACM, New

York, NY, USA, 749-751.

[39] Francisca Pérez and Pedro Valderas. 2009. Allowing

End-Users to Actively Participate within the Elicitation

of Pervasive System Requirements through Immediate

Visualization. In Proceedings of the 2009 Fourth

International Workshop on Requirements Engineering

Visualization (REV '09). IEEE Computer Society,

Washington, DC, USA, 31-40.

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

222 Int'l Conf. Software Eng. Research and Practice | SERP'14 |

Java Core API Migration: Challenges and Techniques

Victor L. Winter1, Jonathan Guerrero2, Carl Reinke3, and James T. Perry4
1,2,3Department of Computer Science, University of Nebraska at Omaha, Omaha, NE, USA

4Sandia National Laboratories, Albuquerque, NM, USA

Abstract— The task of developing Java-based applications
for embedded systems can be greatly enhanced by providing
developers access to Java’s Core APIs such as java.lang
and java.util. Oftentimes, platforms used in embedded
systems are scaled back versions of the JVM. As a result,
Core APIs must be migrated in order to be compatible with a
particular platform. A significant portion of such migration
centers around the removal of field, method, or constructor
declarations.

This paper describes the challenges and techniques as-
sociated with the automated removal-based modification of
Java source code. Driving this research is the need to
migrate selected Java Core APIs to an embedded platform
called the SCore processor. This migration is being per-
formed using a tool called Monarch.

Keywords: source-code analysis, program transformation, code
migration

1. Overview
Monarch is a Java source-code migration tool being

developed at the University of Nebraska at Omaha to assist in
migrating Java Core APIs to the SCore platform, a hardware
implementation of the JVM [1] being designed at Sandia
National Laboratories for use in embedded systems. The
SCore is not a full-blown JVM and places various restric-
tions on the class files it can execute. For example, the SCore
does not support floating point arithmetic. Therefore, the
compilation of migrated code may not contain any floating
point bytecodes (a more detailed discussion of the SCore is
given in Section 2). In a nutshell, the central problem that
Monarch must confront is how to produce a (migrated)
code base suitable for execution on the SCore.

At this time, the primary code base targeted for migration
is a set of Core APIs belonging to the Standard Edition
(SE) of the Java Platform. Specifically, a subset of Java
SE 6 update 18 consisting of compilation units drawn from
java.io, java.lang, and java.util.

In its totality, Monarch migration is comprised of the
following three stages.

a) Re-implementation Stage: This manual stage involves
the re-implementation of “must have” functionality within
the Core APIs in order to remove unwanted dependencies.
Re-implemented code fragments are encoded as program

transformations which can then be automatically applied
(or replayed). Further discussion of re-implementation lies
beyond the scope of this paper. In this paper, we assume
we are working with a target code base for which the re-
implementation stage associated with migration has been
completed.

b) Preparation Stage: This manual stage involves an ex-
pansion of the target code base with the goal of obtaining
a prepared code base whose properties satisfy the precon-
ditions of Monarch’s static analysis system. Preparation is
necessary to assure the correctness of static analysis. The
specifics of the preparation stage also lie beyond the scope
of this paper.

c) Removal Stage: This fully automated stage, which is
the focus of this paper, consists of the application of pro-
gram transformations expressed as conditional rewrite rules.
These transformations remove field, methods and constructor
declarations having dependencies on features not supported
by the SCore platform. A novel feature of Monarch trans-
formations is that they enable the conditional portions of
rewrite rules to include nontrivial semantic properties (e.g.,
resolution of references and dependency analysis).

In this paper, the term resolution analysis is used to refer
to static analysis whose purpose is to determine the relation
between references to types and type members (e.g., fields,
methods, and constructors) and their declarations. Resolu-
tion analysis is central to the removal stage of migration
and our discussion assumes that the source-code analysis
capabilities of Monarch can correctly perform resolution
analysis [2] for target code bases that have been suitably
prepared.

d) Contribution: This paper focuses on identifying and ad-
dressing correctness challenges arising from removal-based
migration. The discussion and analysis takes into account
features and properties of Java such as upcasting, shadowing,
overriding, and overloading. Also included in the analysis
are constraints imposed by the SCore.

e) Outline: The remainder of this paper is as follows.
Section 2 gives an overview of the SCore platform. Sec-
tion 3 describes resolution analysis. Section 4 justifies and
articulates a migration policy governing the removal of type

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

Int'l Conf. Software Eng. Research and Practice | SERP'14 | 223

members so that resolution analysis of the pre- and post-
migration versions of the targeted code base is consistent.
This consistency is sufficient to assure that the compilation
of migrated code, by the Java compiler, is functionally
correct and an informal argument is made to this effect.
Section 5 takes an in-depth look at research activities having
an intersection with the problem discussed in this paper, and
Section 6 concludes.

2. Background: The Scalable Core Plat-
form

The Scalable Core (SCore) platform [3], [4] is a hardware
implementation of the JVM [1] being designed at Sandia Na-
tional Laboratories for use in resource-constrained embedded
applications.

2.1 Software Development
From the perspective of process, developing code for the

SCore is essentially identical to developing code for the
JVM. Programmers can develop and debug programs on a
desktop using an IDE such as Eclipse or Netbeans. Standard
tools such as unit testers can be used to validate aspects of
the software. It is important to mention that at this stage
of development, the application interacts with the original
(i.e., un-migrated) Core APIs such as java.lang and
java.util. After this initial stage, SCore development
is moved to a simulation environment where the application
interacts with the migrated Core APIs. See [5] for a detailed
discussion of the simulation environment.

2.2 Interlude: The SCore Classloader
A SCore application is a Java program that is compiled

using a standard Java compiler. Migrated Core APIs are
also compiled in this fashion. The resulting class files are
then processed, as shown in Figure 1, by a classloader-like
converter called Interlude1 which combines all class files
into a single significantly reduced file format called a ROM
image. It is this ROM image that is executed by the SCore
platform.
Interlude assumes the class files given to it are produced

by trusted Java compilers. This assumption is an entailment
of the development process for SCore applications which
require all class files to be produced in-house from source
code. Due to this assumption, general byte-code verification
is unnecessary. However, Interlude does verify that the
class files it processes satisfy a specific set of properties.
Among other things, Interlude will fail to produce a ROM
image upon encountering a symbolic reference to a non-
existent field, method, constructor, type or package. The fact
that Interlude performs these important checks is relied
upon by Monarch (see Section 4.1).

1Interlude is not the official name of the converter used by the SCore
development team. It is a term introduced by the authors to more concisely
reference the part of the SCore tool set that performs classfile conversion.

Interlude Application
ROM
Image

API and
Application
Class files

Java
Compiler

API

Java
Compiler

Migrated
API

Monarch

Standard
Desktop

API references

Fig. 1: An overview of SCore application development.

3. Core Analysis
The goal of the removal stage of Monarch migration is

broadly stated as follows.

Migration Policy 1: From the targeted code base, re-
move all fields, methods, and constructors having
direct or indirect dependencies on (1) features that are
not supported by the SCore, or (2) external references.

The removal stage is fully automated, transformation-
based, and constitutes the heart ofMonarch migration. For
the remainder of this paper, we will use the term migration
when referring to the removal stage ofMonarch migration.

It is important to know that, for assurance purposes
(e.g., to facilitate manual code review and traceability of
migration), Monarch operates exclusively on Java source
code. In particular,Monarch does not extend its resolution
analysis to class files or jar files.

3.1 Resolution Analysis
We define a reference as a source-code expression (i.e.,

valid Java syntax) referring to a declared element. A ref-
erence is the mechanism by which types, arrays, fields,
methods, and constructors can be denoted within Java source
code. Such denotations can be in relative terms, in indirect
terms (also known as aliases), and in absolute terms (also
known as canonical forms).

On a conceptual level, a reference can be modeled as a
(dot-separated) sequence consisting of one or more atoms,
where an atom is either (1) a simple identifier denoting
a package, type, generic type parameter, or field, or (2)
an array reference, a method signature, or a constructor
signature. This understanding of references as sequences of
atoms leads to an approach to resolution analysis that is
incremental in nature and atom-based: Atom sequences are
resolved one atom at a time from left to right. We write
ref 1..n to denote a reference consisting of n atoms.

In this paper, the term resolution analysis is used to refer
to static analysis whose purpose is to determine the relation
R between element references and element declarations. We

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

224 Int'l Conf. Software Eng. Research and Practice | SERP'14 |

use the term resolvent to refer to the result (i.e., the value)
produced when resolution analysis is applied to a reference
occurring in a given environment. Let ref denote a reference
and let T denote a canonical name of the type in which ref
occurs. We formally express the resolution of (T, ref) as
follows.

resolution(T, ref) = resolvent (1)

Note that in this paper, a resolvent is considered to be the
canonical name of a type, array, field, method, or constructor.

3.1.1 Local Variables and Generic Type Parameters

When viewed in its entirety, resolution analysis must
encompass references to local variables as well as generic
type parameters. Monarch performs such analysis during
its migration. However, the goal of this paper is to create
a source-code removal policy that will correctly remove
declarations and all their corresponding references. Further-
more, the stated policy does not permit the isolated removal
of local variables (e.g., from the bodies of methods) or
generic type parameters. The only way local variables and
generic type parameters could be removed during migration
would be through the removal of their enclosing declarations
(e.g., method declarations). It is precisely these enclosing
declarations that define the scopes of local variables and
generic type parameters. For this reason, it is without loss
of generality that we can restrict our discussion of resolution
analysis to environments (T) denoting types. In particular,
we abstract away from our discussion the environments
associated with methods and constructors.

3.2 Primary versus Secondary Resolvents
For the purposes of our analysis we will, when necessary,

use the terms primary resolvent and secondary resolvent to
make finer distinctions between resolvents. Such distinctions
are relevant because the complexity of Java allows for the
creation of code structures in which certain declarations
are hidden (i.e., not visible) from the environment (T) in
which the reference occurs. When they exist, we refer to
such hidden declarations as secondary resolvents of the
reference. Declarations that are not hidden are called primary
resolvents.

The Java compiler performs resolution analysis to de-
termine reference bindings. Monarch performs resolution
analysis to perform dependency analysis used to determine
which members of a type can be safely migrated, and which
members must be removed.

A central concern is whether the migration process, when
seen as a whole, creates conditions for the re-classification,
by the Java compiler, of a secondary resolvent as the
(new) primary resolvent for a given reference. If this shift
occurs, then migration is not correctness preserving. It is the

omission of declarations that gives rise to this threat. The
omission of a declaration can occur in one of two ways.

1) Pre-migration: The consideration of code bases for
which there is tacit omission of some declarations
(e.g., targeting a subset of an API for migration). This
situation is addressed during the preparation stage.

2) Post-migration: The explicit removal of declarations
during migration.

3.3 Points-to Analysis
In theory, cases exist where resolution analysis is unable

to precisely determine the primary resolvent of a reference.
This particular problem is known as the points-to problem,
and its static analysis is undecidable.

The undecidable nature of points-to analysis implies that
an approximating analysis must be used to prevent errors
associated with the potential re-classification of secondary
resolvents. This approximation must be conservative with
respect to correctness. From a technical standpoint, this
means that cases can arise where Monarch may need
to remove both primary and secondary resolvents in order
to assure migration correctness. The drawback of such an
aggressive removal policy is that it results in a (possibly
unnecessary) reduction in the functionality that is migrated.

3.4 Unresolvable References
At the source code level, brute-force attempts to expand

a target code base with the goal of obtaining a code
base that is reference-closed are impractical. For exam-
ple, a simple “hello world” program when executed via
the command java -verbose:class demonstrates that
this tiny program loads (e.g., has dependencies on) over 400
classes. Thus, when combined with the space limitations
of the SCore, Monarch’s restriction to source-code level
analysis gives rise to target code bases containing unresolv-
able references. We denote such resolvents by the constant
<unresolved>.

When resolving (T, ref 1..n), if ref 1..n has a proper prefix
that lies outside of the target code base C, then (T, ref 1..n)
is classified as an external reference.

externalReference(C, (T, ref 1..n))
def
=

∃i : 1 ≤ i < n
∧
resolution(T, ref 1..i) = resolvent
∧
resolvent 6∈ C

(2)

From the perspective of migration, if an element in C
has a dependency on an external reference, the element
must be removed during migration. Furthermore, for the
purposes of dependency analysis, to conclude that a refer-
ence (T, ref 1..n) is <unresolved> it is sufficient to find
a prefix ref 1..i that is an external reference.

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

Int'l Conf. Software Eng. Research and Practice | SERP'14 | 225

4. Removal Analysis
This section identifies and articulates changes to the basic

migration policy, stated in Section 3, with the goal of produc-
ing an amended migration policy that is both implementable
and correctness preserving. The central challenge here is to
articulate a policy governing removal in such a way that the
relation R between references and their primary resolvents
is preserved in the migrated code.

Definition 1: Let C denote a target code base containing
no unresolvable references (i.e., a compilable code base) and
let C ′ denote the code base that results when C is migrated
using Monarch. Let RC and RC′ denote the relations
between references and their resolvents that exist in the code
bases C and C ′ respectively. In order to be correct, removal-
based migration must satisfy the following property:

migrationCorrect(C,C ′)
def
= RC′ ⊆ RC (3)

It is worth noting that removing more (e.g., removing
arbitrary elements) does not compromise correctness, pro-
vided this is done consistently and comprehensively. For
example, the relation for an empty code base C ′ is RC′ = ∅,
and in this case migrationCorrect(C,C ′) will hold for all
C. This observation gives rise to an important secondary
migration goal (whose discussion lies outside the scope of
this paper). Namely, that migration should strive to maximize
the amount of code migrated. This is after all, in part, what
is being addressed in the re-implementation stage mentioned
in Section 1.

Policy Constraint 1: In order to assure migration cor-
rectness, Monarch may remove arbitrary declara-
tions during migration. However, such removal should
be kept to a minimum.

4.1 Application Independence
A constraint that has been placed upon Monarch is that

API migration be application independent. For example, let
C denote a code base (e.g., a subset of the Java libraries)
that has been targeted for migration, and let App denote an
application code base that uses the functionality provided
by C. Even though the analysis of App may result in the
migration of a larger portion of C, Monarch may not
broaden it static analysis to include App. We refer to this
constraint as application independence.

There are technical as well as security related reasons
justifying the application independence of API migration. On
the technical side, if Monarch migration was application
dependent, then Monarch would need to be intimately
integrated with all (future) application development for the
SCore. From the perspective of security, if an application is
proprietary, then the confidentiality policy of an organization
may prohibit “externally developed” tools such asMonarch
from accessing the application.

Policy Constraint 2: Migration of a targeted code
base C must be performed in an application indepen-
dent fashion. Specifically, migration may not make
any assumptions about how an application might use
C.

As mentioned in Section 2.1, application development
for the SCore begins on a desktop environment utilizing
a traditional JVM and only later transitions to the SCore
platform. The application is also compiled with respect
to this desktop environment. Migration must assure that
applications developed and compiled on a standard JVM
ultimately interact with migrated and separately compiled
target code bases in a correct manner. From the perspective
of migration, this approach to application development and
separate compilation entails an additional challenge which is
addressed by placing the following constraint on Interlude.

Policy Constraint 3: The Interlude classloader
should fail to create a ROM image when the class
files of an application contain a reference to a field,
method or constructor that does not exist in the
migrated target code base.

4.2 Shadowing
The following subsections examine the extent to which

shadowing issues must be considered during migration.

4.2.1 Field Shadowing

In Java, it is possible for a subtype to (re)declare a field
declared in its supertype. A re-declaration of a field x in a
subtype T2 (i.e., T2.x) is said to shadow the declaration of
the field x in its supertype T1 (i.e., T1.x). We also say the
declaration T1.x is shadowed by the declaration in T2.x, and
that the declaration T1.x is shadowing the declaration T2.x.

The semantics of field inheritance poses a threat to the
correctness of field removal. For example, let (T, ref) denote
a reference whose resolvent denotes the field re-declaration.
In this case, the corresponding field declaration in the
supertype constitutes a secondary resolvent. Thus, if the field
re-declaration is removed, then the secondary resolvent will
be re-classified as the primary resolvent for (T, ref). An
example of this is shown in Figure 2.

Policy Constraint 4: In order to assure the correct-
ness of migration, when removing the field decla-
ration T.x it is also necessary to remove all field
declarations shadowed by T.x.

4.2.2 Method Shadowing

Method shadowing is a phenomenon that only occurs
between a nested class and its enclosing class(es). All

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

226 Int'l Conf. Software Eng. Research and Practice | SERP'14 |

package p1; // Target code base
public class A {

int y1 = new B2().x1; // p1.B2.x1
int y2 = (int) new B2().x2; // p1.B2.x2
int y3 = (int) new B2().x3; // p1.B1.x3

}
class B1 {

int x1 = 1;
int x2 = 2;
int x3 = 3;

}
class B2 extends B1 {

// will be removed by Monarch, shadows p1.B1.x1
int x1 = (int) 1.0;
// will be removed by Monarch, shadows p1.B1.x2
double x2 = 2.0;

}

Fig. 2: Field shadowing can threaten migration correctness.

references to shadowing methods must occur within the
nested method where the shadowing method is declared.

Figure 3 gives an example of Java code in which
the method declaration p1.A.f() is shadowed. This
declaration is shadowed in the context of the class
InnerA. In this case, the shadowing method declaration
is p1.A.InnerA.f().

package p1; // Target code base
public class A {
public int f() { return 1; }
public int g() { return 1; }
public class InnerA {
// shadowing method removed during migration
public int f() { return (int) 2.0; }

// depends on p1.A.InnerA.f()
public int y1 = f();
public int y2 = g();
public int y3 = z1;

}
public int z1 = 1;
InnerA myThing = new InnerA();
// int z2 = myThing.g(); // compile error
// int z3 = myThing.z1; // compile error

}
// ===
// External to Monarch analysis
package app;
import p1.A;
class App {

A.InnerA myThing = (new A()).new InnerA();
int x1 = myThing.f();
// int x2 = myThing.g(); // compile error
int y1 = myThing.y1;
int y2 = myThing.y2;
// int y3 = myThing.z1; // compile error

}

Fig. 3: An example of method shadowing.

In order to assure correct dependency analysis involving
method shadowing it is necessary for a target code base to
satisfy the containment property defined as follows.

Property 1: A target code base C satisfies the contain-
ment property if whenever a top-level class belongs to C,
all its internals (e.g., nested classes) also belong to C.

The containment property is a natural property to assume
for a targeted code base. Validating that a target code base
satisfies this property is part of the preparation stage of
migration (which lies outside the scope of this paper). We
explicitly mention containment property here for the sake
of completeness, but will tacitly assume this property for
the remainder of the paper. As a result, secondary-resolvent
issues surrounding method shadows do not extend into
the application. Thus, Interlude’s checks are sufficient to
assure that method shadowing poses no additional challenges
to migration, and therefore no specific policy need be devel-
oped to handle method shadowing (other than requiring the
target code base to adhere to the containment assumption).

Policy Constraint 5: In order to be suitable for mi-
gration, a target code base C must satisfy the con-
tainment assumption.

4.3 Method Overriding

package p1; // Target code base
public class A extends B {

// overrides p1.B.f()
public int f() { return 1; }
// overrides p1.B.g()
// will be removed during migration
public int g() { return (int)1.0; }

}
public class B {

// overridden by p1.A.f()
// will be removed during migration
public int f() { return (int)2.0; }
// overridden by p1.A.f()
public int g() { return 2; }

}
// ==
// External to Monarch analysis
package app;
import p1.*;
public class App {

A myA = new A();
int x1 = myA.f(); // p1.A.f()
int x2 = myA.g(); // p1.A.g()
B myB = new B();
int x3 = myB.f(); // p1.B.f()
int x4 = myB.g(); // p1.B.g()
B myThing = new A();
int x5 = myThing.f();
int x6 = myThing.g();

}

Fig. 4: An example of method overriding.

Method overriding occurs when a type T2 declares a
method m whose signature exactly matches that of a method
declared in T1 where T2 <: T1. In this case, we say the
declaration T2.m overrides T1.m.

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

Int'l Conf. Software Eng. Research and Practice | SERP'14 | 227

Figure 4 shows a small class hierarchy in which method
overriding occurs. In this case, p1.B.f() and p1.B.g()
are overridden methods, and p1.A.f() and p1.A.g()
are overriding methods.

Policy Constraint 6: When removing method T.m
all methods overridden by T.m must also be removed.

4.3.1 Interfaces

It should be noted that the undecidability of points-
to analysis provides sufficient justification for adopting a
migration policy that deletes methods whose declarations
are overridden by methods utilizing features unsupported
by the SCore. However, this removal policy also solves the
problem of method implementation requirements imposed
by interfaces. Specifically, if a class implements an interface,
then the class must have declarations for all abstract methods
declared in the interface. Removal of such an “interface
method” from the class would result in a migrated code base
that fails to compile.

4.4 Overloading
Method overloading occurs when methods have identical

names but different signatures. A complete analysis of
method overloading must take into account issues such as
visibility, widening conversions, auto-boxing, and “closest
fit” signature matching (which can get complex when a
method signature contains multiple parameters).

From the perspective of migration, the case that must be
considered is: “What happens if an application contains a
reference to an overloaded method whose declaration resides
in the original target code base, but whose declaration is
removed as a result of migration?” In such a situation, sec-
ondary resolvents are possible. Furthermore, a particularly
unfortunate form of overloading can arise involving param-
eters of type java.lang.Object. For example, Figure
5 reveals that the class java.lang.StringBuilder
contains numerous overloaded declarations of its append
method. Noteworthy is that (1) all declarations shown have
the same arity, (2) the formal parameter of the first dec-
laration is of type java.lang.Object, and (3) aside
from a reference to the first declaration, a reference (in
an application) to any other append declaration will have
append(Object obj) as a secondary resolvent. The
root cause of such secondary resolvents results not from
overriding, but from how Java resolves references to over-
loaded methods.

For references occurring within the target code base, sec-
ondary resolvents arising from overloading poses no analysis
problems. However, this is not the case for references to
overloaded methods occurring within the application, since
these are not subjected to analysis. Particularly unappealing
is the idea of expanding the removal of a declaration

public StringBuilder append(Object obj) ...
public StringBuilder append(String str) ...
...
public StringBuilder append(float f) ...
public StringBuilder append(double d) ...

Fig. 5: Overloaded declarations of the method append in
the class java.lang.StringBuilder.

like append(float f) to also include the removal of
append(Object obj) in order to assure the correctness
of reference resolution within an application. Fortunately,
the properties of Interlude can be leveraged to avoid this
situation. Specifically, Interlude will fail to compile class
files containing symbolic references to non-existent methods.

Policy Constraint 7: Secondary resolvents resulting
from references to overloaded methods/constructors
impose no additional constraints on migration because
Interlude will fail to produce a ROM image if it
encounters a reference to a non-existent method or
constructor.

4.5 Special Cases
In the following sections discuss removal cases requiring

specialized analysis.

4.5.1 Constructor Removal
Monarch migration exclusively consists of removal of

fields, methods, and constructors – and anonymous types.
Removal of named types is not supported since this has
the potential to decimate a code base – an example of
which will be discussed shortly. However, this restriction
can pose a threat to the correctness of migration in the case
when the constructors of a type are exhaustively removed. In
particular, when encountering a class that does not explicitly
contain a constructor, the Java compiler will automatically
generate a no-argument default constructor for that class.

Policy Constraint 8: Migration may not exhaustively
remove all explicitly declared constructors belonging
to a type.

We encountered the problem of exhaustive construc-
tor removal in practice. In particular, the core API
targeted for migration to the SCore containes the
class java.lang.Throwable. Every constructor of
Throwable had a dependency on a native method called
fillInStackTrace. This native method is not supported
on the SCore platform. Thus, the constructors for the class
Throwable needed to be either exhaustively removed or
or some subset needed to be re-implemented. Exhaustive
removal of the Throwable constructors yielded unaccept-
able results since it mandated the (manual) removal of the

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

228 Int'l Conf. Software Eng. Research and Practice | SERP'14 |

class Throwable. This lead to a cascading sequence of
removals that decimated the migrated code base. Specifi-
cally, since Throwable is the supertype of all Exception
and Error classes, and since the Exception and Error
classes were part of the code base targeted for migration,
the removal of Throwable would also require the removal
of the Exception and Error classes as well as any of
their subtypes.

In this case, the dependency problem was resolved during
the re-implementation stage (see Section 1).

4.5.2 Initialization Blocks
A static initialization block is a mechanism that enables

nontrivial initialization of static fields. Such an initialization
capability is useful since class initialization methods (i.e.,
clinit) cannot be explicitly defined. In Java 1.1, anony-
mous classes were introduced and instance initialization
blocks were introduced to compensate for the fact that
constructors may not be defined for anonymous classes.

When a static initialization block is present in a class, it
is implicitly associated with the class initialization method
for that class. Similarly, all instance initialization blocks in
a class are associated with all constructors for that class.
This makes the removal of initialization blocks problematic.
For example, removal of an instance initialization block
implies removal of all constructors for the class. Therefore,
Monarch classifies initialization blocks as “must have”
functionality whose dependencies must be addressed in the
manual re-implementation stage (see Section 1).

In practice, the use of instance initialization blocks is
rare and the use of static initialization blocks is infrequent.
In the Core API targeted for migration there are 7 static
initialization blocks with average LOC = 6, and 0 instance
initialization blocks.

Policy Constraint 9: The removal phase of migration
classifies initialization blocks as “must have” func-
tionality. Furthermore, Monarch will migrate all
initialization blocks without performing dependency
analysis. It is left to the re-implementation phase
to assure that all initialization blocks are free from
unwanted dependencies.

5. Related Work
Behavior-preserving refactoring [6] and removal-based

migration both center around modifications to source code
constrained by properties involving primary and secondary
resolvents. Many standard refactorings involve either chang-
ing a declaration (e.g., renaming) or repositioning a declara-
tion within a subtype hierarchy (e.g., extracting a superclass
or converting a local variable to a field). For example,
the rename method refactoring fully takes into account
overriding and considers overloading issues to a limited

extent. This is similar, but not identical to what is needed for
Monarch migration. Noteworthy is that method renaming
extends across the entire subtype hierarchy renaming method
declarations in all sibling, cousin, and descendent classes.
This is somewhat different from what is done in Monarch
migration. Specifically, in order to maximize the number
of declarations in the migrated code base, removal of a
method only impacts ancestors (i.e., supertypes) of the class
containing the method declaration flagged for removal and
not its sibling, cousin, or descendent classes.

Refactoring has also been used to capture developers’
manual modifications of libraries with the intent of replaying
the captured actions on client software that uses the modified
libraries [7]. In this case, a separation is made between
the evolution of an API and modifications to applications
using the evolved API. The goal of replay is to bring
application programs “up to date” with the evolving APIs
they depend on. Henkel and Diwan have developed a
semi-automated refactoring capture-and-replay tool called
CatchUp! for this purpose. Such replay abilities are similar
to those in Monarch which formulate re-implementations
as replayable transformations.

Refactoring with type constraints has been used to remove
deprecated code [8] and convert legacy code with un-
checked downcasts into type-safe generic code [9]. In a
similar vein, a tool called Rosemari [10] has been developed
to upgrade legacy applications making them compliant with
evolving frameworks such as JUnit. In this case, code
migration is based on annotation refactorings. For example,
JUnit version 3 requires that test cases and test suites adhere
to certain naming conventions. In contrast, JUnit version 4
imposes no naming conventions, but does require test cases
and test suites to be properly annotated.

Our work differs from refactoring-based work related to
Java libraries in that we exclusively modify the libraries
not the client software that uses the libraries. In addition,
whereas others focus on preserving the API exposed by the
libraries, we reduce the functionality of the libraries because
of restrictions of the target platform. To the best of our
knowledge this has not been done elsewhere. Even Oracle
does not provide a migrated version of the standard libraries
for use on their Java Card platform [11].

Rayside and Kontogiannis [12] discuss a process to extract
Java library subsets for supporting embedded systems appli-
cations by removing unused components from the library.
They have the capability to produce library subsets having
certain properties: (1) a space optimized subset, (2) a partial
space optimized subset, and (3) a space reduced subset.
The production of a subset is application specific with
the space optimized subset being the most aggressive. The
space optimized subset is created by removing all fields and
methods that are not referenced by a given application. This
is slightly different than the migration goals we are pursuing
in which we want to universally prohibit access to fields and

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

Int'l Conf. Software Eng. Research and Practice | SERP'14 | 229

methods depending on features that are not supported by the
target platform (i.e., the SCore). Furthermore, Interlude,
the class loader for the SCore [13], has similar removal
capabilities to the space optimized subset produced by
Rayside and Kontogiannis. In particular, when processing
the class files for a given application the class loader for
the SCore removes all methods (but not fields) that are not
referenced.

6. Conclusion
This paper conducts an in-depth analysis of the impact

that declaration removal can have on Java code bases. This
analysis is performed in the context of an API migration
effort whose goal is to produce Java source code suitable
for execution on the SCore platform.

At this time, the primary code base targeted for migration
is a set of Core APIs belonging to the Standard Edition (SE)
of the Java Platform. Key constraints imposed on migration
are: (1) API removal analysis may not make assumptions
about (SCore) applications using the migrated API, and (2)
SCore application starts on a desktop environment contain-
ing the un-migrated form of the target Core APIs and finishes
on a simulation environment containing the migrated version
of the Core APIs.

From our experiences we conclude that Core API migra-
tion is possible and can be automated to a significant extent.
A beta-version of this policy has been implemented in a
migration tool called Monarch, capable of fully automatic
removal-based migration. The policy is enforced by both the
Monarch migrator and the Interlude classloader.

References
[1] T. Lindholm and F. Yellin, Eds., The Java Virtual Machine (Second

Edition). Addison-Wesley, 1999.
[2] V. Winter, , C. Reinke, and J. Guerrero, “Using Program Transfor-

mation, Annotation, and Reflection to Certify a Java Type Resolution
Function,” in Proceedings of the 15th IEEE International Symposium
on High Assurance Systems Engineering (HASE), January 2014.

[3] J. A. McCoy, “An Embedded System For Safe, Secure And Reliable
Execution of High Consequence Software,” in Proceedings of the
5th IEEE International Symposium on High Assurance Systems
Engineering (HASE). IEEE, 2000, pp. 107–114.

[4] G. L. Wickstrom, J. Davis, S. E. Morrison, S. Roach, and V. L. Winter,
“The SSP: An Example of High-Assurance System Engineering,”
in HASE 2004: The 8th IEEE International Symposium on High
Assurance Systems Engineering. Tampa, Florida, United States:
IEEE, 2004, pp. 167–177.

[5] V. L. Winter, H. Siy, J. McCoy, B. Farkas, G. Wickstrom, D. Dem-
ming, J. Perry, and S. Srinivasan, “Incorporating Standard Java
Libraries into the Design of Embedded Systems,” in Java in Academia
and Research, K. Cai, Ed. iConcept Press, 2011.

[6] M. Fowler, Refactoring: Improving the Design of Existing Code.
Addison-Wesley, 1999.

[7] J. Henkel and A. Diwan, “CatchUp! Capturing and Replaying Refac-
torings to Support API Evolution,” in Proceedings of the 27th In-
ternational Conference on Software Engineering (ICSE’05), St.Louis,
Missouri, USA, 2005.

[8] I. Balaban, F. Tip, and R. Fuhrer, “Refactoring Support for Class
Library Migration,” in Proceedings of OOPSLA 2005. San Diego,
California, United States: ACM, 2005, pp. 265–279.

[9] A. Donovan, A. Kiezun, M. S. Tschantz, and M. D. Ernst, “Converting
Java Programs to Use Generic Libraries,” in Proceedings of OOPSLA
2004, Vancouver, BC, Canada, 2004, pp. 15 – 34.

[10] W. Tansey and E. Tilevich, “Annotation Refactoring: Inferring
Upgrade Transformations for Legacy Applications,” SIGPLAN Not.,
vol. 43, no. 10, pp. 295–312, Oct. 2008. [Online]. Available:
http://doi.acm.org/10.1145/1449955.1449788

[11] Oracle Sun Developer Network (SDN), “Java card technology.
http://java.sun.com/products/javacard/.”

[12] D. Rayside and K. Kontogiannis, “Extracting Java Library Subsets for
Deployment on Embedded Systems,” Science of Computer Program-
ming, vol. 45, no. 2-3, pp. 245–270, November-December 2002.

[13] S. Morrison, “SSP Class Loader Responsibilities,” Sandia National
Laboratories, Tech. Rep., 2005, internal Report.

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

230 Int'l Conf. Software Eng. Research and Practice | SERP'14 |

http://doi.acm.org/10.1145/1449955.1449788

Decomposed processes in Cloud BPM: techniques for

monitoring and the use of OLC

José Martinez Garro1, Patricia Bazán2, and Javier Díaz2
1
Facultad de Informática, UNLP (Universidad Nacional de La Plata), La Plata, Buenos Aires, Argentina
2
LINTI, Facultad de Informática, UNLP (Universidad Nacional de La Plata), La Plata, Buenos Aires,

Argentina

Abstract - BPM (Business Process Management) in the

Cloud has triggered revisions over several concepts like

process decomposition, execution and monitoring.

Decomposition allows processes to be executed in cloud

oriented and embedded environments. This situation takes

advantage of both approaches considering topics like

sensitive data, high computing performance and system

portability. Decomposed processes need to be monitored

conserving the original business model’s perspective. It can

be considered also for monitoring purposes some data

generated during process status changes. These data units

are useful due to they contain information associated with the

process execution. In this paper we present a model for

decomposed process monitoring which also considers OLC

(Object Life Cycle) data objects in order to provide a wider

set of information for measuring and improving purposes. We

also make a comparison about features like process

execution and monitoring, considering hybrid environments

versus embedded ones, including the use of OLC data

objects.

Keywords: OLC, decomposition, monitoring, cloud, BPM.

1 Introduction

 The problem of monitoring a business process in a

cloud oriented collaborative environment, conserving the

process model’s original perspective is deepened in the

present work. It is made by facing the possibility of saving

and analyzing OLC data objects generated through process

transitions, in order to embrace as much relevant information

as possible for process measuring and improvement. This

work begins with a current bibliography analysis considering

concepts associated with process decomposition in a hybrid

scheme, process monitoring in the cloud and the necessity of

binding processes with data objects, in order to obtain

relevant information for process measuring and

improvement. In second place it is presented a proposal with

the architecture of a process monitoring application which

considers at the same time OLC data objects related to

process transitions. It is also included a comparison about the

mentioned trends in process execution and monitoring,

considering both hybrid and embedded environments.

Finalizing the document we present some conclusions about

the current state of the art and future work proposals in these

research lines.

1.1 Related work

 There are different trends when it comes to BPM in the

cloud. A major topic in the research field is process

decomposition and the different concepts associated with it:

expressions for cost calculation, equations to obtain the best

distribution scheme according to the infrastructure and the

involved applications, and also methods to improve process

performance. There are several articles providing different

perspectives on these subjects [2] [3] [6] [11]. Regarding to

process monitoring, there are some research lines

introducing concepts about process measurement, process

performance, business activity monitoring and OLC data

objects, generally in embedded environments exclusively [7]

[8] [10]. Considering cloud environments in order to cover

this gap, we have presented in [17] an architectural proposal

for a decomposed process monitoring application in a hybrid

environment. In the present paper we go further deep into

this architecture, introducing some new features by applying

the concept of OLC data objects in order to obtain more

information for process monitoring and measuring.

2 Hybrid architectures

 Privacy protection is a major concern when the purpose

is to put BPM in the cloud. Once private data are outside the

organization, there is a certain lack of control over them.

Besides, it is necessary to observe product’s portability and its

versions, and their availability in a cloud system. Other two

problems also often considered are performance and

efficiency.

The scalability and high availability of computing force

are highly exploited by the intensive computational activities

inside processes. The non intensive computational tasks, on

the other hand, not always take advantage of this context.

The performance of one activity running in an embedded

environment should be better compared to the cloud, because

of the amount of data that is transferred in order to execute

the activity [1] [6].

• Possible architectures: in most BPM solutions, the

process engine, the activities and data are located in

the same side, even in an embedded or cloud

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

Int'l Conf. Software Eng. Research and Practice | SERP'14 | 231

approach. There are some papers introducing the PAD

model (Process - Activity - Data) of Fig. 1 as a

distribution possibility for BPM in the cloud. In this

approach the process model, the involved activities

and the process data are separately distributed. The

PAD model defines four possibilities of distribution:

1) The first pattern is the traditional alternative where

all elements are distributed over the final user side.

2) The second pattern is useful when the user already

has a BPMS, but the high computing activities are

located in the cloud in order to increment their

performance.

3) The third pattern is useful for users who still do not

have a BPMS, so they can use the cloud system in a

“pay per use” way. In this approach the activities

with low computing intensity or the ones with

sensitive data management can be located on the

final user side.

4) The fourth pattern is the cloud based model, where

all the elements are located in the cloud.

Fig. 1 : PAD Distribution Model [6]

• Business processes often manage flows of two kinds:

control and data. Control flows regulate the execution

of activities and their sequence, while data flows

determine how the information is transferred from one

activity to the next one in the process. BPM engines

must manage both kinds of flows. A data flow could

contain sensitive data, so when a BPMS is deployed in

the cloud, the content of those flows should be

protected. An example of the proposed architecture

could be a scenario where the engine in the cloud only

deals with data flows using reference identifiers

instead of real data. Sensitive data are saved in the

final user side, and non sensitive data are saved in the

cloud. This scheme allows sensitive data not to travel

indiscriminately through the web.

• Optimal distribution: the cloud system costs have been

studied several times previously. There are formulas

that allow calculating the optimal distribution of

activities, since they can be located in the cloud or in

an embedded system. The calculation takes in

consideration different items, like time, money and

privacy risks. [2] [3] [4] [6].

2.1 Criteria for process subdivision (Decom-

position)

 It is possible to generalize the distribution and identify a

fifth pattern where the process engine, the activities and data

are deployed in the cloud and in the final user

simultaneously. This solution presents two potential benefits:

1) The process engine manages control and data flows.

Once the activity receives data from the process engine and

conludes its execution, the outcomes are passed again to the

process engine. Considering now a sequence of activities

located in the cloud, and a process engine deployed in the

final user side: each activity uses data produced by the

previous activity as an income. Data are not passed directly

from one activity to the other but they are sent to the process

engine first. Since data transference is one of the billing

factors in this model, this kind of situations could become

more expensive when large amounts of data are transmitted

between activities. To avoid this problem a process engine

can be added to the cloud, in order to regulate the control and

data flows between the activities located in it.

2) When the cloud is not accessible, users can execute

business processes in a complete way in the embedded system

until the former one is available again [5] [11] [12].

In order to run a single business process between two

separated engines, it should be divided into two individual

processes, being convenient in this case for users to take a

distribution list of the process and its activities. The process

can be automatically transformed into two units: one in the

cloud and the other in the embedded system. The

communication between both systems can be described using

a choreography language, like BPEL. Business process

monitoring is more complicated now, since the process has

been divided into two or more parts. As a solution, a

monitoring tool can be developed for the original process,

through the combination of the individual process monitoring

details. This point will be analyzed further down [1] [16]

[17]. As we presented previously in [17], there are several

approaches implementing process decomposition in a hybrid

architecture considering different aspects like data sensibility,

application portability and high computing. Once the

decomposition criterion was established, it is necessary to

synchronize the different parts in runtime, which can be

made following different lines. In our case, it was made by

using Bonita BPMS and its process connectors, in order to

initiate a new piece of the process in a new server once the

previous one is finished. The result of this implementation is

a set of cloud nodes joined by process connectors in runtime

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

232 Int'l Conf. Software Eng. Research and Practice | SERP'14 |

accomplishing in this way the original process model

execution [5] [6] [16] [17].

2.2 Hybrid environments and process

monitoring

 As it has previously seen, major problems about using a

partitioned process model are, besides the proper execution,

the gathering and monitoring of the different distributed

instances (either in an embedded system or in the cloud), and

at the same time the accomplishment of viewing them under

the optic of the “original process” to which they belong. To

face this inconvenient we have designed a solution

considering distributed and intercommunicated components

forming an architecture, which is described as follows. On

the one hand, it is necessary to associate the different process

instances initiated by using a chain, with the purpose of

gathering information about them by accessing the different

involved servers. The execution model based on decomposed

processes consists of linking each instance flow to the

corresponding partitioned processes. Thus, when an instance

finishes in a server, it initiates automatically a new instance

corresponding to the next process partition, depending on the

distribution model. For this purpose, each node in the

architecture should be capable of establishing communication

with the next node in order to initiate new instances, and

gather in this way information about them. Namely, given a

new instance which was initiated in a node of the

architecture, we should be able to obtain, not only its data but

every instance generated by it in another server.

2.2.1 Bonita Open Solution: API and connectors

 There are several ways of implementing instance flow

linking. In our case we have selected Bonita Open Solution

[17] as the BPMS. So, once the original process was

partitioned over the servers following criteria like sensitive

data storing, data transferring and application portability, we

have used the API and the connectors provided by the BPMS

in order to create instances and recover their information

using Java classes. These classes use the API as libraries,

including functions like server authentication, instance

launching, instance information gathering and process

variable setting. These classes are invoked from the process

definition using connectors.

It was also included on each process definition the

information needed for the communication with other Bonita

servers present in the architecture. Taking advantage of this

link, it is possible to launch new instances in those servers by

using connectors. Thus, every instance when is finished will

execute the connector, which allows initiating a new instance

by using the API, linking in this way automatically the

process execution flow [6] [16] [17].

2.2.2 Centralized front-end

 As it was previously described, a monitoring application

must be developed in order to show integrated data related to

distributed instances. Facing the execution trace, it is very

important for each instance to be able of storing, not only its

own information but the one associated with the instances

created by it over other servers. In this way, by accessing the

initial instance of the process, it is possible to recover the

information associated with the next instance, and so on in

order to obtain the complete execution trace.

Once recovered the information from the different servers, it

must be provided an application in charge of the gathering

process and showing the obtained data seamlessly. The most

important thing in this aspect is to accomplish monitoring

transparency for the users: they should not be forced to

distinguish the server where the activity was executed, but

they should visualize the different instances and observe

them as a unique entity, according to the original process

model. The implementation of this feature was made through

a cloud based web application. This application was placed

there in order to access each involved server, being them

cloud or embedded, assuring in this way access to users from

every point. For this purpose it is important for the

application to have a catalog with the existing servers

considering their location information updated. Each of these

servers has a copy of a web service (getInstanceService),

which receives a process definition id and returns

information of each instance existing in the server that is

associated with the definition sent as a parameter. The

information returned includes instance id, current status

(executing, completed, suspended), current activity if the

instance is not finalized, start and end date. In this way, the

application located in the cloud sends to each server a web

service invocation with the selected process definition as a

parameter, and receives the information about the associated

instances. Then, this information is visualized in a web

interface, where the user can select a particular instance and

observe its details. In order to make this, the application has

another web service (getInstanceActivityService) used to get

from the engines the details of each activity associated to the

instance. The returned information includes activity id,

participant, start date, current status and end date. Once

ended this collection phase, we need to remember that each

instance contains also some information about the different

instances initiated by it over the servers in the architecture.

In this way, the web application will have to concatenate the

received information and allow the users to observe the

monitoring details in a transparent and integrated way [8] [9]

[12].

2.2.3 Application’s architecture

We can observe in Fig. 2 the different distributed

components identified in the architecture design, as well as

the internal relationship between them and the user.

The solution is composed by three main nodes: the cloud,

the embedded or traditional systems and the monitoring

application. The cloud works as a container for several

elements: the BPMS, the monitoring application, the REST

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

Int'l Conf. Software Eng. Research and Practice | SERP'14 | 233

API used by the developers in order to integrate applications

with the process engine, and eventually a geolocation service

which allows assigning to mobile clients the most convenient

version of the service according to their localization [17].

Fig.2 : Application architecture and user location

On the other side we find the embedded type

components, namely traditional BPM applications which

belong to the organization, and because of different reasons

like data sensibility or application portability, they are not

located in the cloud. These nodes, functionally speaking, are

equivalent to the cloud ones, even when they have access

restrictions and lower computing force compared with the

first ones. The third component is related to the monitoring

function. It is used by the application, and is in charge of

returning information about instances and activities which

were executed in every node of the distributed architecture.

The web services getInstance and getInstanceActivity were

constructed jointly with the monitoring application, and are

executed on demand by this one. They are communicated

with the process servers through an API (in our case, the one

provided by Bonita), and are in charge of returning, in first

order, information about the instances initiated on each

server, and then, some data about the activities composing

these instances.

2.2.4 Component Communication

If we consider every component present in the architecture,

we have analyzed the communication between each one of

them through an application communication diagram. There

we can observe the most important involved applications,

their main actors and the interaction of the different

distributed software components.

Fig.3 : Application Communication Diagram

We can see at the same time the different user profiles

involved in the execution of the components represented in

the architecture. While the preponderant role in process

execution is the activity’s participant, the monitoring site

results are important for the business analyst, as well as for

the architecture administrators who can optimize services or

process components (Fig. 3).

A feature in common between the process execution

application and the monitoring one is location transparency.

Users should not be necessarily notified about changes in the

execution environment, in case we are considering a

decomposed process where the activities are located in

different servers. This is very useful in order to allow users to

have a unified vision of the process, more than a partitioned

one, which main existence reason is related to technical

issues and not with logical or business aspects generally. We

can also visualize in Fig. 3 how both the execution and

monitoring components access indistinctly to the cloud or the

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

234 Int'l Conf. Software Eng. Research and Practice | SERP'14 |

embedded nodes, in order to gather information about each

instance initiated over the distributed servers.

2.3 Enriching Process Monitoring by using

OLC objects

2.3.1 Foundations

 In the field of BPM, monitoring is used to observe

process behavior, and also probably to react to events and

predict future process steps during execution. Processes that

are automated using information systems like process

engines, can be correctly monitored due to the system often

offers logging capabilities and thus, the process can be easily

recognized. In contrast, in environments where processes

must be executed manually in a big portion, for example in a

health care dependency, a high number of events are not

captured automatically. An event monitoring point is related

to certain events captured by an IT system connected to a

specific event source, e.g. a database or a barcode scanner,

and informs when certain state transitions (for example

enabled, started or finished) occur in a process activity. In

this case, probabilistic means that it is possible to provide an

indicative index about process progress, but it is just an

approximation [7] [8] [9]. In this way, an approach using

events extracted from data objects creation or modification is

introduced in order to increment the number of observable

events used for process monitoring and progress prediction.

Those are called state transition data events. After recording

a data object with a specific status assigned, we can assume

its existence. Additionally, this approach can be used to

identify incorrect behavior in a similar way of what is done

in the data conformance field [12] [13] [14].

The presented approach allows approximations through

process execution based on information about data objects.

These objects and their life cycle are the foundation for this

approach. An OLC data can be represented through a Petri

net, where a node describes a data state and a transition

represents a data state change from the predecessor to the

successor. An OLC specifies all the allowed data state

changes of the corresponding data object. Based on this

OLC, the transitions that can be monitored with events are

selected. We consider an event as a fact that occurs in a

particular point in time, in a certain place and with a specific

context which is represented in the IT system. The data state

transitions that are observable have been connected to the

events which provide information about transition triggering.

This connection is made by joining the particular OLC

transitions to an implementation which extracts information

from an event source, including the correlation to a specific

data object in runtime. Nevertheless, not all data state objects

in the OLC need to be reflected in the process model. Based

on the assignment of data objects to activities, it is possible to

provide information about process execution in runtime. We

assume that an activity is enabled if it can be executed with

the control flow specifications, and the incoming data objects

are available in the required data state. We also assume that

an activity is done as soon as the output data object reaches a

certain data state. In design time, data state transitions can

be marked as “observable”, referencing the before mentioned

runtime monitoring capabilities. In runtime, process progress

can be recognized through data state transition events that

occur in the event storage. In order to obtain non observable

details in process monitoring through data manipulation, the

introduced approach should be combined with other

techniques [13] [14] [15].

2.3.2 OLC management in Cloud BPM

 In terms of implementation, the monitoring application

should be capable of gathering process status information,

and at the same time, all the information marked as

observable in process transitions.

Fig. 4 : Decomposed Model View in design time [8].

In order to make this, it is necessary to bind the information

in the process engine database with the information related

to the different OLC data objects identified along the process

definition. In Fig. 4 we can see how the different states are

traversed by events and the information recording process in

the environment. It is mandatory in this case to bind process

activities and transitions with the respective OLC objects in

order to gather all this information. We are considering that

the process is already decomposed in the cloud environment,

so the OLC objects should be collected from the

corresponding nodes. The web application that we have

considered before for process monitoring should be altered in

order to gather this new information [7].

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

Int'l Conf. Software Eng. Research and Practice | SERP'14 | 235

Fig.5 : Decomposed Model View in runtime [8]

In Fig. 5 we can observe how the different transitions

insert information in the event storage during runtime. It is

important to bind the recorded information with process

details, in order to obtain all the events once the monitoring

application is gathering the data to be shown [8] [9]. Each

service that implements process activities should be

responsible for saving with the business data some

information about the process execution (instance’s

identification, timestamps and activity’s identification) in the

event storage, in order to be able of recovering the OLC

objects during the monitoring process. This is the most

traditional way to integrate the process logic with business

data: using event data persistence as a way of integration in

order to recover the associated information [8].

2.3.3 Considering OLC objects in the Monitoring

Component

 Taking in consideration the previously presented

architecture, the monitoring component is formed essentially

by two web service definitions: getInstanceService and

getInstanceActivityService. The first one is in charge of

gathering information about an instance from each node in

the hybrid architecture, and the second one acts once the first

one was executed, in order to obtain details about each

activity associated with the instance. Now these services will

keep their behavior, but should change their definition in

order to consider besides the OLC data objects associated

with the process, which means not only to search over the

process engine’s databases for information but to access the

different sources in the event storage. All these mechanisms

should be duplicated on each distributed node. A really

important issue to consider in this context is how to display

the OLC data objects in order to show them to the user in a

helpful way. Analyze these objects provides an interesting

vision about process execution, performance and progress,

but they depend severely on the organization’s context, so the

monitoring application should consider a standard visual way

to show them in order to uncouple the visualization

mechanism and the business logic [9] [10] [11].

2.4 Process Monitoring Techniques compa-

rison

 Process monitoring, mostly applied as BAM (Business

Activity Monitoring), is a discipline deeply developed in

embedded schemes, where all the information needed is

located in one server, and the process engine has not major

issues during gathering it. It was also researched the

possibility of taking business data objects in order to enrich

the monitoring process with information related to the

organization’s logic besides the proper information collected

by the engines. As it was previously presented, the inclusion

of BPM in the cloud has triggered the consideration of hybrid

schemes, where both the execution and monitoring processes

are more intricate compared with the embedded version, due

to the connectors and the distributed gathering process

required. In table I. we compare hybrid environments with

traditional ones in terms of process execution and process

monitoring, and several concepts associated with them.

TABLE I. COMPARISON OF THE EXECUTION AND

MONITORING FEATURES

 Embedded

environments

Hybrid environments

Process

execu-

tion

Is performed by the

individual process engine,

which is in charge of

guaranteeing the execution

flow between the activities

and gateways existing in

the process model.

The execution on each node

is provided by the

individual engine located

inside of it. It is necessary

to link the different

instances through process

connectors or a choreo-

graphy language like BPEL

Process

monito-

ring

Generally, the embedded

systems have their own

components for process

monitoring. They are in

charge of gathering the

information from the

proper engine and perform

measurements about the

different defined KPIs.

It is necessary to build a

new application in charge

of gathering the

information from the

different nodes in order to

accomplish the original

view according to the

decomposed process model.

Gathe-

ring

process

This activity is performed

by the same unit in charge

of displaying the executed

instances’ progress in the

individual engine.

Due data are distributed

along the architecture, it is

necessary to implement

modules in charge of

collecting information from

the different intervening

nodes.

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

236 Int'l Conf. Software Eng. Research and Practice | SERP'14 |

OLC

data

objects

The information to gather

in this regard depends on

the organization’s logic. It

is necessary to configure

the events and the storage

from where the information

is going to be recovered.

Since the events and

storages are distributed

along the architecture, the

agents in charge of this task

should consider now the

observation of distributed

sources.

3 Conclusions and future work

 Process decomposition is a very useful mechanism in

order to take advantage of the different features offered by

embedded and cloud environments, but it inserts

complications on how to monitor processes with the original

model perspective, and also on how to obtain more relevant

information related to the business logic and not necessarily

to the process engine (like OLC data objects). Our future

work is focused on improving the monitoring application in

order to develop a standard visualization mechanism which

allows showing the OLC information in an uncoupled way,

ergo not to depend on the particular organization’s business

logic, considering the fact that our processes are distributed

over the hybrid architecture. For making this, we have to

analyze some patterns about OLC objects and obtain a

general BAM based set of indicators, useful for process

measuring and progress analysis (Business Activity

Monitoring), but now applied on cloud based distributed

processes.

4 References

[1] T. Kirkham, S. Winfield, T. Haberecht, J. Müller, G.

De Angelis, "The Challenge of Dynamic Services in

Business Process Management", University of Nottingham,

United Kingdom, Springer, 2011

[2] M. Minor, R. Bergmann, S. Görg, "Adaptive Workflow

Management in the Cloud – Towards a Novel Platform as a

Service", Business Information Systems II, University of

Trier, Germany, 2012

[3] M Mevius, R. Stephan, P. Wiedmann, "Innovative

Approach for Agile BPM", eKNOW 2013: The Fifth

International Conference on Information, Process, and

Knowledge Management, 2013.

[4] H Sakai, K Amasaka. "Creating a Business Process

Monitoring System “A-IOMS” for Software Development".

Chinese Business Review, ISSN 1537-1506 June 2012, Vol.

11, No. 6, 588-595.

[5] M. Gerhards, V. Sander, A. Belloum, "About the

flexible Migration of Workflow Tasks to Clouds -Combining

on and off premise Executions of Applications", CLOUD

COMPUTING 2012: The Third International Conference on

Cloud Computing, GRIDs, and Virtualization, 2012.

[6] E Duipmans, Dr. L Ferreira Pires, "Business Process

Management in the cloud: Business Process as a Service

(BPaaS)", University of Twente, April, 2012.

[7] JP Friedenstab, C Janieschy, M Matzner and O

Mullerz. "Extending BPMN for Business Activity

Monitoring". University of Liechtenstein, Hilti Chair of

Business Process Management, Vaduz, Liechtenstein.

September 2011.

[8] N Herzberg, A Meyer "Improving Process Monitoring

and Progress Prediction with Data State Transition Events".

Hasso Plattner Institute at the University of Potsdam. May

2013.

[9] M Reichert, J Kolb, R Bobrik, T Bauer. "Enabling

Personalized Visualization of Large Business Processes

through Parameterizable Views". Hochschule Neu-Ulm,

Neu-Ulm, Germany. November 2011.

[10] J Kolar, T Pitner, "Agile BPM in the age of Cloud

technologies”, Scalable Computing: Practice and Experience,

2012.

[11] A Lehmann and D Fahland , "Information Flow

Security for Business Process Models - just one click away",

University of Rostock, Germany, 2012.

[12] R Accorsi, T Stocker, G Müller, "On the Exploitation of

Process Mining for Security Audits: The Process Discovery

Case", Department of Telematics, University of Freiburg,

Germany, 2012.

[13] A Frece, G Srdić, M B. Jurič, "BPM and iBPMS in the

Cloud", Proceedings of the 1st International Conference on

Cloud Assisted ServiceS, Bled, 25 Octubre 2012

[14] S Zugal, J Pinggera and B Weber. "Toward enhanced

life-cycle support for declarative processes". JOURNAL OF

SOFTWARE: EVOLUTION March 2012

[15] J.Martinez Garro, P.Bazan “Constructing hybrid

architectures and dynamic services in Cloud BPM¨ Science

and Information Conference 2013 October 7-9, 2013 |

London, UK.

[16] J. Martinez Garro, P. Bazan “Constructing and

monitoring processes in BPM using hybrid architectures”.

IJACSA Journal, 2014 January. London, UK.

[17] Bonita Open Solution http://es.bonitasoft.com/.

October, 2013.

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

Int'l Conf. Software Eng. Research and Practice | SERP'14 | 237

A comparative study on usage of traditional and agile

software development methodologies in software industry

of Asia

Syed Faisal Ahmed Bukhari and Hira Khan

Department of Computer Engineering, Sir Syed University of Engineering & Technology,

University Road, Karachi-75300, PAKISTAN

Abstract - In recent years, agile methodology has been

adopted for software development in comparison with

traditional models like Waterfall model, Spiral model, Rapid

Application Development (RAD) model. In this work, a

comprehensive study has been done for comparison between

agile and traditional models and their usage in software

industry of Asia. This research is conducted to assist

software development professionals for selection of suitable

development model for small, medium and large size projects

considering factors like scope, quality, cost, time and risk.

Based on collected data, it is concluded that for small scale

projects, software professionals feel more satisfied in using

traditional methodology whereas for medium scale and large

scale projects, professionals prefer to adopt agile models.

Keywords Agile methodology, system development life

cycle, project scope

1 Introduction

 The systems development life cycle (SDLC) is a conceptual

model used in the development of project that describes the

stages including requirements gathering, designing,

implementation / coding, testing and deployment. According

to literature (Khurana and Gupta 2012), SDLC

methodologies are the process to assure that software meet up

established requirements. These methodologies entail the

discipline to the development process to formulate the

development more efficiently.

These methodologies resolved the problems arising from

code and fix strategy. By the time of system growth it

becomes increasingly complicated to add new features or to

fix any bug (Kamel et al. (2010). By the invention of

Waterfall model (the basic SDLC model) changing

requirements were fixed once but practically requirements

just could not be fixed (Royce 1970).

After requirement gathering, development teams work

together with each other to create the best possible

architecture for the product. The programmers implement

design in code and lastly, the complete designed system is

tested and dispatched. This process sounds good theoretically

but practically it does not always work well if users change

their minds after months or even years of requirements

accumulation. This results in building replicates as it is very

complex to interrupt the momentum of the project to

accommodate the change.

It was argued (Beck 1999) for the solution of the above

issues that the iterative and incremental techniques break the

development into portions. Incremental development

intended to reduce development time by various overlapping

increments. Iterative development process breaks the project

into deliverable iterations of variable length. Similarly, the

Spiral Model evades detailing and defining the whole system

upfront contrasting iterative development, where the system

is built into pieces and prioritized by means of functionality.

Spiral and iterative development process models presented a

great increase in agility over the Waterfall process, but some

practitioners believed that they still did not take action for

change in the growing business world.

2 Research objectives

 The overall purpose of this research is to conduct a detailed

review of both traditional and agile methodologies applied in

software industry of Asia. The main focus of this research is

to study adoptability of methods and compare them in order

to attain professional satisfaction. Because there are many

developers, who have implemented the agile methodologies,

but on the other hand, there are several developers who are

satisfied with traditional methodologies according to their

company’s trends and needs. However, the research is

conducted with the interest of finding empirical data to come

up with tabular plans that would be useful for software

industry.

The primary aim of this research is to study and contribute

the knowledge about adopting the newly introduced agile

software development model in contrast of SDLC models.

Specifically, the research objectives are summarized in

threefold:

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

238 Int'l Conf. Software Eng. Research and Practice | SERP'14 |

1) To compare characteristics, strength and weaknesses of

traditional SDLC models and agile models.

2) To gain an understanding of the reasons that why

information technology (IT) industry are now inclined on

agile models and which software development method

(agile/traditional) is more suitable for software

development professionals (with respect to scope,

quality, cost, time, and risk) on the basis of three

different scales?

3) To discuss risks associated with each of these

methodologies.

A questionnaire was designed to get the opinion of software

developers in Asia to evaluate usage of methodologies for

software development according to the size of the project.

2.1 Traditional heavyweight models

 Software methodologies like waterfall model, spiral

model and RUP model etc. are often called traditional

software development methodologies and classified as

heavyweight methodologies (Nikiforova 2009). These are

based on sequential series of steps that use comprehensive

description and heavy documentation for all the sets of

requirements and they do not support requirement changes.

For example, waterfall model has linear nature and it is easy

to follow and implement (Petersen et al. 2009). Its

disadvantage is that it forces to define requirements

thoroughly during the system requirements definition stage

which is unrealistic (Chocano 1996).

 The spiral model was revealed by Barry Boehm in

1988. In this model, although the developers and customers

better recognize and respond to risk at every evolutionary

level. The drawback of this model is that if a major risk is not

revealed and handled, problems will occur with the

possibilities of entire software failure. Another traditional

heavyweight model is RUP model which was proposed by

Rational Unified Corporation. It is an incremental process

where the overall project is divided into iterations (Booch et

al. 1998). According to researchers (Amlani 2012), this is a

complete methodology and all of its documentation is easily

available. The drawback as mentioned by programmers is

that the process is cost consuming and its lengthy

documentation (which is necessary in all iterations)

consumes more time (Runeson and Greberg 2004).

2.2 Agile lightweight models

The most clearly focused description of agility is that it is the

aptitude to both produce and retort to change with the

intention of profit in an unstable business environment

(Highsmith 2002). XP, stands for extreme programming, is

most extensively used method in agile methodologies (Beck

1999). It focuses on the development rather than executive

and managerial sides of software projects. XP projects begin

with a release planning phase, pursued by several iterations,

each of which terminates with user acceptance testing

(Abrahamsson and Ronkainen 2002). The main focus of XP

is to get the job done. The main disadvantage of this

technique is that as XP is code oriented rather than design

oriented therefore it has less documentation. The lack of

formalism and design in this model can be problematic for

large programs especially when many team members are

associated with the project.

Among all of the agile methodologies, Scrum is exceptional

because it initiates the idea of empirical process control.

Empiricism states that knowledge comes from experience and

decision making based on what is known. Like XP, Scrum is

also an iterative and incremental approach. This was started

as a framework that has been used to manage difficult

products. The most common reason for the failure of project

using Scrum is that many professionals are still unfamiliar

with Scrum, even after taking a Scrum class or reading a few

research papers about it. Sometimes organization is not yet

setup the Scrum or may be the teams do not know how to

employ scrum according to the company`s present constraints

or may be the project becomes too complicated to get it under

control.

Feature-Driven Development Process (FDD) is one of the

agile processes that do no talk and write too much and unlike

XP and Scrum, FDD designed to work with a large team for

large projects. FDD splits the large team into smaller feature-

focused teams. Unlike other agile methodologies, FDD is

more appropriate for large projects. The limitation of FDD is

that it does not identify what technology to use. Another

disadvantage of FDD is class ownership.

3. Research approach

Commonly two approaches of research methods are used, i.e.

quantitative and qualitative. In this work quantitative

approach is used. For this purpose a self-administered close

ended questionnaire is circulated by using

http://www.docs.google.com in order to collect the primary

data for statistical analysis. The main purpose for using that

platform is to gather data from all over Asia.

Finding relevant professionals and software organizations is

a very crucial part for this research. To make sure that survey

questionnaire is distributed to the professionals using

traditional SDLC and agile methodologies throughout the

Asia, much efforts has been done which included access local

software houses through their web sites and using

www.linkedIn.com and www.facebook.com/sqlportal (social

networks) to get the maximum number of responses.

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

Int'l Conf. Software Eng. Research and Practice | SERP'14 | 239

http://www.docs.google.com/
http://www.linkedin.com/
http://www.facebook.com/sqlportal

3.1 Hypothesis

The aim of this research is to compare the traditional and

agile methodologies that the IT industry of Asia prefers for

the development of three different scales of projects. For

checking whether IT companies are using traditional or agile

approach the following hypothesis is used:

H10: Companies do not prefer to work under agile

approach rather than traditional approach for small-

scale projects.

H1: Companies prefer to work under agile approach

rather than traditional approach for small-scale of

projects.

H20: Companies do not prefer to work under agile

approach rather than traditional approach for

medium-scale projects.

H2: Companies prefer to work under agile approach

rather than traditional approach for medium-scale

projects.

H30: Companies do not prefer to work under agile

approach rather than traditional approach for large-

scale projects.

H3: Companies prefer to work under agile approach

rather than traditional approach for large-scale

projects.

H40: For small-scale projects, software professionals do

not prefer agile (XP, Scrum, FDD) technique to

adopt for a successful completion of a product in

terms of product’s scope, quality, cost, time and risk.

H4: For small-scale projects, software professionals

prefer agile (XP, scrum, FDD) technique to adopt

for a successful completion of a project in terms of

product’s scope, quality, cost, time and risk.

H50: For medium-scale projects, software professionals do

not prefer agile (XP, Scrum, FDD) technique to

adopt for a successful completion of a project in

terms of product’s scope, quality, cost, time and risk.

H5: For medium-scale projects, software professionals

prefer agile (XP, Scrum, FDD) technique to adopt

for a successful completion of a product in terms of

product’s scope, quality, cost, time and risk.

H60: For large-scale projects, software professionals do

not prefer agile (XP, Scrum, FDD) technique to

adopt for a successful completion of a product in

terms of product’s scope, quality, cost, time and risk.

H6: For large-scale projects, software professionals prefer

agile (XP, Scrum, FDD) technique to adopt for a

successful completion of a project in terms of

product’s scope, quality, cost, time and risk.

In above hypothesis, Hn0 and Hn (where n = 1 to 6) show

null hypothesis and alternate hypothesis respectively.

3.2 Questionnaire formulation

In order to obtain data from IT organizations in Asia, a

survey questionnaire was presented to the respondents. This

questionnaire was filled by the various employees from IT

departments of the companies or software houses. The

questionnaire was based on elements of existing project

development approach according to three different sizes of

the project. It is divided into three parts. The first part

contains questions regarding size of project and the

methodology used. The second part was related to resources

and attributes. The third part was designed to collect data

about different characteristics including strengths,

weaknesses and risk factors.

4 Results and analysis

As a result of survey, 59 responses were received from

different type of software development professional working

in all over Asia. After reviewing the results, it was evident

that 62.7% of population using agile software process while

37.3% using traditional software development methods

(Figure 1). On the basis of this result, hypothesis H1 is

rejected while two hypotheses (H2 and H3) stand out as

accepted.

 Figure 1: Use of traditional/agile models

 based on project size

Further, in this research work, five basic attributes (scope,

quality, cost, time and risk) of project development were

taken to test the preference of software professionals based on

each aspect separately. Respondents were required to record

their views against six models of project development in

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

240 Int'l Conf. Software Eng. Research and Practice | SERP'14 |

terms of five different factors. Out of these six models, three

were selected from agile and three from traditional

techniques.

Since the test is applied on multiple models in terms of

multiple factors, therefore the average values for small

(Tsmall), medium (Tmedium) and large-scale (Tlarge)

projects are computed by adding up the responses against

three models (Waterfall, Spiral and RUP) of traditional

technique in terms of all five attributes.

Similarly, the average values for small (Asmall), medium

(Amedium) and large-scale (Alarge) projects are computed

by adding up the responses against three models (XP, Scrum

and FDD) of agile technique in terms of all five attributes.

4.1 Small scale projects analysis

On the basis of above procedure, the average resulted

percentage for traditional technique Tsmall and Asmall based

on five attributes, i.e. scope (TSs = 50% and ASs = 50%),

quality (TQs = 50% and AQs = 50%), cost (TCs = 63% and

ACs = 38%), time (TTs = 63% and ATs = 38%) and risk

(TRs = 75% and ARs = 25%) are 60% and 40% respectively.

 Tsmall = (TSs + TQs + TCs + TTs + TRs) / 5 (i)

 Asmall = (ASs + AQs + ACs + ATs + ARs) / 5 (ii)

As explained by the results and analysis of above five aspects

(that are product’s scope, quality, cost, risk and time); agile

doesn’t prove to be the most preferred software development

technique used by most of the software professionals for

small-scale projects. Therefore hypothesis H40 is accepted

and H4 is rejected.

4.2 Medium scale projects analysis

Similar to the above approach, the average resulted

percentage for traditional technique Tmedium and Amedium

based on five attributes, i.e. scope (TSm = 43% and ASm =

57%), quality (TQm = 39% and AQm = 61%), cost (TCm =

35% and ACm = 65%), time (TTm = 35% and ATm = 65%)

and risk (TRm = 35% and ARm = 65%) are 37.4% and

62.6% respectively.

 Tmedium = (TSm + TQm + TCm + TTm + TRm / 5 (iii)

 Amedium = (ASm + AQm + ACm + ATm + ARm) / 5 (iv)

As explained by the results and analysis of above five aspects

(that are product’s scope, quality, cost, risk and time); agile is

proved to be the most preferred software development

technique used by most of the software professionals for

medium-scale projects. Therefore hypothesis H5 is accepted.

4.3 Large scale projects analysis

For large-scale project, the average resulted percentage for

traditional technique Tlarge and Alarge based on five

attributes, i.e. scope (TSl = 18% and ASl = 82%), quality

(TQl = 29% and AQl = 71%), cost (TCl = 21% and ACl =

79%), time (TTl = 21% and ATl = 79%) and risk (TRl =

21% and ARl = 79%) are 22% and 78% respectively.

 Tlarge = (TSl + TQl + TCl + TTl + TRl) / 5 (v)

 Alarge = (ASl + AQl + ACl + ATl + ARl) / 5 (vi)

Therefore it is concluded that for large scale projects

hypothesis H6 is accepted.

4.4 Hypotheses assessment summary

On the basis of above analysis (shown in Figure 1) hypothesis

H1 has been rejected while two hypotheses (H2 and H3) stand

out accepted. The analysis of five attributes has indicated

(Figure 2-6) that hypothesis H4 is rejected while two

hypotheses H5 and H6 stand out accepted.

4.5 Selection of methodology based on

 different priorities

During this research the following results are also obtained

based on different priorities of software customers:

4.5.1 Strictly follow a project plan

It is clearly mentioned in Figure 7 and Table 1 that

approximately 63% of the respondents consider that

fulfillment of the user requirement is more important than

strictly following an initial plan, while around 25% were

against it. The remaining 12% of the respondents were

neutral.

4.5.2 Detailed documentation

Heavy documentation seems to be a negative aspect for most

of the respondents as shown in Figure 7. About 59% selected

it as a bad or slightly bad attribute in the successful

completion of the projects, while 27% respondents are agreed

with this attribute and 14% are neutral.

4.5.3 Hiring highly skilled professionals

Approximately 81% respondents are agreed for hiring skillful

workers to produce good quality software, only 10%

respondents considered it as a bad approach while 9% are

neutral.

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

Int'l Conf. Software Eng. Research and Practice | SERP'14 | 241

4.5.4 Autocratic management style

Unlike the results of other research works conducted in

different countries, 63% of the respondents of Asia like the

democratic management style rather than the self-organizing

team, 24% respond neutrally and only 13% respondents think

that this type of management does not allow the developers to

be more creative.

4.5.5 Flexible project plan
Approximately 60% of the respondents think that there

should be flexibility in a project plan in order to welcome

change in requirements and try to produce software which

holds complete sets of user specifications whereas approx

25% of the respondents did not support any flexibility in a

project plan while approx 15% responds neutrally.

4.5.6 Focus on working software rather

 than detailed documentation

As shown in the graph that contrary of the results of detailed

documentation, approx 58% of the respondents considered

that basic documentation could be less time consuming and

will give a positive impact for the successful completion of a

project. Approx 27% dislikes this characteristic while 15% of

the respondents are impartial.

4.5.7 Use of a good development tool

Approximately 59% of the respondents are not in favor of

just using a good development tools and not pay attention in

having a skilled professionals for the coding, testing or other

development procedures. 24% of respondents considered that

using a good development tools are more appropriate rather

than hiring a skilled professionals which is costly too. And

remaining 17% are impartial.

4.5.8 On-site customer
Having customer on-site is the main attribute of agile

methodologies and according to the results as shown in Table

1, the working professionals are not very much satisfy

 with this attribute as approx 56% of the respondents selected

it as a bad or slightly bad for the success of the project while

36% are in favor and 8% are neutral.

4.5.9 Self-organizing team
Approx 61% of the respondents didn’t agree with this

attribute because of the reason of results drawn in autocratic

management style which is more likely to be followed for the

development of the software. Only 27% of the respondents

considered self-organized teams as a good attribute and

remaining 12% are impartial about this aspect.

Figure 2: Use of traditional Vs. agile model based on scope

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

242 Int'l Conf. Software Eng. Research and Practice | SERP'14 |

Figure 3: Use of traditional Vs. agile model based on quality

Figure 4: Use of traditional Vs. agile model based on cost

Figure 5: Use of traditional Vs. agile model based on risk

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

Int'l Conf. Software Eng. Research and Practice | SERP'14 | 243

Figure 6: Use of traditional Vs. agile model based on time

Figure 7: Priorities of software professionals

5 Conclusion

As a result of this research it is suggested that a hybrid

methodology should be adopted by the software organizations

working in Asia. It comprises of the following steps:

1. Prepare a flexible plan starting through requirements

gathering phase which can be repeated at any stage of

development according to the needs of customer.

2. Detailed documentation should be avoided at every stage

and step perhaps only imperative and significant

documentation must be needed.

3. Don’t completely emphasize on development tools with

novice professionals, who don’t have any previous experience

and can work on cheap rates. Management must hire highly

skilled professionals with novices to deliver a good quality

software that meet customer requirements.

4. Self-organizing behavior is not appropriate for the

environment of Asia. There should be some team lead

decisions for the distribution of responsibilities within a

team. The management must allocate the duties to every team

member according to their expertise.

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

244 Int'l Conf. Software Eng. Research and Practice | SERP'14 |

5. Customer should always welcome with the set of their

requirements but the presence of customer on site is not a

good idea for team members.

6 References

[1] Abrahamsson B. S., and Ronkainen J., “Agile software

development methods: review and analysis”, VTT

Publication, Espoo. 107, 2002

[2] Amlani R. D., “Advantages and limitations of different

SDLC models“, International Journal of Computer

Applications & Information Technology 1, 6-11, 2012

[3] Beck, K. “Embrace change with extreme programming”,

IEEE Computer, 70–77, 1999

[4] Booch G., Robert C. and Newkirk J, “Object oriented

analysis and design with applications”, 2
nd

edition, Addison

Wesley Longman, 1998

[5] Chocano M. E., Comparative study of iterative

prototyping vs. waterfall model applied to small and medium

sized software, MS Thesis, Massachusetts Institute of

Technology, 1996

[6] Highsmith J., “Agile Software Development Ecosystems”,

Addison-Wesley Professional, 2002

[7] Khurana G. and Gupta S., “Study and comparison of

software development life cycle models”, IJREAS, 2(2) 1-9,

2012

[8] Kamel M., Bediwi I. and Al-Rashoud M, “Planned

methodologies vs. agile methodologies under the pressure of

dynamic market. JKAU: Eng. Sci., 21 (1) 19-35 2010

[9] Nikiforova O., Nikulsins V. and Sukovskis, U.

“Integration of MDA framework into the model of traditional

software development, Frontiers in Artificial Intelligence and

Applications, Databases and Information Systems V, 187

229–239. IOS Press, Amsterdam, 2009

[10] Petersen K. , Wohlin C. and Baca D., The waterfall

model in large-scale development, Proc. 10th International

Conference on Product-Focused Software Process

Improvement, Oulu, 386-400, 2009

[11] Royce W.W., “Managing the development of large

software systems: concepts and techniques”, Proc.

WESCON, 1–9, 1970

[12] Runeson P. and Greberg P., “Extreme programming and

rational unified process – contrasts or synonyms?”, Lund

University, Sweden, 2004

Acknowledgements

The authors would like to thank Higher Education

Commission, Pakistan for supporting this research.

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

Int'l Conf. Software Eng. Research and Practice | SERP'14 | 245

The Position of Component Certification in CBSE Activities

Lina khalid Ahmed

Department of Software Engineering, Zarqa University, Amman, Jordan

Abstract - CBSE (Component Based Software
Engineering) is the most important approach to
software development because it is based on reuse
technology. The successful reuse of component
requires a development process tailored to CBSE, so it
includes activities that find and compose reusable
components. Reuse components can be the reason for
building high quality products because they are
chosen according to some issues that lead to the
concept of component certification. This certification
has its position in CBSE main activities. This paper
defines the component certification and describes the
positioning of it in CBSE activities and how this
certification affects the success of this approach.

Keywords: Component, CBSE, CBSE approach
Component certification.

1 Introduction
Development with reuse has become a strategy for

new systems. It has been used in response to the
demand for lowering software cost, increasing time to
market and producing a high quality product.

When a reuse concept is used, the process includes
an activity where the abstract concepts begin to create
executable reusable components.

Units that are reused may be of different sizes, one
of the main units that are reused is component which
ranges in size from subsystem to object. The main
advantage for reusing components is that fewer
software components are needed to be specified,
designed, implemented and validated, all of which lead
to cost reduction. However, the problem related to
reuse strategy through using components is the cost
associated with specifying a component that is used
through reuse process which is suitable to be used in
that specific situation. These additional costs mean that
the reductions in the overall development costs through
reuse may be less than expected.

The term certification is introduced through CBSE
activities and it can be used to help the developer
choose a trustworthy system.

This paper introduces the effectiveness of
component certification through CBSE activities and
its position. It also shows how this certification helps
the developers to integrate trustworthy components.
This paper is classified as follows: Section 2 describes
the related works and includes all the authors who
have worked on this area. Section 3 defines
Component Based Software Engineering approach,
and component certification respectively. Section 4
describes the result. Section 5 sums up everything in
the conclusion.

2 Related works
 Many researchers work on component technology
that is based on reusability. [2], the authors in this
paper describe the relationship between the
evaluations performed during certification and their
selection. They propose a components-based life cycle
for COTS (commercial-off-the-shelf) and software
product line development. Moreover, they identify the
process characteristics between the two types of
evaluation and finally classify the required qualities
during certification process. In [3], the authors propose
a concept called SCL (Software Certification
Laboratories); they suggest that this concept must take
part in the certification product role which then offers
the consumer's trust. In this method, SCL took all the
information from the developer's site and passed it to
the consumer's site and then returned back to collect
this information from the user and used it to produce
the warranties according to these results. In reference
[4], a complete component-based business document
modeling was produced. This modeling is built upon
existing standards that are extended by introducing the
concept of generic business document template out of
the specific needs of the user's document. The result
part of this paper is a complete library of reusable
business components that has been developed to easily
produce a new business model. Another work is [5],
where the objective of this work was to describe a
method to measure and certificate the ability of
software component to perform the reliability quality.

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

246 Int'l Conf. Software Eng. Research and Practice | SERP'14 |

The result of this technique is possibly certified
components as well as the system that contains the
components.
 This paper describes the importance of component
certification through CBSE activities. It describes the
major activities of component based approach then
defines the process of component certification and its
position on these activities.

3 Component Based Software

Engineering(CBSE)
The objective of this section is to describe the

essential terms that are used in this type of approach
then its shows how this approach works through its
activity.

 3.1 Component and component model
definitions

 In the software industry, the term "component" is
used in many different ways. For example it is
applied to user interface components implemented
as Active X, to major infrastructure items such as
database management system, and to any software
artifact that can be reused.
We can define a software component as a separable
piece of executable software that can interoperate
with other components within supporting
environment and it is accessible only through its
interfaces. In order to combine with other
components, it must be able to achieve details of its
interfaces [6]. Defining components as separable
entities makes it possible to achieve the
maintainability benefits offered by components. It
also makes easy reuse of components in specific
scenarios, such as requirements for a new user
interface, or changes the structure of the company
[6].
Some essential characteristics of components that

are used in CBSE approach are [1]:
• Standardized: which means that the

component used in a CBSE activities has to
match with some standardized component
model (which is defined later in this section)

• Deployable: the component must work as a

stand alone entity on a component platform
that implements the component model

• Documented: components should be fully
documented so that the user can make a
decision whether the selected component
meets its needs or not.

 Figure 1. The component interfaces

 Figure 1 shows, the components have two related
interfaces. These interfaces reflect the services that the
component provides (provider interfaces) and the
services that the component requires (Require
interfaces) in order to work properly [1].
A component model can be defined as a standard for
component implementation, documentation and
deployment. These standards are for component
developers and providers, for developer to make sure
that the components can interoperate, and for the
providers of the components who provide middleware
to support component operation.

 3.2 CBSE approach
 CBSE is a process that highlights the design and

construction of systems using reusable software
components. By that definition, we can assemble
components from a catalogue of reusable components
in a cost and time effective manner [7].
CBSE has become the most important approach
because all software systems became more complex
and larger than before. The only way to deal with this
complexity was through reuse rather than re
implement. The essential activities for CBSE
approach with reuse are [1]:

• Component analysis: the stakeholder of the
system defined their requirements in the abstract
view rather than in details. Here the complete set of
requirements is defined in order to identify the
complete set of components. Usually there is no
exact match between the selected component and the
requirements, but the selected components may be

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

Int'l Conf. Software Eng. Research and Practice | SERP'14 | 247

used only to provide some functionality of the
requirements.

• Modify requirements: requirements are

modified and refined according to the available
components. If the user is not satisfied from the
available requirements, he can switch to other
requirements that support his request in this stage. If
the modification is impossible, the first stage is
repeated to search for other components for an
alternative solution

• System design with reuse: the architectural

design of the system is built. Further refinement for
the design and more searches for the component are
made through this stage. In this phase the designer
takes into account the components that are reused
and organizes the framework to accommodate with
it.

• Composition process: the discovered

components are integrated with the component
model infrastructure. So the integration process is
part of the of the development process. Figure 2
represents the main activities of CBSE approach

 Figure 2 shows that there are two additional stages,
one at the beginning (requirement specification), and
one at the end (system validation). They are not
defined in the previous stages because they are the
same in all other approaches so what is mentioned is
only what makes the CBSE approach different, and
that is what is demonstrated in the gray ellipses in the
figure.

Requirements
specification

Component
analysis

System
design with

reuse

Requirements
modification composition

System
validation

Figure 2. The Basic Activities of CBSE

3.3 Component certification
 In order to make a component available for reuse or
sale, enough information must be made available
about it so that it would be possible to decide whether
it is useful or not. The information should treat the
component as a black box. This type of information
can be maintained and stored in a catalogue. One
suggestion for ensuring the quality of the components
is a process of third party certification, in which many
companies would test the component and certify it for
its purpose [8]. This concludes that the component
certification is a process to ensure that the software
components match to basic standards. Based on this
certification, trusted components are integrated.
Moreover, the certification stands out as an important
area to evaluate the component reliability level,
although that task seems to be very difficult because
the community of software engineering has expressed
many proprieties to evaluate the specific components.
[5, 10] a certification body must have a certification
system that describes techniques for performing the
certification process. A certification process can be
defined as a process of verifying properties which are
related to a component and this certification can
provide the validity to that component [9].

4 Result

 Component certification is a technique to make
sure that a component follows the standardization.
Based on this certification, the assembled components
into an application are trusted. High quality products
that are based on CBSE approach always need an
effective certification. Some issues need to be taken by
organizations to make CBSE successful. These issues
are:

• Analyzing the domain which identifies and
distributes a set of software components that
can be used in existing and future software in
a particular application domain (the overall
goal of this issue is to enable software
engineers to share these components).

• Component qualification and composition

They ensure that the chosen component is
properly fit to the architectural style that is
proposed. After that, when the component is
qualified for reuse within an application
architecture, conflicts may occur so adaptation

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

248 Int'l Conf. Software Eng. Research and Practice | SERP'14 |

process technique (called component
wrapping) is used. Component wrapping
customizes the components to remove the
conflicts through integration. Component
composition assembles all adapted and
engineered components to distribute the
suitable architecture for an application.

• Analysis and design for reuse

The requirement model is first analyzed and
the elements of this model are compared to the
descriptions of the reusable components. If the
components match the requirement, it will be
reused in the system from the library of
reusable components which is called a
repository of components. Otherwise the
component must be created to fit the
requirements in the model and this should
create reusable components.

• Classifying and retrieving components
A 3 C model (concept, content and context) is
described to reuse an appropriate component
in any system. The concept is a description of
what a component does and the content of the
component describes how the concept is
achieved. The context places a reusable
software component within its domain
application.

The result of these issues must be certified

components that can be stored in a repository of
components to be used by the developer through
applying CBSE approach. The developer looks for the
appropriate components, modifies them as needed and
incorporates them in the system. Selecting the most
appropriate components makes the CBSE approach
have good advantages such as reducing the amount of
software to be developed and also reducing the cost
and time, all of which leads to a faster delivery time to
market.
The position of component certification is explained in
figure 3.

Figure 3. The position of component certification in
CBSE

 The role of the component certification appears
through the first and second stags of CBSE activities.
The requirements are specified and the right
component is chosen. That is done according to some
considerations that are specified through component
certification which is stored in the repository of
components.

 The most important criteria that should be into
account through selecting the components are:

• Functional requirements of the system: the
selection of components must be done to
satisfy the main user and system requirements

 And
• The quality of the product

The quality attributes of the product is very important
through selecting components. The final architecture
of the system must provide the key attributes of the
system, so the components that are selected and the
assembled must provide those quality attributes.
 Many methods and strategies are used to complete
the selection process. One of the main strategies is
OTSO (Off-The-Shelf Option). The OTSO method
was developed to make the selection of the
components according to the customer's requirements.
The main principle of this methodology is comparing
the costs associated with each alternative component.

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

Int'l Conf. Software Eng. Research and Practice | SERP'14 | 249

5 Conclusion
 One of the most important reasons for choosing
CBSE approach is the plan for reuse. The idea is to
build a system from existing components by
assembling and integrating them. What makes this
approach very usuful is the existance of the
certification. Component certification is a very
important part in this approach because it ensures
selecting the right component for reuse. All in all, this
paper spots on the component certification and its
position in CBSE activities.

6 REFERENCES
[1] Somerville I." Software Engineering" . Pearson
Education, 2011. ISBN10: 0-13-705346-0.

[2] Land R, Alvaro A, Crnkovic I. "Towards Efficient
Software Component Evaluation: An examination of
component selection and certification". IEEE
computer society, 34 the Euromicro Conference
Software engineering and Advanced Applications,
2008.

[3] T. Janner et al., “A Core Component Based
Modeling Approach for Achieving E-business
Semantic Interoperability". Journal of theoretical
&applied E-commerce research, Vol 31, issue 3, PP:
1-16, 2008.
 DOI: 10.4067/S0718-18762008000200002.

[4] Tamal Sen and Rajib Mall. “State-Model-Based
Regression Test Reduction for Component-Based
Software”. ISRN Software Engineering, vol. 2012,
Article ID 561502, 9 pages, 2012.
DOI:10.5402/2012/561502.

[5] Alvaro A, Almeida E, Meira S. "Software
Component Certification: A survey". Conference on
software engineering and advanced applications,
IEEE, 2005.

[6] K. Whitehead, "Component –based Development:
Principles and Planning for Business Systems".
Pearson Education, 2002. ISBN 0-201-67528-5.

[7] Pressman R. "Software Engineering: A
practitioner's approach". McGraw-Hill, 2010.

[8] Whitehead k. "Component –based Development:
Principle and planning for Business Systems ".Person
Education,2002. ISBN 0-201-67528-5.

[9] J. Stafford, K. Wallnau , "Is the Party Certification
Necessary? " Software Engineering Institute, Carnegie
Mellon University, USA.

http:://niap.nist.gov/howabout.html.

[10] Alvaro A, Land R,Alvaro A,Crnkovic I,"Software
Component Evaluation:A theoratical study on
component selection and certification,"Malardalen
university,2007, ISSN14404-3041.

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

250 Int'l Conf. Software Eng. Research and Practice | SERP'14 |

The Size of Software Projects Developed by Mexican

Companies

J. Aguilar
1
, M. Sánchez

2
, C. Fernández

2
, E. Rocha

2
, D. Martínez

2
, and J. Figueroa

2

1
Departament of Engineering, Universidad Popular Autónoma del Estado de Puebla, Puebla, Pue., México
2
Institute of Computer Engineering, Universidad Tecnológica de la Mixteca , Huajuapan, Oax., México

Abstract - Currently, most software projects around the world

are small rather than large. Despite this, there are more

methodologies, tools, frameworks, processes, and so on, for

developing and managing large software projects than for

small ones. Small software projects are important because

they generate considerable resources. For example: apps

(small mobile applications) generate around $25 billion

dollars of revenue. This paper shows our findings regarding

the size of the projects built by Mexican software development

companies. We surveyed 107 Mexican companies and found

that 92% of their developed projects are micro and small, and

8% are medium or large. In addition, according to our

research, 84.1% of companies in Mexico are micro or small

businesses.

Keywords: Small projects, Software size classification,

Companies size classification.

1 Introduction

 There are many examples of tools, methodologies or,

processes oriented to medium or large projects such as the

following: CMMI[13], COCOMO [14], EPM [15], among

others. These tools, methodologies and processes are highly

accepted around the world. We need the same global

acceptance for small software projects, tools, methodologies

and processes, because micro and small software projects

generate an important economic impact. For example, apps

are mainly small projects, and the app stores run by Apple

Inc, Google Inc, and so on, offer more than 700,000 apps

each and, generate around $25 billion dollars of global

revenue [7].

 First of all, we need to identify the size of software

projects. There are several factors, among them: i) Project

development cost, ii) Number of people required to develop

the software, and iii) Amount of software to be produced [6].

For example, a small software project has these factors: i)

Cost between USD 7,500.00 and 192,000.00; ii) Team of less

than 4 persons; and, iii) Size between 9 KLOCs and 38

KLOCs. This is our personal viewpoint about small software

projects, although each author has his or her own viewpoint

about software size classification.

 In this paper we will show the findings of our research

regarding: a) Size of software projects being developed in

Mexico, and b) Company size in Mexico. We want to answer

the following questions: What is the size of software projects

developed by micro and small software companies in Mexico?

How is software size to be classified? These questions are

important to answer because there are currently many

software process models oriented to large and medium

projects, but micro and small projects have perhaps been

forgotten.

2 Background

 This section shows the main elements of our research.

2.1 Software Size Classification

 First of all, we are going to show different viewpoints

regarding software size classification. Fred Brooks [1] said

that there are different kinds of software: i) Programs

complete in themselves, ready to be run by the author on the

system on which it was developed, ii) A programming product

that can be run, tested, repaired and extended by anybody, iii)

A Programming System, which is a collection of interacting

programs, and iv) Programming Systems Product, which costs

nine times as much as the other three kinds. Another author,

Watts Humphrey [2], said that there are five stages of

Software Product Size: Stage 0, very small program elements,

written by programmers alone. Stage 1, small programs, or

modules, designed, implemented, and tested by programmers

alone; these programs typically range in size from only a few

dozen to several hundred LOCs (Lines of Code). Stage 2,

larger programs, or components, that typically involve teams

of developers who develop and integrate multiple stage-1

modules into larger stage-2 component programs. Stage 3,

very large projects that involve multiple teams controlled and

directed by a central project management. Finally, Stage-4,

massive multi-systems that involve many autonomous or

loosely federated projects. The next author, Solvita Berzisa

[3], said that project size is described with four attributes

where three attributes –team size, budget and duration- are

scalar values and such values should be grouped into

intervals. The team size values have been divided into two

intervals: less than seven and seven and more. Analyzed

budget attribute values have been divided into five intervals:

less than 10 000 USD, 10,000 to 50,000 USD, 50,000 to

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

Int'l Conf. Software Eng. Research and Practice | SERP'14 | 251

100,000 USD, 100,000 to 500,000 USD, and more that

500,000 USD. Project duration values have been divided into

four intervals: less than six months, six months to a year, from

a year to two years and more than two years. These authors

did their own software size classification.

 Besides these viewpoints, The International Software

Benchmarking Standards Group (ISBSG) is the global and

independent source of data and analysis for the IT industry.

There are 5,052 projects included in the ISBSG
1
 in June

2009, of which 76.1% are micro and small projects, from 0 to

399 function points, which corresponds to approximately

31,920 LOCs. We applied Backfiring[4] to convert function

points to lines of code. Smaller projects are more common in

this repository. The projects have been submitted from 24

countries. Projects of different size ranges have different key

characteristics [5][8][9]. For example, we can use table 2.1 to

find the ideal duration and staffing ranges for a project, based

on its estimated effort.

Table 2.1 Time and effort in software projects according to

their size.

Project

Size

Effort. Work

hours of effort.

Months

Duration

Ideal staffing

Small 8-360 0-3 1 person

Medium 361-3600 3-6 3-7 persons

Large 3601-24 000 6-12 7-24 full-time

persons

 A software project can be considered to be small if one

or more of the following criteria apply:

a) Less than two man-years of development effort is

needed.

b) A single development team of five people or less is

required.

c) The amount of source code is less than 10 KLOCs.

 The size of a particular project can vary greatly

depending on the language chosen. For instance a 200,000

line Perl project generally has the functionality of a 1,200,000

line C project. This is from the estimate in Code Complete

that states that Perl usually requires 1/6 the number of lines to

do the same task as C. However, different size ranges entail

different issues that involve major organizational differences.

Specifically:

1. Small - reasonable size for one person to produce

in a reasonable time.

1
 The global and independent source of data and

analysis for the IT industry. www.isbsg.org

2. Medium - reasonable size for a small team (max 8;

beyond that size, communication issues arise that

drop productivity and require reorganization to

handle) to develop and entirely understand.

3. Large - A large team (significantly > 20 - note that

the average team of 20 is about as productive as a

team of 5-8 due to organizational issues).

4. Huge - The project is large enough that specialized

tools are probably needed to help with project

navigation so that team members can figure out

what they need to understand to work on it.

 As can be seen, there are a lot of viewpoints regarding

software size classification. In this paper we try to take into

account all these opinions and offer a proposal.

2.2 Economic impact of small software

projects.

 Basically, an app is a small software project. For

instance, the average size of an Apple app is around 10

KLOCs [12]. For this paper, then, we consider an app as a

small software project. Thus, we can see that there are

millions of mobile devices sold around the world. For

example, in 2012, there were 446 million Android devices,

199 million Apple devices and, 17 million Windows devices

sold. Furthermore, there are millions of apps available [11].

The apps market was about USD 25 billion which is expected

to be USD 155 billion in 2017 [10]. Obviously, the economic

impact of small software projects is very important.

3 Our research

 This section describes in detail our research; we only

show our results about what kind of software are mainly

implemented by Mexican software development companies.

Section 3.1 will explain the methodology used for our work.

Section 3.2 describes the results of our research, explaining

the software size classification, company size classification

and the size of Mexican software projects.

3.1 Methodology description

 We began this research by doing a systematic search of

the literature related to our project. So far, we have not found

similar studies at least for Mexican companies. It is important

to mention that this study is part of a larger project in which

we want to identify good techniques and practices for

developing small projects. The problem is that there are not

enough tools, processes, methodologies and so on for small

software projects. This problem was identified by some of our

researchers, because they had been working directly in

software development companies.

 For this project, we wanted to have a better knowledge

of Mexican companies working in software development

projects and to gather data about characteristics of their small

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

252 Int'l Conf. Software Eng. Research and Practice | SERP'14 |

software projects. In order to get this data, we contacted

software companies from Mexico and offered a free SCRUM

course to members from participating companies. We

received answers from 107 Mexican companies. The results

of our research are detailed in section 3.2.

3.2 Results

 We analyzed data gathered from our survey, where 107

Mexican companies were asked about: a) Their size, and b)

The size of the projects they developed. We found that 92%

of their projects were micro and small projects, and 8% were

medium or large projects. Additionally, we found 84.1% are

micro and small companies and they barely use processes,

methodologies or tools for developing and managing their

small projects.

 The survey was mainly focused on the size of projects

being developed in Mexico and company size. We wanted to

answer the question, what is the size of software projects

being developed by micro and small software companies in

Mexico?.

3.2.1 Kind of Projects Developed

 With our research, we could answer this question: Q1.

Since your company was founded, what percentage of projects

(micro, small, medium, large) has your company developed?

The companies were able to answer this question because we

gave them our Project Size Classification Table (Table 3.2.1)

in which they saw our classification of the sizes of different

projects.

Table 3.2.1 Project Size classification

Project

Size

Features

Micro Size (Lines of source code): from 1,600 to

9,600

 Development time (months): from 1 to3

 Development time (hours): from 160 to

960

 Team size (members): from 1 to 2

 Cost (USD): 1,200 to 4,800*

Small Size (Lines of source code): from 9,601 to

38,400

 Development time (months): from 3 to 6

 Development time (hours): from 961 to

3,840

 Team size (members): from 2 to 4

 Cost (USD): 7,501 to 192,000*

Medium Size (Lines of source code): from 38,401

to 960,000

 Development time (months): from 7 to 60

 Development time (hours): from 3,841 to

96,000

 Team size (members): from 5 to 10

 Cost (USD): from 192,050 to 4,800,00.00*

Large/Big Size (Lines of source code): from 960,000

to ∞

 Development time (months): from 61 to ∞

 Development time (hours): from 96,001 to

∞

 Team size (members): from 11 to ∞

 Cost (USD): from 4,800,00.00 to ∞*

Note *The cost is different in each country. We took

USD 50.00 per man-hour.

 Our data analysis showed us than Mexico is a country

where mainly micro & small software projects are developed,

consisting of 92% of software projects (Fig. 3.2.2.1). Medium

& large software projects represent a much smaller

percentage-- only 8%. We can see these results in figure

3.2.2.1.

Figure 3.2.2.1 Software projects developed in Mexico

 We could also answer another question: Q2: What was

the cost of your small projects?

Figure 3.2.2.2 Small software projects cost

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

Int'l Conf. Software Eng. Research and Practice | SERP'14 | 253

 The main activity of Mexican companies is to develop

small projects, and the price of these small projects was

mainly very low. 72% cost less than $3,850 USD ($

50,000.00 Mexican pesos) (Fig. 3.2.2.2). Thus, we can infer:

Mexican software development companies have developed

small projects and its costs have been very low. Therefore, we

need to give them mainly information to develop and manage

micro & small projects.

Additionally, we posed this question: Q3: How long was

needed to develop a small project?

Figure 3.2.2.3 Time to develop small software projects

 We can see that Mexican software development

companies need only a few weeks to develop a small project.

64% of projects required only one month or less to finish (Fig.

3.2.2.3). The question Q2 showed us the low cost to develop

small projects. It may be that the reason for this low cost is the

relatively little time necessary to develop this kind of project.

3.2.2 Company Size Classification.

 We could answer another question: Q4. How many

people work in your company?. The companies had four

options: a) 1-5, b) 6-10, c) 11-50, d) 51 or more. When we

analyzed the answers, we found that 84.1% were micro &

small companies and 15.9% were medium and big (large)

(table 3.2.2).

Table 3.2.2 Q2, Mexican Companies: Size classification.

Size Employees Number of

Mexican

companies.

Percentage

Micro 1-10 62 57.9%

Small 11-50 28 26.2%

Medium

& Big

(Large)

51 or

more

17 15.9%

Total 107 107 100%

 This table shows us that in Mexico there are more micro

and small companies than medium and big or large (Fig.

3.2.2.4). Thus, we need to focus on developing tools,

processes, methodologies, model life cycles, and so on, for the

micro and small sector.

Figure 3.2.2.4 Mexican companies’ size

4 Future Work

 With our findings, we have established the situation

regarding the size of software developed and companies’ size

in Mexico. Based on these results, we will need to research

the following: What kind of tools, methodologies and

processes are the companies currently using? Which are most

useful for Mexican companies? What must a Mexican

company do to successfully adopt a tool, methodology or

process to support small projects' administration and

development? Perhaps, we will need to make some proposals

for new tools, new process or new methodologies focusing

mainly on our Mexican context.

5 Conclusion

 We have found useful information to develop a strategic

plan to help Mexican companies develop quality small

software projects. For example, we have found: a) Most of the

companies surveyed have developed a considerably high

number of small projects. We can thus infer that the main

activity of these companies is to develop small software

projects. b) The cost to develop small software projects is

very low; this could be a problem when the companies need

economic resources to buy software or hardware for their

operations. c) The time required to develop small projects is

only one month or less, although 36% of small projects

needed more than one month to be finished. d) Mexico is a

country where 84% of software development countries are

micro or small. We have not shown what percentage of small

projects fail, but in this research we can see: e) Failure

percentage in small projects is directly related to software-

company size; the reasons for increasing failure in small

projects are not clear. Finally we can say: In Mexico, mainly,

software development companies need: tools, processes and

methodologies to develop small software projects. The small

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

254 Int'l Conf. Software Eng. Research and Practice | SERP'14 |

software projects have an important economic impact. It is

very important to be aware of the size of companies in our

country or region, and to know the size of the projects

developed by them, in order to make plans to support them.

6 References

[1] Frederick P. Brooks, Jr. “The Mythical Man-Month“:

Essays on Software Engineering, Addison-Wesley, ISBN 0-

201-83595-9, 1995.

[2] Watts S. Humphrey, “A Discipline for Software

Engineering“, SEI Series in Software Engineering, Addison

Wesley, ISBN 0201546108, 2005.

[3] Solvita Berzisa, “Project Management Knowledge

Retrieval: Project Classification“, Proceedings of the 8th

International Scientific and Practical Conference. Vol II,

ISBN 978-9984-44-071-2. 2011.

[4] Capers Jones, “Backfiring: converting lines of code to

function points“, Computer, Vol. 28, no. 11, pp 87-88,

November 1995.

[5] Stacy Goff, “The Successful Project Profile: A

monograph“. Associates, Inc, the ProjectExperts, 2010

[6] ESA BSSC. “Guide to applying the ESA software

Engineering Standards to small Software Projects“. (1996).

[7] Jessica E. Lessin and Spencer E. Ante, “Apps Rocket

Toward $25 billion in Sales, The Wall Street Journal .

http://online.wsj.com/article/

SB10001424127887323293704578334401534217878.html

(2013).

[8] Mark C. Paulk. “Using the Software CMM in Small

Organizations“. Proceedings of the Pacific Northwest

Software Quality Conference and the Eight International

Conference on Software Quality , 1998.

[9] Claude Y. Laporte, Frédéric Chevalier and Jean-Claude

Maurice “Improving project management for small projects“.

ISO Focus+, www.iso.org/isofocus. 2013.

[10] “ Transparency Market Research, Smartphone

applications Market –Global Industry Size, Share, Trends,

Analysis and Forecasts 2012-2018“.

[11] “ Mobile Statistics”, http://www.mobilestatistics.com,

January 2014.

[12] “ Information is Beautiful”,

http://www.informationisbeautiful.net/visualizations/million-

lines-of-code/ January 2014.

[13] James Persse, “Project Management Success with

CMMI“, Prentice Hall Computer, 2007.

[14] Barry W. Boehm, Chris Abts, A. Winsor Brown, Sunita

Chulani, Bradford K. Clark, Ellis Horowits, Ray Madachy,

Donald Reifer, Bert Steece, “Softwre Cost Estimation With

COCOMO II“, Prentice Hall PTR, 2000.

[15] Value Prism Consulting, “Microsoft Office Enterprise

Project Management (EPM) Solution Delivers Strong

Business Value“, 2009.

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

Int'l Conf. Software Eng. Research and Practice | SERP'14 | 255

http://online.wsj.com/article/SB10001424127887323293704578334401534217878.html
http://online.wsj.com/article/SB10001424127887323293704578334401534217878.html
http://www.iso.org/isofocus
http://www.iso.org/isofocus
http://www.mobilestatistics.com/
http://www.informationisbeautiful.net/visualizations/million-lines-of-code/
http://www.informationisbeautiful.net/visualizations/million-lines-of-code/

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

256 Int'l Conf. Software Eng. Research and Practice | SERP'14 |

SESSION

SOFTWARE ENGINEERING AND APPLICATIONS
AND RELATED ISSUES + EDUCATION AND

TRAINING

Chair(s)

TBA

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

Int'l Conf. Software Eng. Research and Practice | SERP'14 | 257

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

258 Int'l Conf. Software Eng. Research and Practice | SERP'14 |

A Methodology for Development of Enterprise
Architecture of PPDR Organisations

W. Müller, F. Reinert

Fraunhofer Institute of Optronics, System Technologies and Image Exploitation IOSB

76131 Karlsruhe, Fraunhoferstraße 1

GERMANY

Abstract - The growing number of events affecting public
safety and security (PS&S) on a regional scale with potential
to grow up to large scale cross border disasters puts an
increased pressure on agencies and organization responsible
for PS&S. In order to respond timely and in an adequate
manner to such events Public Protection and Disaster Relief
(PPDR) organisations need to cooperate, align their
procedures and activities, share the needed information and
be interoperable.

This paper provides an approach to tackle the above
mentioned aspects by defining an Enterprise Architecture (EA)
of the organisation and based on this EA define the respective
System Architectures. We propose a methodology for the
development of EA for PPDR organisations. Our methodology
refines architectural artefacts of the OSSAF approach and
introduces a lightweight architecture development model
relying on capability based planning as the organisational top
level approach.

Keywords: Architecture framework, Public Protection &
Disaster Relief, NAF, OSSAF

1 Introduction
 Public Protection and Disaster Relief (PPDR)
organisations are confronted with a growing number of events
affecting public safety and security. Since these events either
expand from a local to a regional and to an international scale
or are from beginning affecting multiple countries the
pressure on PPDR organisations to be able to cooperate in
order to respond timely and adequately to such events
increases as well. The need of cooperation demands for
aligned procedures and interoperable systems which allows
timely information sharing and synchronization of activities.
This in turn requires that PPDR organizations come with an
Enterprise Architecture on which the respective System
Architectures are building. The Open Safety & Security
Architecture Framework (OSSAF) provides a framework and
approach to coordinate the perspectives of different types of
stakeholders within a PS&S organisation. It aims at bridging
the silos in the chain of commands and on leveraging
interoperability between PPDR organisations. Our work is

based on OSSAF and provides the methodology to describe
the OSSAF perspectives and views with the adequate models.

2 Related work
 The goal of Enterprise Architecture design is to describe
the decomposition of an enterprise into manageable parts, the
definition of those parts, and the orchestration of the
interactions between those parts. Although standards like
TOGAF and Zachman have developed, however, there is no
common agreement which architecture layers, which artifact
types and which dependencies constitute the essence of
enterprise architecture.

 [7] defines seven architectural layers and a model for
interfacing enterprise architectures with other corporate
architectures and models. They provide use cases of mappings
of corporate architectures to their enterprise architecture
layers for companies from the financial and mining sector.

 A layered model is also proposed by [10]. The authors
propose four layers to model the Enterprise Architecture: A
Strategy Layer, an Organizational Layer, an Application
Layer, and a Software Component Layer. For each of the
layers a meta-model is provided. The modeling concepts were
developed for sales and distribution processes in retail
banking.

 MEMO [11] is a model for enterprise modeling that is
based on an extendable set of special purpose modeling
languages, e.g. for describing corporate strategies, business
processes, resources or information. The languages are
defined in meta-models which in turn are specified through a
common meta-metamodel. The focus of MEMO is on the
definition of these languages and the needed meta-models for
their definition.

 The Four-Domain-Architecture [8] divides the enterprise
into four domains and tailors an architecture model for each.
The four domains are Process domain, Information /
Knowledge domain, Infrastructure domain, Organization
domain. Typical elements for each domain are also provided.
The authors also provide proposals how to populate the cells
of the Zachman framework with architectural elements.

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

Int'l Conf. Software Eng. Research and Practice | SERP'14 | 259

 The Handbook on Enterprise Architecture [9] provides
methods, tools and examples of how to architect an enterprise
through considering all life cycle aspects of Enterprise
Entities in the light of the Generalized Enterprise Reference
Architecture and Methodology (GERAM) framework.

 None of the papers addressing Enterprise Architectures
covers the special needs of PPDR organizations with their
need on timely cooperation, alignment of procedures, and
interoperability needs across different organizations.

3 Approach

3.1 Enterprise Architecture Frameworks

 Supporting the development of dedicated enterprise
architecture is the task of Enterprise Architecture Frameworks
(EAF). According to [3] more than 50 published frameworks
for EA exists, for example ADS, AGATE, EAF, GERAM,
MODAF, PERA, TISAF, E2AF, CIMOSA, SABASA,
OBASHI, ARIS etc. to name a few. The most well known
frameworks are the The Open Group Architecture Framework
(TOGAF) [1], Zachman Architecture Framework (ZAF) [4]
and the NATO Architecture Framework (NAF) [5].

 In general EA frameworks have different characteristics
concerning intension and content. Some provide a
methodology, others provide templates and meta-models,
some provide governance aspects, others also provide tool
support and some provide combinations of parts or all of
them. The intensions covered range from management support
through Government & Agencies, Military, Interoperability
and Manufacturing-specific to pure technically oriented
frameworks.

3.2 Open Safety & Security Architecture
Framework (OSSAF)

 For PPDR organizations, [2] proposes the Open Safety
& Security Architecture Framework (OSSAF). The
framework incorporates concepts of several mature enterprise
architecture frameworks such as the Zachman Architecture
Framework (ZAF), the TOGAF framework and the NATO
Architecture Framework (NAF) [5]. Reusing fundamental
concepts provides a sound founding to OSSAF. There is also
an explicit statement within the whitepaper, that a mapping
between OSSAF and other existing frameworks is possible.
Nevertheless OSSAF builds mainly on (see Figure 1):

1. The methodology of collecting information and artifacts
contributing to the architecture from TOGAF.

2. The two dimensional matrix representation of the
framework for structuring the different perspectives from
Zachman.

 The OSSAF whitepaper [2] also mentions that the NAF
meta-model and views may be used where suitable for
describing the content of the different perspectives, but does
not provide details on the application of the NAF views.

Figure 1: Inputs to OSSAF

 OSSAF proposes a total of four perspectives and a total
of twenty views. In general it depends on the intention of the
architecture under development which views are actually
instantiated. In other words the views can be tailored to the
specific needs of the architecture under consideration.

3.3 EA development methodology for PPDR
organizations

 The proposed methodology for the development of
enterprise architecture of PPDR organizations follows a
pragmatic approach, looking at an “enterprise” as the joint
undertaking of one or more organizations with PS&S
responsibilities that operate across a distributed and often
complex environment. This understanding states, that we see
an enterprise in this context as nonprofit-oriented
organizations or complex structures of organizations (inter-
organizational aspect of enterprise definition) such as national
PPDR organizations, for example national police or fire-
fighter organizations.

 We see the enablement of PPDR organizations regarding
their agility, interoperability and mutual networking as an
evolutionary course of action based on a planned and
predictable process which has to deal with highly complex
issues. In computer science the divide and conquer principle
is often used to handle complex problems. We refer to this
principle to support the evolutionary process in order to deal
with chunks of smaller complexity. These chunks with
reduced complexity are the Capabilities. One can understand a
Capability according to [1] as:

 ”An ability that an organization, person, or system
possesses. Capabilities are typically expressed in general and
high-level terms and typically require a combination of
organization, people, processes, and technology to achieve.

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

260 Int'l Conf. Software Eng. Research and Practice | SERP'14 |

For example, marketing, customer contact, or outbound
telemarketing.”

 The introduction of Capabilities as main planning items
leads to the approach of capability based planning. This is of
course not a new approach. It is applied for years in the
context of the NATO in order to provide interoperability
across the whole spectrum of system solutions required for
overall portfolio of the NATO enterprise putting extra
attention on interoperability from technical up to the semantic
level.

 As a side note, there may arise some confusion on
capabilities in relationship to requirements. In contrast to a
capability, a requirement must be understood as a singular
documented physical and functional need that identifies a
necessary attribute, characteristic, or quality of a system to
have value and utility to a customer, organization, internal
user, or other stakeholder [6].

 Seeing capability based planning as the overarching
guideline, our actual approach for the development of an EA
proposes scenarios as main input. Preceding to the definition
and development of scenarios the first step in the development
approach is the definition of Visions and Goals in order to
depict an overall strategy including the winning of supporters
for the overall architecting approach.

 Keeping visions and goals in mind the next step is the
development of representative scenarios. One can see the
scenario development as the first concrete step towards
enterprise architecture and being crucial for our proposed
methodology. Therefore this step requires a very close
cooperation with operational end-users. The development is
an iterative and interactive process with a successive
refinement of operational procedures, and requirements.
Scenarios derived include as-is scenarios and also to-be
scenarios or a mixture of both of them. The to-be scenarios
are particular important to identify lacks in capabilities. Since
the scenarios are developed in close cooperation with end-
users, it is assumed that they reflect user’s needs in a
sufficient manner. In case of encountering deficits while
designing the architecture in that the scenarios don’t provide
enough input to the development of the perspectives/views the
OSSAF Engagement Questionnaire will be used to obtain the
required information. This questionnaire is already defined in
OSSAF. The further steps include:

� Define scope and principles of the architecture (for
example require to use the SOA paradigm for the
architecture, kind of architecture e.g. Reference
architecture or Target architecture to be developed)

� Refer to or define/adapt a common modeling
vocabulary (further addressed in 3.3 Definition of the
Modeling Vocabulary)

� Define stakeholders addressed

� Tailor the architecture perspectives and views
(architecture artifacts) according to the kind of
architecture addressed.

� Map architecture artifacts to the corresponding
stakeholders

� Analyze Scenarios/Use Cases on operational
Capabilities required. This is a creative process and
one has to align actual capabilities with further
capabilities addressed in order to identify possible
lacks of capabilities. As a starting point serve the six
top-level capabilities of OSSAF in order to classify
further capabilities derived.

� Analyze Scenarios/Use Cases on functional and non-
functional requirements

� Derive Capability taxonomy und dependencies
(capability based planning concept)

� Identify and analyze operational Context including:
Nodes conducting (operational) Activities, Players,
Activities, Information flows, Processes and
Constraints (e.g. operational rules))

� Identify Services (operational as well as technical
services) and Systems in order to support the
capabilities, operational requirements and information
exchange needs. Take existing technical Standards and
Service catalogues under consideration. That means,
re-use existing solutions first before developing new
ones, being normally not that mature.

� Design Services (including communication services)
and Systems (including communication systems) as
well as their interactions (logical definitions of systems
and services) and derive conceptual information
models form the operational information exchange
requirements.

� Define technical implementation of Services and
Systems (physical definition) and a data models
corresponding to the conceptual information model

� Define the standards that have to be considered or
describe emerging standard configurations (products)
resulting from the architecture approach.

� Finally validate the architecture with operational-end
users and the stakeholders. In general it shall be
noticed, that the proposed method is normally
conducted in several iterations after defining the
scenarios itself, although it may be necessary to refine
them during further architecture development.

� After the final architecture validation, develop a
potential migration plan which the decision-makers
responsible for the organizational enhancements may
adopt.

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

Int'l Conf. Software Eng. Research and Practice | SERP'14 | 261

3.4 Definition of the modeling vocabulary

 Defining a common vocabulary/meta-model in order to
describe the architecture, i.e. its components and relationships
is a very beneficial task. It enables the description of the
architecture in a consistent and coherent way. Referring to
such a meta-model also supports the use of tools for
architecture modeling. Since the OSSAF framework already
proposes to use NAF views where suitable as templates for
describing the OSSAF views and the NAF views defines a
vocabulary, our approach is to use NAF as the modeling
vocabulary where suitable.

“NATO Architecture Framework Metamodel (NMM) and
Architecture Data Exchange Specification (ADES)” and
CHAPTER 4 “Architecture Views and Subviews” in order to
get a detailed insight and understanding of NAF.

 Being in proposal state, OSSAF actually does not define
the contents of the NAF meta-model being part of the
corresponding OSSAF views. Only general hints are given.
Therefore, at first, a mapping between OSSAF views and
NAF views has to be established. Table 1 summarizes the first
results of a general mapping of NAF views to OSSAF
perspectives. Each column represents a perspective defined by

Table 1: Mapping of NAF templates to OSSAF views

O
S
S
A
F

V
i
e
w
s

 OSSAF Perspectivec

Strategic Operational Functional Technical

Vision &
Goals

NAV-1
NCV-1

Use Case
Scenarios

No proper
NAF view

Systems &
Services

NSOV-1
NSOV-2
NSOV-3
NSOV-4
NSOV-5
NSV-12

Solution
Context

No proper
NAF view

Capability
Planning

NCV-2
NCV-4

Operational
Concepts

NCV-4
NCV-5
NCV-6
NOV-1

Functional
Requirements

NSV-2d
NSV-4
NSV-5
NSV-6
NSV-7
NSV-10a

Standards &
Protocols

NTV-1

Funding
Model

No proper
NAF view

Operational
Nodes
Model

NOV-2

Systems
Connectivity
Model

NSV-1
NSV-2a
NSV-2b

Device
Connectivity
Model

NSV-2a
NSV-2b
NSV-2d

Laws &
Regulations

No proper
NAF view

Organization
Chart

NOV-4

Systems
Interface
Model

NSV-1
NSV-2
NSV-3

Product
Specification

(NTV-1)

Local
Market
Landscape

No proper
NAF view

Process
Model

NOV-5
NOV-6a
NOV-6b
NOV-6c

 Product
Configuration

NTV-3

 Information
Exchange
Model

NOV-3
NOV-7

 In general NAF provides a mature common meta-model
to describe the contents of the corresponding views. Every
view contains a section of the overall meta-model in order to
describe view-specific contents and relations. In addition to
the concepts and relationships the meta-model also defines the
semantics of each of these elements [5]. The reader should
refer to the NAF documentation [5], especially CHAPTER 5

the OSSAF framework. The rows represent the views per
perspective, each with a specific semantics defined by
OSSAF. To the right of each OSSAF perspective we refer to
the corresponding NAF-views which we see suitable for
representing the semantics required by OSSAF. For example
to describe the “Capability Planning” view of the “Strategic”
perspective it is suggested to use the NAF Capability View-2

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

262 Int'l Conf. Software Eng. Research and Practice | SERP'14 |

(“NCV-2”) and Capability View-4 (“NCV-4”) view
accordingly. In order to describe the OSSAF “Operational
Concepts” view of the “Operational” perspective we refer to
several NAF views form the NAF Capability and Operational
descriptions. These are the Capability dependencies View
(“NCV-4”), the Capability to organizational deployment
mapping View (“NCV-5”), the Operational activity to
capability mapping View (“NCV-6”) and finally form the
NAF Operational description the High level operational
concept description View (“NOV-1”). Another example for
the suggested re-use of NAF views in order to describe the
required semantics of the OSSAF is given for the “Systems
Interface Model” view of the OSSAF Functional perspective.
Here we refer to the NAF Systems descriptions in form of the
System Interface description (“NSV-1”), the Systems
communications description (“NSV-2”) and the System to
System matrix (“NSV-3”) views defined in NAF in order to
describe the corresponding OSSAF view.

 As the table shows, a direct mapping between OSSAF
and NAF views is not always possible (“No proper NAF
view” comment at the corresponding matrix entry in the
table). For example the OSSAF “Funding Model” could not
directly be mapped to a corresponding NAF view. In such
cases suitable representations will be proposed in a follow-on
work.

4 Conclusions and further work
 The proposed methodological approach provides a
starting point to the development of Enterprise Architectures
for PPDR organizations. Based on the Enterprise
Architecture, specific System Architectures may be derived.

 The proposed EA methodology will be used in the
SALUS project [12] to define the Enterprise Architecture of
PPDR organizations and the System Architecture of the
communication network for those organizations. As the need
arises it will be further refined. In addition, a tool support for
modeling the different NAF views is under development. This
tool captures the relevant meta-model parts of NAF as an
UML-profile extension which enables modeling in an UML-
style. It will be used in SALUS to support the design and
development of the above mentioned architectures.

 Acknowledgement: The work described in this paper was
partly funded by the European Commission within the
European Seventh Framework Programme under Grant
Agreement 313296, SALUS - Security And InteroperabiLity
in Next Generation PPDR CommUnication InfrastructureS

5 References

[1] Website TOGAF, http://www.opengroup.org/togaf/

[2] Open Safety & Security Architecture Framework
(OSSAF), http://www.openssaf.org/download

[3] D. Mattes „Enterprise Architecture Frameworks
Kompendium“, Springer-Verlag Berlin Heidelberg, 2011

[4] Website Zachman Framework, http://zachman.com/

[5] NATO Architecture Framework Version 3, ANNEX 3
TO AC/322(SC/1-WG/1)N(2007)0004

[6] Website Wikipedia,
http://en.wikipedia.org/wiki/Requirement

[7] R. Winter, R. Fischer “Essential Layers, Artifacts, and
Dependencies of Enterprise Architecture”, Proceedings of the
10th IEEE International Enterprise Distributed Object
Computing Conference Workshops (EDOCW'06), IEEE
Computer Society, 2006

[8] B. IYER, R. Gottlieb “The Four-Domain-Architecture:
An approach to support enterprise architecture design”, IBM
Systems Journal, Vol 43, No 3, 2004, pp. 587- 597.

[9] P. Bernus, L. Nemes, G. Schmidt (Editors) „Handbook
on Enterprise Architecture“, Springer, 2003.

[10] Ch. Braun, R. Winter “A Comprehensive Enterprise
Architecture Metamodel and Its Implementation Using a
Metamodeling Platform”, In: Desel, J., Frank, U. (Eds.):
Enterprise Modelling and Information Systems Architectures,
Proc. of the Workshop in Klagenfurt, GI-Edition Lecture Notes
(LNI), Klagenfurt, 24.10.2005, Gesellschaft für Informatik,
Bonn, P-75, 2005, pp. 64-79.

[11] U. Frank, “Multi-Perspective Enterprise Modeling
(MEMO) - Conceptual Framework and Modeling Languages”,
Proceedings of the Hawaii International Conference on System
Sciences (HICSS-35), 2002, p. 3021ff.

[12] SALUS: Security and interoperability in next generation
PPDR communication infrastructures. http://www.sec-salus.eu/

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

Int'l Conf. Software Eng. Research and Practice | SERP'14 | 263

	

Positive Train Control:
Concepts, Implementations, and Challenges

David J. Coe and Jeffrey H. Kulick

Department of Electrical and Computer Engineering
The University of Alabama in Huntsville, Huntsville, Alabama, USA

Abstract - For over a hundred years train control has been
largely distributed. To prevent collisions, railway track
systems were divided into a series blocks ranging in length
from a few miles to tens of miles, and a signaling system was
developed to constrain movement of trains between blocks.
The imprecise nature of position information afforded by the
block-oriented system required as a general rule that no two
trains were allowed to occupy the same block. The advent of
centralized Positive Train Control (PTC) coupled with
precision navigation and remotely controllable switches and
signals allow for the development of more optimal scheduling
algorithms for improved safety and railway throughput. This
paper outlines key aspects of PTC deployment, describes
some of the new rules and conditions that must be formulated,
potential control systems for implementing these rules, and a
PTC test bed currently in development at The University of
Alabama in Huntsville.
Keywords: Positive train control, GPS Challenged
Navigation, Inertial Navigation, Software Safety Engineering

1 Background
Positive Train Control (PTC) is a congressionally

mandated computerized control system for the nation’s
railroads that will allow centralized management of safety
critical conditions such as a detecting, slowing and stopping
speeding trains by remote control [1]. The system was
mandated following the 2008 Chatsworth train collision in
which a railroad operator, distracted while texting, ran a
signal leading to a fatal head-on collision between a
passenger train and freight train that resulted in 25 fatalities
and 130 injuries [2]. Such operational errors that might lead
to an accident might be prevented through a centralized safety
critical system that could remotely intervene when an unsafe
condition was detected.

Deployment of a comprehensive PTC system is an
enormous undertaking, costing freight railroads alone an
estimated $8 billion [3]. This task includes not only the
design and development of suitable software but also the
precise mapping of 60,000 miles of railroad right-of-way and
associated fielded assets and the deployment of massive
amounts of infrastructure including central office hardware,
22,000 instrumented locomotives, 36,000 wayside signaling
and network hardware, as well as 4,800 switches and 12,300
signals, both remotely controllable. Locomotives

instrumentation must include precise location detection and
communication hardware, primarily based on Global
Positioning Systems (GPS) and Inertial Measurement
Systems (IMUs) for localization and speed detection in GPS
challenged areas such as in deep valleys, tunnels, and
underground yards such as found in inner city terminals.

The advent of such a massive and costly instrumentation
of the nation’s railroads, however, provides a great
opportunity to deploy computer control systems for not only
safety considerations such as collision avoidance but
performance enhancing activities such as precise scheduling
that will allow reduced separations between trains. To take
advantage of these additional capabilities in a safe manner
will require the development of railroad control software that
incorporates modern vehicle capabilities such as those found
in Google Cars and aircraft under RPN (required precise
navigation). The critical nature of these systems will also
require evaluation and mitigation of security concerns.

1.1 Conventional Locomotive Location
Hardware: The Track Circuit

The track circuit has traditionally been used to detect
occupancy of a track block by a locomotive or other rail
rolling stock and to signal the state of occupancy to any train
operators in adjacent blocks [4]. Invented by Dr. William
Robinson in the 1870s, the classic track circuit shown in
Figure 1 utilizes the two track rails as an integral part of an
electrical circuit that controls block occupancy signals. A
voltage source such as a battery supplies an electric potential
between the two rails. The signal relay solenoid coil is also
connected across the two rails such that it remains energized
(conducting electricity) when there is no train located on that
section of the track. With the solenoid energized, the signal
relay presents the track-clear signal to oncoming trains.
When the axle of a locomotive or roll stock enters the block,
the axle electrically shorts the two rails together, de-
energizing the solenoid coil resulting in display of the track-
occupied signal. The classic track circuit requires adjacent
blocks to be electrically isolated from each other. Modern
variations of the track circuit allow for the use of non-isolated
welded rails.

It is important to note that track circuit occupancy
signaling is automatic and decentralized, requiring no human
intervention to set the occupancy signals. The track circuit
also plays a key role in the event of an accident or during

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

264 Int'l Conf. Software Eng. Research and Practice | SERP'14 |

	

track maintenance since work crews may deliberately create
an electrical short between the rails to force display of the
track-occupied signal to block entry of a train into a particular

block. The simplicity and reliability of the track circuit has
made it a key element of modern block signaling systems for
over 100 years and to this very day.

Figure 1 – Track circuit schematic showing direction of current flows for both

(A) unoccupied and (B) occupied conditions [4].

Figure 2 – Automated Block Signaling diagram showing signals visible to train A and train B as they travel from
right to left on the same track [5].

1.2 Automated Block Signaling (ABS)

ABS is an automated, decentralized approach that
relies on the use track circuit-based occupancy detection to
maintain a safe separation between trains. While specific
ABS rules vary by railroad, track systems are divided into
blocks that may be of varying length, and a system of
automated signals convey block vacancy and occupancy
information to train operators. Figure 2 above illustrates
how block signaling logic may be used to maintain safe

train separation [5]. Given that trains A and B occupy
blocks 2 and 5, respectively, any trailing trains would see a
red signal for those two blocks, indicating that they must
stop since blocks 2 and 5 are currently occupied. Looking
ahead, train A sees only green signals ahead so it may
proceed to the left at full speed from block 2. Train B sees
a green signal before block 4, so it may proceed at full
speed from block 5 into block 4, but the yellow signal prior
to block 3 indicates that train B must reduce speed if it
enters block 3. Assuming that train A is traveling at full

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

Int'l Conf. Software Eng. Research and Practice | SERP'14 | 265

	

speed at it travels from block 2 into block 1, the trailing
train B should be unable to catch up if traveling at reduced
speed through block 3. Should train A stop for some
reason, a red signal will be shown at the entry point to its
current block to ensure that any trailing train stops before
entering the block occupied by train A.

A key issue with ABS is that of track utilization.
Suppose that a mile long train currently occupies a twenty-
mile long block. Independent of the precise location of the
train within the block, all of the track within the block may
be unusable since the current ABS system bases its
signaling decisions on block-level occupancy detection.
Given a more precise measurement of train position, one or
more additional trains could safely occupy the twenty-mile
long block provided that adequate stopping distance is
maintained.

2 Positive Train Control (PTC)
The block diagram in Figure 3 shows the four primary

subsystems of the Vital Electronic Train Management
System (V-ETMS), which is a modern positive train
control system currently being deployed by the large
freight railroads in the United States [6] in compliance with
the new directive. The Office Segment provides interfaces
to the network time server, the dispatcher, and the other
backend systems. The Wayside Segment consists of the
monitored and remotely controllable switches and signals
deployed trackside along with their associated Wayside
Interface Units (WIUs) that connect each of these assets to
the Communications Segment. The Wayside Segment may
forward block status information directly to the
Locomotive Segment via in-cab signaling. The
Locomotive Segment consists of one or more Train
Management Computers that serve as the central manager
for in-cab signaling, the GPS receivers, the in-cab video
displays, as well as interfaces to the throttle, braking,
whistle, and other locomotive systems including the event
recorder. The Communications Segment, still under
development, will serve as the central interconnection

medium for the Office, Wayside and Locomotive segments.
Possible means of communication under consideration
include WiFi, or WiMax networks, cellular networks,
satellite networks, or custom 900MHz or 220MHz data
radios.

3 Dealing with the Unexpected
Unexpected

A key problem with the computer mediated
dynamically changing track configurations supported by
PTC is dealing with changes in track properties such as
closed, limited speed, track workers present, etc. that occur
thousands of time a day across the national railway
network. When designing safety critical systems, engineers
attempt to anticipate possible fault mechanisms and design
the system in such a way as to mitigate the associated risks.
Proven techniques have been developed such as the use of
redundancy and the use of sensor-signal systems to warn of
dangerous conditions are frequently employed as a result.
Consider, for example, the design of a train control system.
One can design the system for “the expected” normal
operating conditions and “the expected unexpected” which
are the anticipated failure conditions whose impact can be
mitigated since they were anticipated during the design
process. Examples of “the expected” and “the expected
unexpected” for a train control system appear below.

• “The expected”
o Normal running, slowing, and stopping by

an operator under signal control.
o A signal correctly indicating the occupancy

state of an upcoming block.

• “The expected unexpected”
o A sensor detects a driver falling asleep and

triggers an alarm to wake the driver.
o An emergency braking system stops a train

when the primary braking system fails.

Figure 3 – Block diagram showing major V-ETMS subsystems [6]

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

266 Int'l Conf. Software Eng. Research and Practice | SERP'14 |

	

The more difficult problem is the design of the system
to be safe in spite of what we call the unexpected
unexpecteds. If one views the system as a state machine,
these types of occurrences may place the system into states
that the designers may never have envisioned as existing or
possible. The real challenge for designers is to craft the
control system in such a way that if the system ends up in
an unanticipated state, that the existing control logic steers
the system back into one of the known states. Examples of
such unanticipated events appear below.

• “The unexpected unexpected”
o A driver becoming distracted by texting who

fails to follow signals as a result.
o A train failing to stop after both the primary and

backup braking systems fail.

4 When the Flapping of Butterfly
Wings Cause a Hurricane

In a situation where a rule system is static, there are
proven methods and techniques, such as the use of a
theorem proving or model checking methodologies, for
verifying that the rules are consistent with each other, that
there are no deadlocks, etc. Rule changes under PTC will
be more dynamic in nature to address emerging situations
such as railway crossing collisions and the need for repairs
to the tracks, signals, or the trains themselves. These
emerging events that are local in nature (the butterfly) may
directly impact schedules and rail traffic nationally (the
hurricane).

Consider, for example, a master schedule that has
created a gang of closely following trains along a main
railway line. If the lead train must stop for whatever
reason, then that emerging local condition must first be
detected and signals issued to slow or stop the trailing
trains to prevent a collision. The overall system state may
now be such that the master schedule is now impossible to
execute safely. For the system to recover gracefully,
preferably in an automated fashion, adjustments to the
master schedule must be identified, verified as safe, and
implemented in a timely fashion, even if those changes
involve rescheduling and rerouting of some combination of
trains scattered across the United States in addition to those
trailing trains locally impacted by the emergent event.

The dynamic nature of these events may necessitate
the development of new techniques for modeling the rule
systems in such a way that the consistency, correctness,
completeness, and safety of the modified rules and
schedules can be verified in real or near real time to ensure
safety and to maintain efficient track utilization. Moreover,
the overall impact of certain new capabilities with PTC,
such as the shorter time intervals between closely following
trains, may have unintended consequences upon highway
traffic at crossings such as traffic backup on surface streets

due to the now more frequent transit of gangs of trains
through the crossing.

5 PTC Test Bed at UAH
The Department of Electrical and Computer

Engineering at The University of Alabama in Huntsville
has previously developed a model railroad test bed for
software safety engineering. As described in earlier
publications [7] the test bed consisted of an oval track
layout with two passing sidings and multiple detection and
control capabilities. In the past detection systems included
magnetic and optical sensors, as well as electrical contact
sensors using vehicle impedance as a trigger, much like the
classic track circuits used on real railroad systems.
Graduate and undergraduate students have used the test bed
to develop train-scheduling software to manage train
operations and safety monitoring systems that will detect
and mitigate conditions that may lead to a collision using
aviation safety engineering standards such as DO-178C,
ARP4761 and ARP 4754. The test bed has also been used
as a platform for exploring the use of various sensors for
train localization including video-based tracking systems
[8] and ultra wideband synthetic aperture radar systems for
all weather use [9].

Over the past year, a new model railroad test bed
called UAH OnTrack has been developed to explore the
software safety engineering issues associated with Positive
Train Control [10]. As with V-ETMS and other real world
PTC systems, the new test bed incorporates precision
navigation in the form a sensor package carried by each
train that will provide precise train localization information
to the scheduling and safety systems. The original test bed
detection systems could only determine a train’s position to
within a few feet since the previous system mimicked
conventional block-oriented detection and signaling
systems. Trains operating on the new PTC test bed will
incorporate a localization sensor package consisting of a
MEMS-based IMU and a tie counting system that affords
train localization to within 0.5 cm. A photograph of the
sensor package mounted in a gondola car is shown below
in Figure 4.

6 Future Work
Upon completion of the current test bed, shown in

Figure 5, work will proceed in developing modeling and
verification techniques for the dynamically changing rules
and track configurations that will be experienced through
Positive Train Control and precise scheduling. This may
include verification of message passing protocols to ensure
that safety messages are properly received and instantiated
in the railway model to verification that recovery rules for
unwinding and recovering from unsafe states are
themselves not introducing yet even more unsafe
configurations.

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

Int'l Conf. Software Eng. Research and Practice | SERP'14 | 267

	

Figure 4 – Photograph of IMU/tie counter sensor package mounted in a gondola car for testing.

Figure 5 – Panoramic photograph of PTC test bed under construction.

7 References
[1] Rail Safety Improvement Act of 2008, URL
http://www.fra.dot.gov/eLib/Details/L03588
[2] Kevin Clerici, “Officials push plan to avoid rail
collisions”, Ventura County Star, September 16, 2008,
URL http://www.vcstar.com/news/2008/sep/16/tragedy-of-
metrolink-train-111-looking-ahead-to/
[3] Association of American Railroads, “Positive Train
Control”, April 2013, pp. 1-4, URL

https://www.aar.org/keyissues/Documents/Background-
Papers/Positive-Train-Control.pdf
[4] American Railway Association, The Invention of the
Track Circuit, New York, 1922
[5] Mark D. Bej, “Railway Signalling and Operations:
Automated Block System”, URL
http://broadway.pennsyrr.com/Rail/Signal/abs1.html
[6] Wabtec Railway Electronics, “Vital Electronic Train
Management System (V-ETMS) Concept of Operations
v1.0”, March 24, 2010.

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

268 Int'l Conf. Software Eng. Research and Practice | SERP'14 |

	

[7] David J. Coe, Joshua S. Hogue, and Jeffrey H. Kulick,
"Software Safety Engineering Education," 2011
International Conference on Software Engineering
Research and Practice (SERP'11), WORLDCOMP 2011,
July 18-21, 2011, Las Vegas, NV.
[8] Travis Cleveland, David J. Coe, and Jeffrey H. Kulick,
"Video Processing for Motion Tracking of Safety Critical
Systems," 2013 International Conference on Software
Engineering Research and Practice (SERP'13),
WORLDCOMP 2013, July 22-25, 2013, Las Vegas, NV.
[9] Thu Truong, Michael Jones, George Bekken, “Senior
Project: UWB SAR, Ultra Wideband Synthetic Aperture

Radar”, Senior Design Project, University of Alabama in
Huntsville, November 2012, URL
http://www.timedomain.com/UAH%20Senior%20Project%
20-%20Final%20Presentation%20V3.pdf
[10] Scott M. Schiavone, , SJohn Chambers, Sunny J.
Patel, Lee Ann Hanback, David J. Coe,
Jason Winningham, B. Earl Wells Jr, Jeffrey H. Kulick,
“UAH OnTrack: Precision Navigation System for Research
on The Software Safety Issues of Positive Train Control”,
2014 International Conference on Software Engineering
Research and Practice (SERP’14), WORLDCOMP 2014.

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

Int'l Conf. Software Eng. Research and Practice | SERP'14 | 269

Proposal of Avatar Generation System based on
design according to generation of comic character

Reiko KUWABARA

Graduate School of Engineering, Toyo University
Kujirai2100, Kawagoe-City, Saitama, Japan

s36c01400047@toyo.jp

Takayuki FUJIMOTO

Graduate School of Engineering, Toyo University
Kujirai2100, Kawagoe-City, Saitama, Japan

me@fujimotokyo.com

Abstract— Character design of animation and comic has been
sensitively reflects the fashion of the era. For example, in the
1970s, when mini skirt is prevalent in society, there were many
characters of comics that had been serialized in that time wear a
mini skirt. In this research, I investigated features of the comics
which were popular in each generation to the 2000s from the
1960s in Japan, and analyzed the correlation between them and
fashion or design which were popular at that generation. Based
on the results of research and analysis, I suggested the
entertainment applications that generate an avatar that reflects
the age and generation. When users make an Avatar by choosing
the fashion and hairstyle of choice, it determines whether the
user’s sense is closer to which generation.

I. INTRODUCTION
Character design of animation and comic has been

sensitively reflects the fashion of the era. In this research, I
investigated features of the comics which were popular in each
generation to the 2000s from the 1960s in Japan, and analyzed
the correlation between them and fashion or design which were
popular at that generation. Based on the results of research and
analysis, I suggested the entertainment applications that when
users make an Avatar by choosing the fashion and hairstyle of
choice, it determines whether the user’s sense is closer to
which generation.

II. RESEARCH ON DESIGN STRUCTURE OF THE COMIC
CHARACTERS OF THE 2000S-1960S

In this research, at first, I investigated the design
structure of the character of the popular comics in Japan to the
2000s from the 1960s. From there, I classified the shape of the
part of the character, and compared percentage of body
proportion and the human anatomy with real people by
generation.

A. Case 1: Character structure of popular comics of the
1980s
I will show below the design structure of the character of

popular comics of the 1980s.

Comic characters in the 1980s were seen a variety of
design. Some have head body design is close to a real person,
others have lower design. Although some have head and body
design is extremely high. However, as a common point, most
characters are drawn to the long legs extremely. They have
also a feature that eye is drawn to the slightly bigger than the
actual person is large.

(Figure 1 The ratio of the face and eyes of Japanese popular comic
characters of the 1980s)

(Figure 2 Head and body and physique of Japanese popular comic
characters of the 1980s)

B. Case 2: Design structure of the comic characters of five
years
I will show below the design structure of the comic

characters in the recent five years from 2013.

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

270 Int'l Conf. Software Eng. Research and Practice | SERP'14 |

 Many comic characters have feature which they are 7.5 or
more heads tall. It is higher than the real people. In addition,
there is a tendency that the foot is long. In the 1980s, the eyes
were drawn extremely large, but recently, comic characters that
size of the eye is drawn close to the structure of real people
have appeared.

(Figure 3 Ratio of eye and face of Japanese popular comic
characters of the past five years)

(Figure 4 Head and body and physique of Japanese popular comic
characters of the past five years)

III. CASE 3: DESIGN STRUCTURES OF “MAJOKKO” SERIES

A. Features of character design of Majokko series
"Majokko(magical girl = mahō shōjo)" animation series is

Girl's animation series that produced in Japan in the 1960s and
follow to today. Even outside of Japan, they are viewed widely
and has produced a number of similar various works. The
magical girl (mahō shōjo) series reflects greatly girl’s fashion
in many cases. Characters of magical girl (mahō shōjo) series
are drawn in a lowered head and body than real people. They
are almost from 4.5 to 6.2 heads tall. Eye is extremely larger
than the characters of comics for boys. That is, the eye
occupies more than one-seventh of the face in many cases. In
addition, there are tendency that the width of the eye are
narrower than the characters of comics for boys, and the
position of the eye is placed lower.

B. Correlation of the epidemic in the real world and comic
characters design

By comparing magical girl (mahō shōjo) animation aired
and the female idol that was in vogue at that time, I found that
they are largely approximate. For example, in magical girl
(mahō shōjo) anime of the 1970s, many of the characters wear

mini skirt. Socially, in the 1970s, miniskirt was boom.
 Also, even if I look magic girl (magical girl = mahō shōjo)
anime in recent years, I found a common point that group. For
example, there are heroine of more than one person in
"Magical Girl Madoka ☆ Magika" was popular in the 2011
and Idol which was popular in those days was the group
named AKB48. I considered Majokko series is strongly
influenced by idle at the time.

(Figure 5 The ratio of the face and eye of “Majokko” series)

(Figure 6 Body and head and physique of Majokko series)

IV. AVATAR GENERATION SYSTEM BASED ON
CLASSIFICATION OF EPIDEMIC ANIMATION ACCORDING TO
GENERATION

A. Abstract of System
I will show below an abstract of the smart phone

application that I propose in this research.
By selecting a body part of a design symbolizing the comic and
anime which are popular in the age and generation stored in the
application, you combine and produce an avatar original.
Further, the tendency of the generation of the selection part of
the avatar generated avatar you have produced is determined "
whether the sense which generation " generally.
Choice is a 12 the following items.

①Shape of eye ②Size of eye ③Shape of eyebrows
④Shape of nose ⑤Shape of mouth
⑥Size of mouth ⑦Hairstyle
⑧Shape of face and outline ⑨Scale of head and body
⑩Clothes ⑪Shoes ⑫Other, accessories

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

Int'l Conf. Software Eng. Research and Practice | SERP'14 | 271

The determination result have six patterns, that is, 1960s ,
1970s , 1980s , 1990s , 2000s , and all age type from
generation trend of the selected part.

B. Development environment
Development environment is Xcode (Version 5.0.1) of

Mac OS (10.8.5). I used the Objective-C and developed as for
iOS application. It uses the iOS SDK 7.0 and runs on iOS7.0.
Because it is the application that diagnoses from the chosen
alternative and generates avatar, I created a program to reflect
on the next page the selected image, and point to be added to a
particular category by the selected image. At the end, it has
the sum of the points that have been added and calculates how
much each category accounts for the total, and display them.

C. Execution example of the application
I will show below an example of executing the application
proposed in this thesis.

(Figure 7 Step1 and Step2 screen)

1) Select the shape of the eye: First, you decide the shape

of the eye. Form of a specific to age has not been found at this
stage in the form of the eye itself, it is assumed that a point is
not added in any generation at the stage of the selected shape
of the eye. However, Application does the process of
reflecting the image of the eye chosen in the next screen.

2) Select the size of the eye: Then you decide the size of
the eye. Select what pieces of the size of the eye are equal to a
vertical length of the face at this stage. There are five choices,
which are 5 to 1, 6 to 1, 7 to 1, 8 to 1, 9 to 1. 8 to 1 is selected
in the following example so that 100 points are added to the
2000's. Process of switching an image of the eye in the
moment to adjust the size, and processing to the next screen
by pressing the ENTER button is done.

(Figure 8 Step3 and Step4 screen)

3) Selection of the shape of the eyebrow: Then you decide

eyebrows. Choice is five elongated eyebrow, thin and long
eyebrows, thin and short eyebrows, thick and thin eyebrows,
no eyebrows. Form of a specific to age has not been found at
this stage in the form of the eyebrows themselves, it is
assumed that a point is not added in any generation at the
stage of the selected eyebrows. Process of reflecting the image
of the eyebrows chosen in the next screen is done.

4) Selection of the shape of the nose: Then you decide the
nose. Choice is a four, which are point nose, vertical line nose,
horizontal line nose, key nose. Form of a specific to age has
not been found at this stage in the form of the nose itself, it is
assumed that a point is not added in any generation at the
stage of the selected shape of the nose. Application does the
process of reflecting the image of the nose chosen in the next
screen.

(Figure 9 Step5 and Step6 screen)

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

272 Int'l Conf. Software Eng. Research and Practice | SERP'14 |

5) Selection of the shape of the mouth: Then you decide
the shape of the mouth. Choice is a four reverse triangular,
linear, point type, the semi-circular. Form of a specific to age
has not been found at this stage in the form of the mouth itself,
it is assumed that a point is not added in any generation at the
stage of the selected shape of the mouth. Process of reflecting
the image of the mouth chosen in the next screen is done.

6) Selection of the size of the mouth: You decide the size
of the mouth. The choices are three stages, which are large,
medium and small. Size of a specific to age has not been
found at this stage in the size of the mouth itself, it is assumed
that a point is not added in any generation at the stage of the
selected size of the mouth. Application does the process of
switching an image of the mouth in the moment to adjust the
size, and processing to the next screen by pressing the ENTER
button.

(Figure 10 Step7 and Step8 screen)

7) Selection of hairstyle: Then you decide the hair. Based

on the survey results, choices were prepared parts of hairstyle
was popular in the 2000s-1960s. In the following example,
because a princess cut has been selected, 100 points are added
to the 1970s. Basically, 100 points are added to ages hairstyle
you chose is very popular, but the 10000 point is added to the
Edo era type if you select choice of jokes, a topknot. Also
process of reflecting the image of the mouth chosen in the
next screen is done.

8) Selection of head and body: You decide to head and
body. Choices and four stage, which are 5 heads tall, 6 heads
tall, 7 heads tall, 8 heads tall. In the following example,
because 7 heads tall has been selected, 25 points are added to
the 1990s and 25 points are added to the 1970s and 50 points
are added to the 2000s. Because it is the size adjustment, the
process of switching an image of the head and body in the
moment to adjust the size, and processing to the next screen
by pressing the ENTER button is done.

(Figure 11 Step9 and Step10 screen)

9) Selection of clothes: You decide the clothes. Providing

part of clothes that were popular to the 2000s from the 1960s,
100 points are added to the age clothes you chose was very
popular. Points are added to the 2000's in the following
example. Also process of reflecting the image of the mouth
chosen in the next screen is done.

10) Selection of shoes: You decide the shoes. Similar to
the stage you choose the clothes and hairstyle at step 7 and 9,
providing part of the shoes that was popular in the 2000s to
1960s, points are added to the age of the shoes you have
chosen is very popular choice. It is assumed that the 50 point
addition here. However, some are likely to be worn in all ages,
such as sneakers, it is assumed that 10 points is incremented
by each age if you select it. Also process of reflecting the
image of the mouth chosen in the next screen is done.
Platform boot is selected in the following example, points are
added to the 1970's.

(Figure 12 Step11 and Step12 screen)

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

Int'l Conf. Software Eng. Research and Practice | SERP'14 | 273

11) Selection of accessories: You choose the other
accessories, which are Hat, glasses, and earrings. Similar to
step 7, 9 and 10, points are added to the ages accessories you
chose was very popular. 30 points are added here. And process
of reflecting the image of the mouth chosen in the next screen
is done.

12) Generation of avatar and generation decision: You
press the diagnostic button, total the points that have been
added by the option you selected in each step, and calculate
what percentage of the total each category to the 2000s from
the 1960s occupy, and display them. Then, it is determined to
be the age of aesthetics of your age accounted for 60% or
more. It determined that half of two age when two age
accounted by 50%.It determined that all age types, when each
age was less than 30%.

V. CHALLENGES FOR THE FUTURE
In this research, I have developed a generational avatar

generation application based on the character design of comics
and animations that were popular in Japan to the 2000s from
the 1960s.

Although Comics and anime in Japan are prevalent
worldwide and accepted, in principle, as a general rule, the
subject of this application is limited to Japanese. In the future, I
want to aim for applications targeted as well as comics and
animation outside of Japan.

REFERENCES

[1] Private comic history	 http://p.booklog.jp/book/26062
[2] The golden ratio of beauty face 	 http://www.dental-

bigan.com/golden.html.
[3] Comics whole volume dot-com annual ranking	

http://www.mangazenkan.com/.
[4] By age comic rankings 	

http://www.discas.net/netdvd/stJComicNendai.do
[5] Magical girl anime that we longed to their costume ranking	

http://ranking.goo.ne.jp/ranking/026/5N7DmzTP3aUj/
[6] Idols of glory to look back at the debut year

http://www.otokichi.com/main/newotokichi/idoldebutehistoryjp.htm.
[7] Girl comic portal site of adult	 http://www.girls-comics.com/
[8] Age epidemic	 http://nendai-ryuukou.com/

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

274 Int'l Conf. Software Eng. Research and Practice | SERP'14 |

Synchronous Gestures for Co-located Collaboration on Multiple
Mobile Devices

Yuguang Zeng1, Jingyuan Zhang1
1Department of Computer Science, The University of Alabama, Tuscaloosa, AL 35487 USA

Abstract— Synchronous gestures have an intention to solve
the sharing problems between mobile devices. It is always
tedious for users to share their files with nearby users with-
out wireless access points. We propose synchronous gestures
to provide an interaction interface to connect users’ mobile
devices . Those gestures include Pinch, which can be used
to connect devices and share files between two devices, and
DragAndPress, which enables one-to-many communication.
We identify the general requirements of those gestures and
implement a prototype system allowing users to share digital
objects. Our approach is secure, has no bezel issues, and
require no centralized servers or additional equipments.

Keywords: mobile devices; synchronous gestures; spontaneous
device sharing; co-located collaboration

1. Introduction
Mobile devices have been becoming ubiquitous and it is

not uncommon for people to gather together to exchange
documents or photos through their mobile devices. Currently,
even for nearby devices, users have to make efforts to share
by email attachments, on-line storage services and other Web
applications. With wireless technology, direct connection
between surrounding devices is possible and more effective.
Users still need to configure their devices to make them
connected with each other. How to make mobile devices with
limited I/O capabilities to achieve that in an efficient way?
This is the spontaneous device sharing problems, defined
as how purposeful connections can establish dynamically
between two or more devices without knowing each other’s
network address in advance. This is not only research issues
for interaction design and system implementation, but an
emerging problem desiring practical solution for daily life.

A new interaction technique known as synchronous ges-
tures are proposed by researches to address spontaneous
device sharing problem. With the technique, users make
gestures to connect devices rather enter network address.
Currently, proposed gestures include shaking two closed
devices [1], bumping a pair of devices together [2], pressing
a button on each device at the same time [3], and stitching a
pen across surfaces of multiple devices [4]. The synchronous
gestures are still under investigation.

We propose two synchronous gestures to let users com-
municate in a group with ease. Pinch gestures establish ad
hoc connections between two nearby devices. When there

is an item under the Pinch strokes, the item is shared on
the other device involving the pinch gesture. DragAndPress
enables a file to be shared among multiple devices. When
one user drags a file out of screen side and other can press
on their own screens if they want to receive the file. We
build a prototype to show proof of concept and demonstrate
the usability of our gestures.

2. Related Work
Previous researches have proposed systems for collaborat-

ing with mobile devices. However, some work requires spe-
cial hardwares such as radio-frequency identification(RFID)
tags [5], cameras [6], or sensors [7]. Some systems involve
using nearby devices, and need manual configuration, in-
cluding network configuration [8] and display configuration
[9].

Synchronous gestures describe patterns of distributed user
activities. Those activities have to happen at the same
time or in a short consecutive time. There are literatures
describing research on synchronous gestures. "Smart-Its
Friends" [1] need users to hold together and shake a pair of
accelerometer-augmented handled devices to connect them.
The technique enables devices to receive movement data
from other device and compared received data to its recent
own movement data. If a similar pattern is recognized,
a connection will be established between them. SyncTap
[3]chooses synchronous buttons on devices at first. Two
devices are connected when a user presses synchronous
buttons down at the same time. The user needs to repeat
synchronous operations if there is a collisions of overlapping
actions at the same time. Bumping devices together can be
used to create a shared display that spans two or more
devices [2]. Signal patterns of accelerometers from two
devices are compared to determine whether the bumping is
intentional. Stitching [4] asks users to draw a continuous
line across the screens of different devices. By analyzing the
path between two devices, the system determines whether
the path is a stitch. A server is needed to recognize stitch
gestures and then informs devices network address if the
server found a match. In addition, devices need to know the
particular network address of the server.

There are some existing wireless standards related to the
spontaneous device sharing problem. Bluetooth standardized
as IEEE 802.15.1 [10] supports device discovery within ra-
dio range, but explicitly requires users to press button to add

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

Int'l Conf. Software Eng. Research and Practice | SERP'14 | 275

nearby Bluetooth devices. Infrared Data Association(IrDA)
[11] is used to transfer data between two devices and requires
devices keep still during transmission. Wi-Fi Direct [12]
enables devices to connect each other without an access
point and to transfer data at a typical Wi-Fi speed as high
as 250Mbps [13], which makes it possible for users to share
large data such as videos, photos and documents.

3. Procedure for Pinch
The Fig. 1 shows the procedure of using pinch gesture to

connect two devices. When two devices are laid together,
pinch gesture can be performed on them. Each device
captures the performed gesture and sends the gesture to
nearby devices. After sending their own gestures, devices
are waiting to receive gestures sent by nearby devices. On
getting gestures from other devices, the gesture recognition
algorithm described below is used to determine whether
received gestures and its own gesture form a pinch gesture.
If they do, a connection will be established between those
devices.

Start

Put devices
together

Sending
gestures

and waiting
to receive
gestures

Recognizing
gestures

Pinch
gesture?

With
parameter?

Establish
connection

Sharing
photo,

document...

End

Yes No

YesNo

Fig. 1: Procedure for Pinch

4. The requirement of Pinch
Pinch is an explicit user command that enable multiple

devices to be connected. Pinch is expected to provide a flexi-
ble and potentially extensible facility to support a number of
different ways of combining devices, rather than supporting

only a single operation or a very limited set of options as in
previous systems like [1], [14] . Considering the expectation,
Pinch address those design problem:

• Connection: How do devices connect to each other?
A pinch gesture is performed on those devices which
are to establish connection, and the system gives users
visual feedback indicated a connection is established.

• Coexistence: How the system distinguish gesture for
connection from gestures? A connection window shows
up to perform Pinch gesture and disappears when a
connection is established. Users invoke that window to
appear if they need to connect other devices.

• Proxemics: How is physical space shared between
users? It is a requirement of interaction techniques
for impromptu association between devices to main-
tain social distance while users work closely. Pinch
only requires users put their devices together to make
connection. After establishing connection, devices can
be moved to any place during users’ collaboration
activities.

5. The Mechanics of Pinch
With those design questions above, Pinch is developed as a

new synchronous gestures. We now discuss general concept
of Pinch on those design questions.

5.1 Establishment of a Connection
Before getting connected to other devices, devices needs

to discover nearby devices, using services provided by
underlying networks. We employ discovery mechanism from
Wi-Fi Direct in the paper.

To establish a connection, users put their devices together
and perform pinch gestures on those devices. The established
connection is bidirectional [1], [3]. We focus on interaction
techniques to form a purposeful connection between devices.

In our prototype system, each device automatically finds
its nearby devices and sends them its gesture strokes. Com-
paring gesture strokes and time between its own and other
devices, devices add as neighbors those having a match.
Users do not need to enter any network address during the
procedure.

5.2 Recognition of Pinch Gestures
Devices can recognize Pinch gesture by looking at the

gesture strokes from nearby devices. Timeframe is defined
as the time interval during which fingers start pressing on
the screen, and end up leaving the screen as in Fig. 2.
The participating device expects gesture strokes from other
devices during timeframe.

The specific criteria are summarized in spatial and tem-
poral aspects:

• Those gesture strokes must end near the adjacent screen
edges and last longer than a timeout(150 milliseconds).

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

276 Int'l Conf. Software Eng. Research and Practice | SERP'14 |

Fig. 2: Conceptual diagram of recognizing pinch gesture

• The direction of those two strokes are opposite.
• The slopes of those strokes are similar(must match

within ±5◦).
• Timeframes of gesture strokes are concurrent. After

sending out their gesture strokes, devices must receive
the gesture strokes from other devices within network
delay(20 milliseconds).

These criteria are suffice to recognize distributed pinch
gestures done in purpose. False positive was not a problem
because incidental finger motions from other devices rarely
satisfy these criteria.

5.3 Coexistence of Traditional Interactions
Pinch aims to establish connection between devices. How-

ever, all the gestures near the edge make the system assume
the users need to connect another device. We divide gestures
into two categories. One is for connection and usually
happens near the screen edge. No parameters is required
for those gestures. The other is for operations for files and
requires parameters to continue. The prototype system below
will give better design for distinguish those activities.

5.4 Pinch with Parameters
When an item is under a pinch gesture, the action of

pinch gesture is re-defined as sharing the item to other
device involving the gesture. That provides a one-to-one
communication for users and that is useful in a group
communication.

5.5 Sharing Physical Space
Users need flexible ways to share physical space in col-

laboration with others according to social conventions, task
type, and individual preferences. Pinch gesture is designed

for two kinds of distance: intimate and personal. Pinch
gestures require devices put together for connection, which
only happens in friends, colleagues working together. After
connection, users can choose any space orientation that they
feel like and protect their privacy information, and continue
the communication or collaboration.

6. DragAndPress
DragAndPress is to provide one-to-many communication.

The requirement of DragAndPress is to notify other group
member when a user want to share a file to other. That
notification can be in either oral or message. When a file
is dragged out of the screen on the user, only those device
pressed by users can receive the files.

7. Implementation
7.1 Developement Environment

We choose Android platform and Android devices, Google
Nexus 7 from Google. Android 4.0(API level 14) or later
devices support Wi-Fi peer-to-peer(P2P) . Android Wi-
Fi P2P complies with the Wi-Fi Alliance’s Wi-Fi Di-
rect™certification program. Those Android APIs enables de-
velopers to write applications that allows devices to discover
and connect to other devices supporting Wi-Fi P2P, and then
to communicate over a speedy connection.

7.2 Implementation Issues
7.2.1 One-to-one communication

Although Android Wi-Fi P2P framework provides APIs to
discover and communicate with other devices, there is the
following limitation on the framework. The communication
mode is many-to-one when a group is formed. A device

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

Int'l Conf. Software Eng. Research and Practice | SERP'14 | 277

creating the group acts as a group owner. Group members
can only communicate with the group owner, and cannot
communicate with other group members. Based on the
Android Wi-Fi P2P, we implement a message exchange
protocol , which enables devices to communicate with others
directly. The following is the procedure:

(i) Acting as group owner, a device create a group, and
invite other devices to join the group.

(ii) After nearby devices join the group, they will send
their own IP address as message content to the group
owner.

(iii) The group owner collects the incoming message and
store them as a peer list. The list is wrapped in a
message package and is sent to every device on the
list.

7.2.2 Join pinch group
Our pinch gesture perform on two devices. However, it is

not convenient and efficient to get every device connected(n!,
if n is the number of device) . How spread quickly the
transitivity character of pinch gestures? We employ the
following method. When a pinch gesture is recognized, those
devices add each other in their pinched list and send the list
to group members. The friend of my friend is my friend.
That greatly improves the efficiency(n, if n is the number
of devices).

7.2.3 Gesture recognition
Recognition algorithm of gesture is based on the char-

acters of the pinch gestures in Fig. 2. The algorithm is
described as the following:

7.3 Application
We implement a prototype system, PinchToShare, to test

the usability of our synchronous gestures. The application
enables users to share their files between themselves. Just
a pinch gesture is performed on their devices and there is
no any extra network configure. Users start PinchToShare
as Figure 3a, and wait for a moment for discovering nearby
devices. When the green board appears as Fig. 3b, users
can use Pinch to connect their devices. If the gestures
is recognized as pinch, the application border will turn
magenta. After that, users can share their files by using
DragAndPress. In Fig. 4a, user1 shares the image on left
top to user2 by sharing gesture. The receiving file show
in a different color on user2’s device as Fig. 4b. With our
gestures, users can easily get their devices connected and
share files to each other.

8. Discussion
8.1 Security and Privacy

Security was considered when mobile devices were used
in collaboration. In order to connect nearby devices, pinch

Algorithm 1 Algorithm for gesture recognition

Input: Two gesture strokes, g1, g2; Two timestamps, t1, t2;
Output: Decide whether two gesture strokes form a pinch

gesture, isP inch;
1: // Compare difference of two timestamps |t1− t2| with

time stamp difference threshold Tthreshold;
2: if |t1− t2| > Tthreshold then
3: isP inch = false;
4: return isP inch
5: end if
6:
7: Extracting the set of sampling point arrays sg1 and sg2

from g1 and g2, respectively;
8: Calculate the cosine similarity, similarity, of sg1, sg2;
9: if similarity > Simthreshold then //Simthreshold =

0.8, by default
10: isP inch = false
11: return isP inch
12: end if
13:
14: Compare the direction of g1 and g2 on x and y axis;
15: if they are the same direction on x and y axis then
16: isP inch = false
17: return isP inch
18: end if
19:
20: return true

gestures have their own security measures. Devices are put
together only under the permission from users. With permis-
sions, one user can touch other’s devices. The physical nature
of pinch gestures indicate the inherent social protocols,
which invokes verbal communication on the beginning of
collaboration.

8.2 Cooperative Pinch
While pinch gesture is performed by a single user, we

discover pinch gesture can be performed in a cooperative
way: users start draw strokes on their screens at the same
time. The strokes need to meet the characters of pinch
gestures. With cooperative pinch, we can develop a natural
metaphor to support one-to-many connections. With such
connection, a user sends digital objects such as documents
to a group of users.

9. Conclusion and Future Works
Synchronous gestures are proposed to improve the collab-

oration in a dynamic peer-to-peer setting. Pinch provides a
convenient interaction technique for users to bind mobile
devices in ad hoc. DragAndPress provides one-to-many
communication. To demonstrate concepts of our gestures,
a prototype system is implemented. We also note the future
exploration based on our gestures. We recognize the pinch

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

278 Int'l Conf. Software Eng. Research and Practice | SERP'14 |

(a) Initial Main Window (b) After finishing discovering nearby devices

Fig. 3: Initial Window

(a) User 1’s device (b) User 2’s device

Fig. 4: Sharing file

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

Int'l Conf. Software Eng. Research and Practice | SERP'14 | 279

gesture by the behavior character, which was inaccurate
on some time. Learning algorithm will be investigated to
discover user patterns when performing pinch gestures.
Exploring learning users’ patterns improve not only accuracy
of gesture reorganization, but the security for connection.
We hope more novel interaction techniques emerge to foster
communication and collaboration and greatly improve user
experience of multiple mobile devices.

References
[1] L. E. Holmquist, F. Mattern, B. Schiele, P. Alahuhta, M. Beigl, and

H.-W. Gellersen, “Smart-its friends: A technique for users to easily
establish connections between smart artefacts,” in Proceedings of the
3rd international conference on Ubiquitous Computing, ser. UbiComp
’01. London, UK, UK: Springer-Verlag, 2001, pp. 116–122. [Online].
Available: http://dl.acm.org/citation.cfm?id=647987.741340

[2] K. Hinckley, “Synchronous gestures for multiple persons and
computers,” in Proceedings of the 16th annual ACM symposium
on User interface software and technology, ser. UIST ’03. New
York, NY, USA: ACM, 2003, pp. 149–158. [Online]. Available:
http://doi.acm.org/10.1145/964696.964713

[3] J. Rekimoto, Y. Ayatsuka, and M. Kohno, “Synctap: An interaction
technique for mobile networking,” in Human-Computer Interaction
with Mobile Devices and Services, 5th International Symposium,
Mobile HCI 2003, Udine, Italy, September 8-11, 2003, Proceedings,
ser. Lecture Notes in Computer Science, L. Chittaro, Ed., vol. 2795.
Springer, 2003, pp. 104–115.

[4] K. Hinckley, G. Ramos, F. Guimbretiere, P. Baudisch, and M. Smith,
“Stitching: pen gestures that span multiple displays,” in Proceedings
of the working conference on Advanced visual interfaces, ser. AVI
’04. New York, NY, USA: ACM, 2004, pp. 23–31. [Online].
Available: http://doi.acm.org/10.1145/989863.989866

[5] C. Swindells, K. M. Inkpen, J. C. Dill, and M. Tory, “That one there!
pointing to establish device identity,” in Proceedings of the 15th
Annual ACM Symposium on User Interface Software and Technology,
ser. UIST ’02. New York, NY, USA: ACM, 2002, pp. 151–160.
[Online]. Available: http://doi.acm.org/10.1145/571985.572007

[6] S. Ransiri and S. Nanayakkara, “Smartfinger: An augmented finger
as a seamless ’channel’ between digital and physical objects,” in
Proceedings of the 4th Augmented Human International Conference,
ser. AH ’13. New York, NY, USA: ACM, 2013, pp. 5–8. [Online].
Available: http://doi.acm.org/10.1145/2459236.2459238

[7] D.-Y. Huang, C.-P. Lin, Y.-P. Hung, T.-W. Chang, N.-H. Yu, M.-L.
Tsai, and M. Y. Chen, “Magmobile: Enhancing social interactions with
rapid view-stitching games of mobile devices,” in Proceedings of the
11th International Conference on Mobile and Ubiquitous Multimedia,
ser. MUM ’12. New York, NY, USA: ACM, 2012, pp. 61:1–61:4.
[Online]. Available: http://doi.acm.org/10.1145/2406367.2406440

[8] B. A. Myers, “Using handhelds and pcs together,” Commun.
ACM, vol. 44, no. 11, pp. 34–41, Nov. 2001. [Online]. Available:
http://doi.acm.org/10.1145/384150.384159

[9] B. Johanson, G. Hutchins, T. Winograd, and M. Stone, “Pointright:
Experience with flexible input redirection in interactive workspaces,”
in Proceedings of the 15th Annual ACM Symposium on
User Interface Software and Technology, ser. UIST ’02. New
York, NY, USA: ACM, 2002, pp. 227–234. [Online]. Available:
http://doi.acm.org/10.1145/571985.572019

[10] “Bluetooth.” [Online]. Available: www.bluetooth.org
[11] “Irda.” [Online]. Available: www.irda.org
[12] “Wi-fi alliance.” [Online]. Available: http://www.wi-fi.org
[13] “How fast is wi-fi direct?” [Online]. Available: http://www.wi-

fi.org/knowledge-center/faq/how-fast-wi-fi-direct
[14] J. Rekimoto, “Pick-and-drop: a direct manipulation technique for

multiple computer environments,” in Proceedings of the 10th annual
ACM symposium on User interface software and technology, ser.
UIST ’97. New York, NY, USA: ACM, 1997, pp. 31–39. [Online].
Available: http://doi.acm.org/10.1145/263407.263505

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

280 Int'l Conf. Software Eng. Research and Practice | SERP'14 |

Using Formal Concept Analysis to study social coding in GitHub

Otmar M. Pereira Junior1, Luis E. Zárate1, Humberto T. Marques-Neto1, and Mark A. J. Song1
1Department of Computer Science, Pontifical Catholic University of Minas Gerais

Belo Horizonte, Minas Gerais Brazil

Abstract— Currently, the world watches the expansion of
the social networks phenomenon in the form of several dif-
ferent networks: Facebook, Twitter, Instagram, GitHub and
many others. Such sites join together a user base that can
reach millions of people connected from places everywhere
in the planet. These impressive marks motivate questions
about the characteristics of the members of these networks,
due to opportunities present in them that can generate
economical gains, augment the influence and popularity of
an organization or product.

This paper shows some of the main attributes of the
contributors of the 20 most popular projects in GitHub
using Formal Concept Analysis to uncover the most relevant
characteristics. Despite the global success of the projects,
we see geographical clusters of developers behind the most
popular projects, what can serve as motivation to engage
developers of other regions and increase the cultural variety
in popular open source projects.

Keywords: Social Coding, Formal Concept Analysis

1. Introduction
The recent expansion of the social networks reached

several different domains, ranging from music preferences
to professional networking. Among these platforms, one can
find social networks devoted to the development of open-
source software. One of the first instances of this kind of
social network is SourceForge, still very popular.

More recently, in 2008, GitHub was founded bringing sev-
eral social features, what made it experiment a great success
since then and take the leadership of its category after only
three years of existence, having even more affiliated users
than the popular SourceForge [1].

Such growth made Github object of several works in the
community, as observed in [16], [17], that describes the
behavior of GitHub members on the Internet. On the other
hand, the authors of this paper could not find any work that
tries to explain the causes of the formation of the developer
networks of the main projects in GitHub in the same sense of
the papers of Yu [18], Singh [12] and Gao [19], that describe
the communities formed in SourceForge.

Previous works, like [21], show that some companies are
already paying attention to platforms like GitHub to more
accurately evaluate technical skills and accomplishments of
IT professionals. Nonetheless, GitHub does not provide tools
to reduce the efforts of Human Resources professionals

willing to understand the typical profile of developers that
have skills similar to the ones of a popular project of a given
technology. We believe that GitHub data can be valuable
indicator of developers possessing certain skills and proven
experience.

This paper aims to study the developer networks around
the most popular software repositories in GitHub by apply-
ing Formal Concept Analysis (FCA) to discover the most
relevant common attributes of the developers contributing to
GitHub’s most successful open source projects using public
information of the developers available via GitHub API.

2. Social Coding
The evolution of information and communications tech-

nology in the second half of twentieth century, specially
in the last 15 years, made the contemporary society highly
connected through complex networks, much like in the form
described in [15]. As part of this process of increasing
interconnection between people all around the world, so-
cial networks linking individuals with common interests of
several different kinds arose: Facebook reuniting friends,
professional networking in LinkedIn, photos and video shar-
ing in YouTube and Instagram and open source software
development in SourceForge, GitHub, Google Code and
many others.

Among the categories of social networks, the category
that brings together software developers is very popular and
has SourceForge as one of its main examples since 1999.
Still in the current days, SourceForge has over three million
registered members. Many popular open source software are
hosted in SourceForge, that continues to be a friendlier place
to end users than GitHub. While we see many applications
redirecting users to download installation binaries in Source-
Forge, we cannot observe a similar pattern in GitHub, that
seems to be more targeted to developers. This may be one
of the reasons that GitHub does not provide via its API
a downloads counter of the project binaries and even the
Downloads API has been deprecated.

Other social networks, such as Facebook, MySpace and
Orkut have popularized Web 2.0 by giving a special em-
phasis on social aspects of the applications used by people
on the Internet. In addition to the characteristics found in
SourceForge, GitHub put in the spotlight social features
of its developers’ networks such as user feeds, following
users and projects, collaboration to project’s wiki pages and
visualization of graphs showing the connections of members.

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

Int'l Conf. Software Eng. Research and Practice | SERP'14 | 281

Another facet of collaborative development that has been
promoted by GitHub is the use of distributed version control
systems instead of centralized ones, like Subversion and
CVS. Developed by the famous and acclaimed Linus Tor-
valds to help in the development of Linux kernel, Git was
one of the first distributed version control systems, where
different versions of the source code are not in a single
server. Each development machine contains all the previous
versions of the software, instead of only the workspace
version, as is the case when working with centralized ver-
sion control systems. This paradigm reduces significantly
common issues in concurrent software development, like
resolving conflicts when merging files before a release.
GitHub promotes Git as its main version control system
and some of its features to promote social interactions,
like forking repositories and sending pull requests to other
developers.

This paper studies a network formed by developers that
have been tagged as contributor to at least one of the
20 projects in GitHub that had received most stars as of
September 2013 in GitHub. We aim to unveil the main
characteristics shared between the people that work on open
source software projects by using Formal Concept Analyis
(FCA) to discover association rules and implication rules
between the attributes exposed by the GitHub API [7], that
exposes some geographical and personal data about each
developer.

2.1 Selected Dataset
In the quest for understanding the popularity of projects

in GitHub, we concentrated our efforts on the data of the 20
projects that had been starred the most by GitHub members
as of September 2013. The selection of the projects was
based upon data available in GitHub Archive [3] and can be
seen in Table 1.

The criteria of received stars has been chosen due to the
belief in it as an indicator of the project popularity and
interest upon the project. According to GitHub API doc-
umentation [8], stars are used to bookmark a repository and
show an approximate level of interest, what makes it a good
indication of project popularity. It is similar to the metric
employed by [12] to measure the commercial success of
an open-source project in SourceForge platform. Moreover,
the authors consider this metric the most appropriate among
the ones available in GitHub API to evaluate the success of
project.

The gathering of the top projects’ ranking was conducted
using the tool Google Big Query [2], that imposes some
restrictions on the volume of data processed by the submitted
queries. Such restriction directed our efforts on the analysis
of the 20 most popular projects. Because of that, in this work
its expected to observe trends applicable only to the most
prominent projects, and attributes that set these projects apart
of the less popular ones should be object of other papers

Project name Stars received
bootstrap 60525
jquery 25750
node 25541
html-boilerplate 22924
rails 19987
d3 19685
Font-Awesome 18594
impress.js 18256
angular.js 16310
backbone 16142
chosen 13927
jQuery-File-Upload 13777
three.js 13249
jekyll 12906
brackets 12900
gitignore 12467
gitlabhq 11027
meteor 10263
textmate 9221
select 8750

Table 1: List of the projects and stars given by GigHub users
as of September 2013.

devoted to analysis of much large scale, including hundreds
or thousands of projects. In spite of the limited number of
projects analyzed, Table 1 shows some indications of the
rich gets richer effect described by [15]: very few projects
concentrate most of the characteristics and in general, these
very few instances are the ones that continue to grow. We see
that in a universe of millions of repositories, the bootstrap
repository has almost ten times more stars received than the
20th repository of the ranking.

2.2 Network construction
After selecting the projects to analyze data from, further

data was retrieved to build contributors’ network of the
projects. The co-participation of two developers in a project
serves as link to this network that was built as an undirected
graph. The information about the contribution to a project
is available via GitHub API [7] and in order to consolidate
the data, an Extract-Transform-and-Load process has been
implemented in the tool Pentaho [9]. The list of user
attributes retrieved from GitHub API is shown in the section
3.1 and the data gathering process is depicted in Figure 1.

After having the 20 project’s contributors data collected,
another Pentaho transformation has been implemented to
resolve geographic information - continent and country - for
each developer using the Microsoft Bing Maps API [10].
Since the location information for each developer is filled in
GitHub in natural language form in many different ways -
some inform just their country or province while many others
give only their city name - a more powerful geographical
resolution API was put in place to improve the information
about the location of each member of the network.

Finally, after collecting all the attributes about each de-
veloper, a Java program has been implemented to generate a

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

282 Int'l Conf. Software Eng. Research and Practice | SERP'14 |

Fig. 1: Pentaho transformation implemented to retrieve developer data in GitHub.

file in the format of the PAJEK software. This format is very
popular and can be imported by a great number of network
analysis tools.

In the the network constructed after applying all these
steps, one can observer the small-world phenomenon, origi-
nally studied by Stanely Milgram [11]: the graph diameter is
only 5, what means that every developer of the 5,385 contrib-
utors in this network knows each other through partaking in
the same project with at most four other developers. One of
the factors that contribute to the low diameter of this graph is
certainly the significant number of partaking between pairs
of developers: 3,857,471 were found, making this network
a fairly dense one.

3. Formal Concept Analysis
Formal Concept Analysis (FCA) is a recent knowledge

area that has been in expansion since the 1980s and in-
teresting results have been obtained by its application to
hierarchize and discover concepts that were not immediately
evident in the original form of the given problem.

The studies in this area involve the definition of a for-
mal context, relating the elements being analyzed and the
attributes of these objects.

A formal context is represented by a triple (G,M,I), where
G is the set of the objects, M is the set of attributes
corresponding to some of the elements’ properties under
analysis and I ⊆ G x M is an incidence relation that indicates
which objects contain which attributes. In some cases, the
attributes have a single valued domain, where the attribute is
whether true or false. It is also possible to model attributes
corresponding to domains of higher cardinality, like colors
or size - small, medium, large. In this work, for the sake of
simplicity, we model a formal context where all the attributes
are of the former kind.

A concept of a formal context is a pair (A,B), where A,
where A ⊆ G, is defined as the extent of the concept and
consists of all the objects pertaining to the concept. The set
B, where B ⊆ M, is the intent of the concept is formed by

all the common attributes shared between the objects of the
extent set.

The construction of a formal context as defined before
enables one to build a conceptual lattice that acts as a
hierarchy of concepts and enables the discovery of new
concepts - unexpected combinations of objects and attributes
- and the relations between the objects and attributes.

Some algorithms can be applied to find interesting patterns
of attributes that appear together in association rules and
implication sets that are not trivial neither redundant. In
general, algorithms studied by FCA academics and available
in some tools are used to mine logical dependencies between
the attributes and groups of instances that given a subset of
attributes are frequently found together.

We recommend readers interested in more details about
Formal Concept Analysis to refer to [4] for a thorough
explanation of the mathematical foundations around the
Formal Concept Analysis.

3.1 Formal Context definition
In this work, the set of objects G has been defined as the

set of developers who contributed to the 20 selected projects.
These developers have several properties describing them in
their profile and 36 of them were used to construct the set
of binary attributes, M, which elements are shown in the
following list with a description of each one of the selected
properties:

1) Indicator of whether or not the registered user account
is personal. When an account is not registered as a
personal one, it means that it has been registered in
the name of an organization.

2) Flag that indicates if the user administrates a project
in GitHub.

3) Profile information indicating member availability for
hiring.

4) The contributor has more than 50 public repositories
in GitHub.

5) The user has already shared more than 50 gists - code
snippets used in discussion with other members of

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

Int'l Conf. Software Eng. Research and Practice | SERP'14 | 283

Fig. 2: Part of the formal context imported into Conexp.
Project contributors are represented by their logins in each
row and columns indicate the presence of a given property
of that developer.

GitHub.
6) The biographical information on the user profile is

very long. As inspection of some profiles having this
characteristic showed that the biographical informa-
tion, when very long, is used by developers to publish
their curriculum vitae.

7) The member follows more than 1,000 other GitHub
users.

8) The developer has more than 1,000 followers.
9) The user account was created more than three years

ago.
10) Member location is in North America.
11) Person location is South America.
12) Developer is based in Europe.
13) User’s location is Africa.
14) Asia is the informed location by the user.
15) The developer has informed his or her location as

somewhere in Oceania.
16) The last 20 attributes indicate the participation in

project i, where i indicates the participation of the
member in the project indexed by i in the list of
projects sorted alphabetically.
For example: a developer who contributed to the
first project in the list, angular.js, will have the
Participated1 attribute set to true, while someone who
has not contributed to the last project in the list,
textmate.js, will present the attribute Participated20
indicating false for such participation.

In order to represent and analyze the formal context, an
specific tool designed to build concept lattices from formal
contexts and calculate implication sets, association rules and
new concepts. Conexp [5] software was the tool elected to
help on the analysis of the formal context.

All the attributes mentioned above were retrieved from
the network built previously and imported into Conexp [5].
Figure 2 shows part of the formal context defined in this sec-
tion. The rows correspond to the login of GitHub members
and the columns are marked with an X when an attribute of
the list 3.1 is true and is left blank otherwise. More details
about this tool can be found in its documentation page [6].

4. Results
The analysis of the formal context was conducted using

Conexp software. In this section, the most relevant rules will
be discussed. Conexp computed a total of 1,822 concepts,
758 implication sets and 872 association rules involving
different combinations of the attributes found on the input
data. The most prominent combinations are discussed next.

Implication sets contain logical implications involving the
attributes of the given formal context. Although it is possible
to analyze all the combinations of the finite set of attributes
and objects of the formal context, clearly, many of them
would be trivial or redundant. It is thus necessary to restrict
the set of implications that should be analyzed. Conexp
was used to compute the minimal set of rules and the
most relevant characteristics of these implications - frequent
attributes - are discussed below.

• The implication User account is personal → user
account created more than three years ago is true for
5,365 of 5,385 developers. This means that in general,
companies and other institutions do not contribute to the
popular open source projects in GitHub. Furthermore,
the developer is an old member of GitHub. Popular
projects in GitHub seem to be an space where new-
comers may not be welcome: in the vast majority of
the cases analyzed, the attribute that indicates the user
as having an user account registered more than three
years ago prevailed.

• Results regarding user’s geographical information: 421
rules involve North American members; 342 developers
based in Europe; 204 have developers with undeter-
mined location; 187 relate South American developers;
133 rules involve Asian members of GitHub, 115 from
the Oceanic continent and African developers are part
of just 34 implication rules. Despite the fact of being
a platform spread across the world, there is a great
deal of concentration of users in North America and
Europe. Surprisingly, in the Asian continent we find
less contributors than in South America, a continent
having approximately 10 times less inhabitants.

• The implication available for hiring → User account
is personal AND user account created more than three
years ago that is true for 1,277 members indicate that
long time contributors are also paying attention to new
professional opportunities in GitHub.

5. Conclusions
In this paper we have seen that the Formal Concept

Analysis can be a valuable tool to analyze very large
scale social networks, like GitHub, which user base reaches
marks around millions of users and projects. The theoretical
and practical framework in Formal Concept Analysis field
enables the application of techniques to study social net-
work characteristics. This was the case with GitHub, where

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

284 Int'l Conf. Software Eng. Research and Practice | SERP'14 |

relevant knowledge related to the geographical location and
affiliation time to the network was gathered by analyzing the
output of the FCA algorithms.

It was possible to realize that despite the possibility
of connecting people around the world, some clusters are
geared towards the most developed locations, namely North
America and Europe, contrasting with a very low number of
users in the African continent. This brings the question for
future works that investigate the causes of such clustering:
do they appear due to social-economic factors or is the
social network built around people from the same region?
The prevalence of longtime user accounts in GitHub as
contributors of the most popular projects is also a factor to
be taken into account, given the possible importance users
seem to give to the past contributions of the developers to
the community.

Besides all these questions around attributes of the mem-
bers, there is a difficulty that is present when trying to
analyze social networks: the manipulation of an ultra-large
volume of data that create several technical challenges
to manipulate the information and execute algorithms to
analyze input data.

Due to the huge amount of information, there is no tool
capable of accessing very recent GitHub data, and this is
aggravated by the addition of a higher volume of information
in GitHub than the amount of data that can be collected
by a single machine during the same period of time -
GitHubArchive reports peaks of 50,000 events per hour in
GitHub, while the GitHub API imposes a restriction of 5,000
requests per hour for authenticated users that are querying
its database. Initiatives like an open platform available to
the mining of ultra-large scale software repositories, like
[14] are very valuable to future investigations around the
characteristics of software development social networks.

Acknowledgements
The authors acknowledge the financial support received

from the Foundation for Research Support of Minas Gerais
State, FAPEMIG, through Project CEX PPM 107/12, and
the National Council for Scientific and Technological De-
velopment, CNPq, Brazil.

References
[1] K. Finley (2011). "Github has surpassed sourceforge and google

code in popularity" [Online]. Available: https://www. readwriteweb.
com/hack/2011/06/github-has-passed-sourceforge.php

[2] K. Sato, "An Inside Look at Google BigQuery, White paper." Google
Inc, 2012.

[3] I. Grigorik (2013). "Github archive" [Online]. Available:
http://www.githubarchive.org/.

[4] B. Ganter, R. Wille, and C. Franzke, Formal concept analysis: mathe-
matical foundations. Springer-Verlag New York, Inc., 1997.

[5] S. Yevtushenko (2005). “Conexp software,” [Online]. Available:
http://conexp.sourceforge.net/.

[6] Conexp (2006), “Conexp documentation page” [Online]. Available:
http://conexp.sourceforge.net/users /documentation/.

[7] GitHub (2013). “Github API v3,” November 2013 [Online].Available:
http://developer.github.com/v3/.

[8] GitHub (2013). “Starring | github api,” [Online]. Available:
https://developer.github.com/v3/ activity/starring/.

[9] Pentaho Corporation (2014). “Pentaho data integration,” [Online].
Available: http://www.pentaho.org.

[10] Microsoft Corporation (2014), “Bing maps api,” [Online]. Available:
http://www.microsoft.com/maps/.

[11] S. Milgram, “The small world problem,” Psychology today, vol. 2,
no. 1, pp. 60–67, 1967.

[12] P. V. Singh, “The small-world effect: The influence of macro-level
properties of developer collaboration networks on open-source project
success,” ACM Transactions on Software Engineering and Methodology
(TOSEM), vol. 20, no. 2, p. 6, 2010.

[13] S. M. Dias and N. J. Vieria, “Um arcabouço para desenvolvimento
de algoritmos da análise formal de conceitos,” Revista de Informática
Teórica e Aplicada, vol. 18, no. 1, pp. 31–57, 2011.

[14] R. Dyer, H. A. Nguyen, H. Rajan, and T. N. Nguyen, “Boa: a language
and infrastructure for analyzing ultra-large-scale software repositories,”
in Proceedings of the 2013 International Conference on Software
Engineering. IEEE Press, 2013, pp. 422–431.

[15] D. Easley and J. Kleinberg, Networks, crowds, and markets. Cam-
bridge Univ Press, 2010, vol. 8.

[16] B. Vasilescu, V. Filkov, and A. Serebrenik, “Stackoverflow and
github: associations between software development and crowdsourced
knowledge,” in Social Computing (SocialCom), 2013 International
Conference on. IEEE, 2013, pp. 188–195.

[17] L. Dabbish, C. Stuart, J. Tsay, and J. Herbsleb, “Social coding in
github: transparency and collaboration in an open software repository,”
in Proceedings of the ACM 2012 conference on Computer Supported
Cooperative Work. ACM, 2012, pp. 1277–1286.

[18] L. Yu and S. Ramaswamy, “A study of sourceforge users and user
network,” in 2013 AAAI Fall Symposium Series, 2013.

[19] Y. Gao and G. Madey, “Network analysis of the sourceforge. net
community,” in Open Source Development, Adoption and Innovation.
Springer, 2007, pp. 187–200.

[20] C. Carpineto and G. Romano, Concept data analysis: Theory and
applications. John Wiley & Sons, 2004.

[21] Marlow, Jennifer, and Laura Dabbish. "Activity traces and signals in
software developer recruitment and hiring." Proceedings of the 2013
conference on Computer supported cooperative work. ACM, 2013.

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

Int'l Conf. Software Eng. Research and Practice | SERP'14 | 285

DEVELOPMENT OF A MATHEMATICAL

MODEL FOR DESIGNING RELIABLE

INFORMATION SYSTEMS AND ITS

PROPERTIES

The 2014 International Conference on Software Engineering Research and Practice (SERP'14),

Las Vegas, USA, July 21-24, 2014

Seilkhan Boranbayev

L.N. Gumilyov Eurasian National University

5 Munaitpasov Street

Astana, 010008, Kazakhstan

sboranba@yandex.kz

Askar Boranbayev

Nazarbayev University

Astana, Kazakhstan

aboranbayev@nu.edu.kz

Sanzhar Altayev

L.N. Gumilyov Eurasian National University

5 Munaitpasov Street

Astana, 010008, Kazakhstan

Abstract—It is necessary to reduce dependence of results

quality from development of information systems on such subjective

factors as qualification and experience of performers, to lower risk of

unsuccessful completion of the project. There is an urgent need today

for science-based technological methods of information systems to

plan the parameters of a software project, to guarantee the required

quality of results. Thus, the creation of scientific methods and

technologies for the information systems design is an important

scientific and technical problem. This article is devoted to

development of methods of design and distribution of resources for

development of information systems. Implementation of the

developed methods and technologies in projects for automation of

enterprises of various activity spheres will streamline the process of

modeling and collect in the process of performing a formal

information to plan the next stages of the project, provide functional

completeness and logical integrity of their results.

Keywords— model, method, design, information system,

technology, network.

I. INTRODUCTION

Presently there is an increase in quantity and

complexity of projects on complex automation of the

enterprises. High dimensionality and complexity of the

automation object determines the iterative nature of the design

methods and the need for their commercial nature means

having a deep formalization of the technology implementation

of all phases of the project. Existing methods are definitely

solve the problem of the development of software, however,

have no sufficiently industrial properties.

High complexity of the automation object determines

the nature of the work from the earliest stages consisting in

inspection, modeling and the analysis domain. At the same

time the development of information systems has its own

characteristics, which should be reflected in special events to

maintain the logical integrity of the results throughout the

project.

II. MATHEMATICAL MODEL OF INFORMATION

SYSTEM DESIGN

We will use oriented bonded network reflecting the

progress of the project and intended for the analysis of the

project's logical structure as a model of information system

design. The network has a single input and a single output

vertex. Each vertex is the work in the project.

We will call a simple network as source network

portion having a single input and a single output vertex [1]

and consisting a linear sequence of project work. All works

included in a simple network, performed sequentially from the

first to the last. We use the notation of [1-5].

We will consider an initial network as set of final

number of simple networks. Execution sequence of simple

networks displays the project's progress.

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

286 Int'l Conf. Software Eng. Research and Practice | SERP'14 |

We will call a network of project progress as oriented

bonded network S=(M, R, m0) with a single initial vertex m0

without incoming arcs, in which the final set of vertices

M={mq}, N0,q is a simple network, and the final set of

edges R={rj}, ,Jj 1 is a logical connections between simple

networks [2]. Vertices m0 and mt can be entered artificially.

We will call a way as sequence of network's vertices

(m0, m1, m2,…, mq,…, mt), that for any value q, 10 tq ,

couple (mq, mq+1) is an edge Rrj . If mt= m0, a way is

called as a contour.

Vertex mq is called the predecessor of vertex mγ, if there

is a way from vertex mq to vertex mγ. If (mq, mγ) is an edge,

vertex mq is called an immediate predecessor of vertex mγ.

If vertex mq is a predecessor of vertex mγ, vertex mγ is

called the follower of vertex mq. If (mq, mγ) is an edge, vertex

mγ is called the immediate follower of vertex mq.

Simple network SPq is called the predecessor of simple

network SPγ, if there is a way from simple network SPq to

simple network SPγ. If between them there are no other simple

networks, simple network SPq is called the direct predecessor

of simple network SPγ.

If simple network SPq is a predecessor of simple

network SPγ, simple network SPγ is called the follower of

simple network SPq. If between them there are no other simple

networks, simple network SPγ is called the direct follower of

simple network SPq.

Vertex mq is called the ancestor of vertex mγ, if each

way from initial vertex m0 to vertex mγ contains vertex mq. If

vertex mq is the ancestor for vertex mγ and for vertex mγ there

are no other ancestors on ways from vertex mq to vertex mγ,

vertex mq is called the direct ancestor of vertex mγ.

Lemma 1. Initial vertex m0 of a network S=(M, R, m0)

is the ancestor of each vertex of the network

 0mMmq .

Corroboration. The corroboration follows from network

structure.

Lemma 2. If vertex mq is the ancestor for vertex mγ and

vertex mγ is the ancestor for vertex mk, then vertex mq is also

the ancestor for vertex mk.

Corroboration. Because vertex mq is the ancestor for

vertex mγ, that each way from initial vertex m0, passing

through vertex mγ, including any way (m0,…, mγ,…, mk),

contains vertex mq. Therefore, vertex mq is also the ancestor

for vertex mk.

Lemma 3. If vertex mq is the ancestor for vertex mγ,

then vertex mγ can't be the ancestor for vertex mq.

Corroboration. The corroboration follows from the

definition of an ancestor.

Lemma 4. If vertices mq и mγ are ancestors of vertex

mk, then vertex mq is the ancestor for vertex mγ or vertex mγ is

the ancestor for vertex mq.

Corroboration. Any way from initial vertex m0 to vertex

mk contains vertices mq and mγ. Let's say that vertex mγ isn't

the ancestor of vertex mq. We will prove that vertex mq is the

ancestor of vertex mγ. Really, if vertex mq isn't the ancestor of

vertex mγ, it means that some way from initial vertex m0

passing through vertex mγ (m0,…, mγ,…, mk), doesn't contain

vertex mq. It contradicts that vertex mq is the ancestor of vertex

mk.

Lemma 5. For each vertex 0 , kMmk there is

only one direct ancestor.

Corroboration. Let's say that vertex mk has two direct

ancestors: mq and mγ. Then, by Lemma 4, vertex mq is the

direct ancestor of vertex mγ or vertex mγ is the direct ancestor

of vertex mq. Let for definiteness vertex mq is the direct

ancestor of vertex mγ. Then, by Lemma 3, vertex mγ can’t be

the direct ancestor of vertex mq. However, if vertex mq is the

direct ancestor of vertex mγ, and vertex mγ is the direct

ancestor of vertex mk, than vertex mq can't be the direct

ancestor for vertex mk. This contradiction proves that vertex

mk has the only one direct ancestor.

It is possible to connect a great number of predecessors

and followers (both direct and usual), and also a great number

of ancestors and direct ancestors with each vertex Mmq

of a network S=(M, R, m0).

We will designate

qMNP – set of direct predecessors

for vertex mq; qMNP – set of predecessors for vertex mq;

qMNS – set of direct followers for vertex mq; qMNS – set

of followers for vertex mq; qMP – set of ancestors for vertex

mq;

qMP – direct ancestor of vertex mq.

It is obvious that qq MNPMNP
,

qq MNSMNS
, qq MPMP

 .

 MNSmMmMNP qq | (1)

 MNPmMmMNS qq | (2)

 i

q
i

q QMMMMmMP *** ,| (3)

where
i

qQ – i-th way from initial vertex m0 to vertex mq.

Figure 1 shows an example of a network.

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

Int'l Conf. Software Eng. Research and Practice | SERP'14 | 287

1 32

4

5 6

Figure 1 - Example of a network

m0=1, M={1,2,3,4,5,6}, R={(1,2), (2,3), (2,4), (3,2),

(3,5), (4,5), (5,4), (5,6)}

III. PROPERTIES OF MATHEMATICAL MODEL OF

INFORMATION SYSTEMS DESIGN

Let a network S=(M, R, m0) of the project and some

vertex g.

We will call a subnet T(g) as a network portion with

entrance vertex g satisfies the following conditions:

 1) Vertex gTg is the only one input vertex of

subnet T(g), that is any way from input vertex m0 of a network

S to vertex g doesn't contain any vertex from a set T(g)-{g};

we will call a vertex g as subnet root;

2) Each vertex of a subset T(g)-{g} is a follower of

vertex g, that is gMNSggT ;

3) If in a subnet T(g) there are closed ways, all of them

contain vertex g, that is the subset of vertices T(g)-{g} doesn't

contain cycles.

Figure 2 shows some examples of subnets. For network

S, shown in figure 3, Figure 4 shows subnet.

gg

Figure 2 - Subnets

1 32

5

4

6 7

Figure 3 - Network S

1 2 3

5

4

6 7

T(1)={1,2}

T(3)={3,4,5,6}

T(7)={7}

Figure 4 – Subnets of network S

Theorem 1. The root g of a subnet T(g) is the ancestor

for all vertices of a subset T(g) - {g}.

Corroboration. Let's say that there is some vertex

 gTmq for which root of a subnet isn't the ancestor, that

is qMPg . Then there has to be at least one way (m0,…,

mq) which doesn't contain vertex g. It means that subnet has

not the only one input vertex. It contradicts subnet definition.

Theorem 2. Each vertex of a network S=(M, R, m0) is a

part of only one subnet of this network.

Corroboration. We will assume that the network S=(M,

R, m0) exists a vertex mq, which is part of two different

subnets T(g1) and T(g2), g1≠g2, 21 gTgT . Then, by

Theorem 1, the roots g1 and g2 are the ancestors of vertex mq,

that is qMPg 1 and qMPg 2 . It means that each way

(g1,…, mq) from a root of a subnet T(g1) to vertex mq contains

a root of a subnet T(g2), that is 12 gTg , or each way

(g2,…, mq) from a root of a subnet T(g2) to vertex mq contains

a root of a subnet T(g1), that is 21 gTg . However, in the

first case existence of a subnet T(g2) is denied, and in the

second case existence of a subnet T(g1) is denied. It proves

impossibility of accessory of vertex mq simultaneously to two

or more subnets.

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

288 Int'l Conf. Software Eng. Research and Practice | SERP'14 |

Theorem 3. Let T(g) – a subnet of network S=(M, R,

m0). Some vertex Mmq , gmq can be in subnet T(g),

if only all her direct predecessors are in this subnet.

Corroboration. Let's say that it not so. Then subnet T(g)

would haven’t a single input vertex, which contradicts subnet

definition.

Consequence 1. If all direct predecessors of some

vertex Mmq of a network S aren't a part of one subnet,

then vertex mq is a root for other subnet of this network.

We will call technologically admissible vertices

sequence of a subnet T(g) as an ordered vertices sequence

(m1,…, mj,…, mq), m1=g, satisfies the following condition: if

vertices of a subnet process in this sequence, then for each

vertex mj, qj 1 , all her predecessors in the subnets

reached along ways from a root of a subnet, not containing

cycles, will be processed up to vertex mj.

Network S=(M, R, m0) can "break up" on a final set of

subnets I={T(g1), T(g2),…, T(gj),… }. If each subnet present as

a single vertex, then for subnets can set the same relations as

for vertices of network S.

Let the final set of a network subnets S=(M, R, m0) be I.

We will call a network 2

0

222 ,, mRMS as an integrated

second rank network for a network S, if the following

conditions are satisfied.

1) The set of vertices M
2
 of a network S

2
 is a set of

subnets of network S, that is M
2
=I, and each vertex of network

S
2
 is only one subnet of network S, and each subnet of a

network S

in the network S

2
represented only one vertex. We

will consider that a subnet T(gj) in the network S
2
 represented

vertex
2

jm .

2) The set of edges R
2
 is the logical communications

between subnets of network S. That is

 2222, Rrmm ij , if there is a vertex jq gTm ,

that Rrmm fq , , where mγ = gi.

If in a subnet T(gj) there are some vertices satisfying

this condition, that edge 2222 , Rrmm ij represents all

edges coming out vertices of a subnet T(gj) and entering a root

of a subnet T(gi). For example, two vertices 5 and 6 there are

in a subnet T(3) of network shown in figure 3, which leave an

edge in a root of a subnet T(7).

3) Vertex
2

0m represents that subnet of a network S,

for which the root is the input vertex m0 of this network.

Later network S=(M, R, m0) we will call also a network

of rank 1 1

0

111 ,, mRMS , and its subnet – subnets of

rank 1

I
1
={T

1
(g1), T

1
(g2),…, T

1
(gj),… }.

Similarly, for a network S=(M, R, m0) it is possible to

determine integral networks of ranks 3, 4, etc.

Generally we will call a network

 nnnn mRMS 0,, as an integral network of rank n

(2n) for a network S=(M, R, m0), if the following

conditions are satisfied.

1) Set of vertices M
n
 represents a set of subnets I

n-1
 of

an integral network S
n-1

 of rank (n-1), that is M
n
=I

n-1
.

2) Set of edges R
n
 represents a set of logical

communications between subnets of rank (n-1),

 nnn

i

n

j Rrmm , , if there is a vertex

j

nn

q gTm 11 , that 1111, nn

f

nn

q Rrmm ,

where
1nm – root of subnet T

n-1
(gi).

3) Vertex
nm0 represents a subnet of network

 1

0

111 ,, nnnn mRMS for which the root is the

vertex
1

0

nm .

From a network S=(M, R, m0) it is possible to receive

integral networks until the integral network of some rank m

will be received.

Figures 5.1-5.4 show network S=(M, R, m0) and

sequence of its integrated networks.

1 32

5

4

11 12

8

6

9

7

13

10

Сеть S
1
=S

Figure 5.1 - Network S
1
= S

1 2 11

Интегральная сеть 2-го ранга S2

3,4,5,6,7

8,9,10

12,13

Figure 5.2 - Integral network of rank 2 S
2

1 2, (3,4,5,6,7), (8,9,10), 11, (12,13)

Интегральная сеть 3-го ранга S
3

Figure 5.3 - Integral network of rank 3 S
3

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

Int'l Conf. Software Eng. Research and Practice | SERP'14 | 289

1, (2, (3,4,5,6,7), (8,9,10), 11, (12,13))

Интегральная сеть 4-го ранга S
4

 Figure 5.4 - Integral network of rank 4 S
4

It is necessary to notice, that not all networks S=(M, R,

m0) can be reduced to a single vertex in the process of building

integrated networks.

Figures 6.1 - 6.2 show example: integral network S
2
of

rank 2 there is only for network S=(M, R, m0), and it contains

some vertices, not a single vertex.

Each subnet S2 of integral network contains only one

vertex. Therefore if we will construct the integral network S
3

of rank 3 we will receive the same network S
2
.

Figure 6.1 — Network S
1
= S

Figure 6.2 - Integral network S
2

The network model of works stages allows to integrate

works for more intelligent perception of all necessary works at

information system design. Presentation of works stages of the

project as a network model allows to estimate scales of

information system, is a basis for further planning and

distribution of resources at realization of information system

at the subsequent stages.

REFERENCES

[1] Boranbayev S.N. Methods for developing information

systems. Astana: Master PO, 2012. -256 p.

[2] Boranbayev S.N. The theory of information systems.
Astana: Elorda, 2006. -212 p.

[3] Boranbayev S.N. Mathematical Model for the
Development and Performance of Sustainable Economic
Programs // International Journal of Ecology and
Development, Vol. 6, No. W07, 2007, р.15-20.

[4] Boranbayev A.S., Boranbayev S.N. Computer-Based
Automation In Medicine And Proposed Methodology
And Component-Based Architecture of a Computer-
Assisted Posting and Processing of Medical Billing
Claims. Proceedings of the 2010 International Conference
on Internet Computing - ICOMP'10, Las Vegas, Nevada,
USA, July 12-15, 2010, p.116-122.

[5] Boranbayev A.S., Boranbayev S.N. Defining Optimal
Approaches And Methodologies for Concatenating
Necessary Features of Various Java-Based Frameworks
and Efficient Technologies for the Effective Development
of Enterprise Information Systems. Proceedings of the
2010 International Conference on e-Learning, e-Business,
Enterprise Information Systems, and e-Government -
EEE'10, Las Vegas, Nevada, USA, July 12-15, 2010,
p.385-390.

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

290 Int'l Conf. Software Eng. Research and Practice | SERP'14 |

Proposal on Feeding Support Application Software based on Research into the
Effect of a "Fasting State" on "Mental Alertness"

Motoichi Adachi
Dep. of Information System

Toyo University
Kawagoe, JAPAN

m-adachi@amy.hi-ho.ne.jp

Takayuki Fujimoto
Dep. of Information System

Toyo University
Kawagoe, JAPAN

me@fujimotokyo.com

Abstract

 This research aims to find academic evidence to support
the following phenomenon: Most people seem to feel sluggish
in a fed state and feel mentally alert in a fasting state. Based
on prior research that shows that Brain-derived neurotrophic
factor (BDNF) which is found to improve brain function is
secreted in a fasting state, this research reveals: how much
fasting results in alert state ; how much time it takes to enter
an alert state; how long an alert state lasts. Also, we propose
the development of smartphone application software, that can
notify the user of how clear their state of mind is at any given
time using the mathematical calculation, not by relying just
on feeling as before.

1. Introduction

 Everyone has a time in which one's mind is mentally alert
or sluggish. For instance, there is no doubt that one is
obviously in a sluggish state when they have a fever due to a
cold. On the other hand, there are moments when one feels
like they can make good progress with any kind of task thanks
to an alert state.

In such moments, what kinds of phenomenon generates
brain function? With regards to this question, a study was
previously carried out by The National Cardiovascular Centre
Research Institute: Department of Molecular pathogenesis:
Laboratory of Biomolecular Research. The findings of this
study show (1): "brain derived neurotrophic factor(BDNF)
plays a beneficial role in improving brain function by
increasing neurite outgrowth and synapse formation,
Approximately a 30 restriction on eating (diet control)
increases Brain-derived neurotrophic factor(BDNF) to
become brain nourishment. In a related study, professor
Shuzo Kumagai from Kyushu University claims that (2): "It
seems that dietary restriction has the effect on neurogenesis
and neuroprotection by increasing neurotrophic factor.
Dietary restriction has a great influence on the brain as well
as on the increase of Brain-derived neurotrophic
factor(BDNF) expression". Thus, it is becoming clear as a
result of the scientific research, not just with experiential
understanding, that one is alert when BDNF increases,

namely, in a fasting state(3)(4) However, there are two
difficulties with these preceding studies.

 It is quite difficult to know if a person's level of BDNF
is increasing or decreasing in their daily life. In short,
the medical approach, which is to have blood drawn, is
not a practical method for a daily use. This is not an
effective technique to provide a clear indication of the
extent of a person's alert state which would decrease the
burden of everyday life.

 They claim through the use of brain science that Brain-
derived neurotrophic factor increases at a fasting state
of approximately 30% and one becomes alert. However,
their studies do not clarify, on a general or daily
perceptive level how much fasting results in alert state;
how clear that state is, or how long this alert state lasts.

2 Research on the Relationship between the Fasting
State and Being Alert

2.1. The Survey Methodology

 To fulfill this research we first carried out a questionnaire
to clarify the common feelings associated with being alert or
sluggish. The experiment was conducted on a group of 113
randomly chosen people aged in their teens to their fifties.
Here is the survey overview: In this survey, respondents
recorded the fasting state and alertness every 30 minutes from
just after waking up to just before going to sleep for 2 days by
using the survey sheet indicated in Figure 1.

The method of implementation is;

Step.1 The survey participant records their age, gender,
and the quantity of physical activity and exercise they do.
Reference values of the quantity of physical activity and
exercise are; low for almost all day non-standing work;
moderate for a lot of walking and physical activity high for
active in exercise This is implemented in line with the
Exercise and Physical Activity Guide for Health Promotion by
Ministry of Health, Labour and Welfare of Japan.

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

Int'l Conf. Software Eng. Research and Practice | SERP'14 | 291

Step.2 The survey participants start recording just after
waking up. On the survey sheet, a 24 hour day is divided by
30 minutes. Every 30 minutes just after waking up, they
record fed/ fasting state and alert/ sluggish.

There are three formats to record their perceived level.
form is applied to record the more intuitional judgment as
indicated as below.

Step.3 The participants accurately record the time they
eat meals or snacks.

Step.4 Repeat this up to just before going to sleep.

2.2. Survey Results Overview
 In this paper, we have undertaken the survey indicated
above, on 113 people chosen at random. A summary of results
is shown in Fig.2

Fig. A. Survey Result1 n=113

 The level of fasting / fed are on the vertical axis and the
horizontal axis represents the alert/ sluggish level. 1, 2, 3
indicates the number of " " or " ". Fig. A is a matrix in which
all the participants are counted based on the recorded points
for each 30 minutes.
 For example, the top left cell of the matrix shows that there
are 19 respondents who were alert very alert) when
they were fasting very fasting).
The same manner is adapted to the bottom left cell, which
means that there were 34 respondents who were sluggish
(very sluggish) when they were fed (very fed).

Fig. 1 Survey Sheet

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

292 Int'l Conf. Software Eng. Research and Practice | SERP'14 |

2.3. Analysis of Survey Results
Survey result matrix on fasting and mental alertness indicated
in Fig. A is shown in terms of percentages in (Fig.2) for better
understanding and is graphically represented (Fig.3).

Fig.2. Survey Result Ratio

Fig.3. Survey Result Graph

The dark colored bars represent a mentally alert state and the
light colored bars on the graphs represent a sluggish state in
Fig.3. It is clear from the graphs that in most cases the
participants are "alert" in the fasting state and as they become
full it is clear that they tend to become less alert.

Fig.4 and Fig.5 shows a direct correlation between a fasting
state and alertness.

They explain that alertness specifically tends to appear in
the little fasting state out of the range of the fasting state level.

Fig.4. Correlation between Fasting state and Mental

Alertness

(Fig.5. Graphs Showing the Correlation between Fasting

state and Mental Alertness

3. Lapse Time between Fed to Fasting State and Alertness
Duration
3.1 Lapse time from fed to fasting state

Regarding the lapse time between the fed to fasting state, at
what stage does the state of being alert occur? The survey
results so far reveal that alertness tends to appear in a little
fasting state. Accordingly, the lapse time from fed to alert
state is shown in Fig.6.
 The average lapse time recorded by the participants is
indicated below: from each fed state there are three levels to
the beginning of alert state

Fed1 Fed a little Average 85 min.
Fed2 Fed Average 151 min.
Fed3 Fed very much Average 126 min.

 30min 1h 1h30 2h 2h30 3h 3h30 4h 4h30 5h 5h30 6h 6h30 7h 7h30 8h 10h average
Fed1 6 5 4 6 2 1 0 0 0 0 0 0 0 0 0 0 0 85min
Fed2 4 6 8 13 7 3 3 2 2 2 1 1 1 0 0 1 0 151min
Fed3 3 3 15 5 7 5 1 3 0 0 1 0 1 0 0 0 0 126min

Fig.6. Lapse Time from Fed to Alert State

 30min 1h 1h30 2h 2h30 3h 3h30 4h 4h30 5h 5h30 6h 6h30 7h 7h30 8h 10h average
Fed1 2 5 5 2 1 2 3 2 0 1 1 1 0 0 0 0 0 146min
Fed2 3 13 5 4 7 3 4 3 6 1 2 0 0 1 0 1 0 159min
Fed3 4 11 6 3 4 5 1 0 0 1 4 1 1 0 1 1 1 165min

Fig.7. Duration of being alert

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

Int'l Conf. Software Eng. Research and Practice | SERP'14 | 293

It takes a remarkably short time to reach to the beginning of
alertness in a low level of fed state. Both Fed and Fed very
much states require more than 2 hours to reach the beginning
of alertness.

3.3. Alert State Duration
The average duration that the state of being alert is

maintained is indicated below.

Fed1 Fed a little Average 146 min.
Fed2 Fed Average 159 min.
Fed3 Fed very much Average 165 min.

 As demonstrated above, the duration of time from the
beginning of alert state to the end of that state is uniformly
around 150 min. regardless of the fed status.

4 Proposal for Smart Phone Application Software to
Notify the Alert State
4.1. Proposal for Application Software

According to the survey, it is clear that fed a little state
tends to be equivalent to the alert state and it is reasonable to
say that the length of time during which the alert state is
maintained can be identified to a certain extent. Based on the
analysis of the survey results, we propose the smartphone
application software which enables the user to make the most
of this state of being alert.

4.2. Application Configuration
 In this paper we propose a smartphone application which
has two main functions. The first is a function that displays the
time in which the users are supposed to be in an alert state by
calculating the meal-intake time and the fed level. The second
function provides guidance related to meal-intake time and
portion control so that the user can become alert at a specified
time. Nowadays a large number of people carry their
smartphone on them all the time, just as they do a wallet. It is
effective to use this application on the smartphone, a device
closely connected to our daily lives.

4.3. Alert Time Display Function
This function is utilized in conjunction with the built-in

clock of the device. At first, the user inputs the fed level by
using 1, 2, 3 every time they have had meal. 1 indicates the
lowest fed level and 3 indicates the highest fed level.

The sign to notify that they have become alert will be
displayed on the screen of the smartphone when it gets to the
time, which is set in accordance with the length of time (Fed1:
85 min./ Fed2: 151 min./ Fed3: 126 min. later)from fed state
to the beginning of the alert state presented in this research.
The approximate time the alert state ends will also be
displayed by adding the times (Fed1: 146 min. / Fed2: 159
min. / Fed3: 165 min. later) to the alert state beginning time.

Fig.8.Application Demo Image 1

In short, this application aims to clearly indicate, by means of
notifications, when a person is entering a state of being alert
or sluggish. It allows the user to manage when they become
alert. Up to now this state could only have been recognized
intuitively by the individual.

4.4. Meal Time Guide Function to Create an Alert State
This function enables the user to enter an alert state by

providing guidance on the meal times. This function aims to
create the alert state intentionally by controlling the time and
intake size of the meal in accordance with the targeted time,
for instance, when there is a particular time that you want to
become alert such as an important meeting. In the following
example the user wants to become alert at noon.

If the meal size is Fed1, alert state will appear 85 min. after
eating. Therefore it is ideal to intake the meal around
10:35AM, 85 min. before noon. In case of Fed2, alert state
will appear 150 min. after eating. By using back calculation,
this function suggests the user to intake the meal at 9:40AM,
150 min. before 12:00 noon by informing the user of the time.

Fig.9. Application Demo Image 2

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

294 Int'l Conf. Software Eng. Research and Practice | SERP'14 |

5 Further Research
As for becoming alert, it goes without saying that in our

daily lives there is a wide variety of factors other than fasting
or fed states which affect this. For example, washing your face
with cold water, exciting events, light exercise, taking a deep
breath, etc. Indeed, the following cases are identified in the
questionnaire; the case in which one becomes alert suddenly
regardless of the fed of fasting state; the case in which even
though alertness appears once, it disappears soon; the case in
which alert time lasts longer than usual. There is room for
further research in this area.

Furthermore, In relation to the research into the perception
of each state, alert and sluggish, the definitions used to
indicate each state are fundamentally vague. We would like to
clarify what is meant by alert or sluggish and to explain the
differences in the level of each state. Likewise, we would like
to explain the definition of fed and fasting state as well as their
degree of variation more clearly.

However, the present study has highlighted certain flaws in
the prior studies especially in relation to its usage in daily life,
and with regards to the relevance of fasting/fed state and
alertness. Therefore, an application that can objectively notify
users when they are in an alert state, something that could
previously only be identified by an individual through their
senses, is indeed profoundly significant.

(Note The reference values for the quantity of the physical
activity follow the Exercise and Physical Activity Guide for
Health Promotion by Ministry of Health, Labour and Welfare
of Japan.

REFERENCES

(1)National Cerebral and Cardiovascular Center Research
Institute: Department of Molecular Pathogenesis/
Pathophysiological Clarification and Therapeutic development
for diseases related to cerebral nerve/surgery
http://www.ncvc.go.jp/res/divisions/etiology/et_005/index.ht
ml#4-2

(2) March,2007, RESEARCH IN EXERCISE
EPIDEMIOLOGY Vol. 9, Japanese Association of Exercise
Epidemiology Journal

(3)Hyperphagia, Severe Obesity, Impaired Cognitive Function,
and Hyperactivity Associated With Functional Loss of One
Copy of the Brain-Derived Neurotrophic Factor (BDNF) Gene
Juliette Gray1, Giles S.H. Yeo1, James J. Cox2, Jenny
Morton3, Anna-Lynne R. Adlam4, Julia M. Keogh1, Jack A.
Yanovski5, Areeg El Gharbawy5, Joan C. Han5, Y.C. Loraine
Tung1, John R. Hodges4, F. Lucy Raymond2, Stephen
O’Rahilly1 and I. Sadaf Farooqi1
Diabetes December 2006 vol. 55 no. 12

(4)Brain-derived neurotrophic factor (BDNF) and food intake
regulation
Bruno Lebrun, Bruno Bariohay, Emmanuel Moyse,
André Jean
Autonomic Neuroscience: Basic and Clinical Volume 126,
Complete , Pages 30-38, 30 June 2006

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

Int'l Conf. Software Eng. Research and Practice | SERP'14 | 295

Game-Based Learning Development Process: an

exploratory analysis of game development companies in

Brazil

João Coelho Neto
12

, Sheila Reinehr
1
, and Andreia Malucelli

1

 ¹ Polytechnic School, Graduate Program in Computer Science - PPGIa, Pontifical Catholic University of Paraná

State (PUCPR), Curitiba, Paraná, Brazil.
2
Center of Human Sciences and Education, Mathematic Department, Northern Paraná Public University

(UENP), Cornélio Procópio, Paraná, Brazil.

Abstract— The development industry of the electronic games

has a considerable comprisement, in both productivity and in

the possibility to work with interdisciplinary matters in the

process of cognitive and computational development.

Considering the educational factors that the electronic games

can provide, this paper has as the aim to identify how the

educational electronic games are being developed by

companies of Brazilian games development and if there is

some specific process for the educational area. The aim of this

study was to identify which development process used by these

companies are, and if there is some specific development

process for the educational area to the light of

cognitive abilities. The methodological approach used was a

qualitative research classified as an exploratory research.

During the research it was identified that these companies use

development processes adapted, there is not a specific process

for the educational electronic games with cognitive and

educational comprisement.

Keywords- Game development; Process Development;

Software Engineering; Cognitive Abilities.

1 INTRODUCTION

The electronic game industry in the late twentieth

century had a remarkable growth. The electronic game area is

coming to a new era of virtual reality and dynamism in

its design, since this reality allows to explore processes and

objects [1], [2].

Thus, the industry of development of electronic games

has a considerable comprisement, both in the area of

productivity, as regarding the possibilities of working in

interdisciplinary issues of computational and cognitive

development besides becoming a popular strategy for learning

to be implemented in different educational contexts [3];[4].

Given all this interdisciplinarity that the development of

an electronic game has, the making of electronic games is

characterized by a process of software development, however,

for this development some additional procedures are needed,

such as: graphics, animations, script, and videos for the

education area, educational and cognitive factors must be

related with these procedures [5].

Thus, the development of electronic games is laborious,

since it requires the effort of a team of qualified and willing to

work together multidisciplinary professionals [6].

So the development process of electronic games is not

an easy task, since the designs of these games involve

multidisciplinary issues. For these reasons, developers adopt

several practices of software engineering for the development

of electronic games.

These practices, if any, are very varied and unsteady

because they are the results of the mixture of an artistic

creation with the software production. The high numbers of

challenges and educational and technological innovations to

be projected beside the cognitive process to be developed are

immeasurable and represent obstacles to overcome.

However, for the development of an electronic game,

especially in the area of education, several concepts are

discussed, such as: art, sound, gameplay, control systems,

artificial intelligence, human factors, and several other

artifices intertwined with a traditional development of a

software, it generates a scenario which increases more the

complexity to build a game, especially in educational area[7].

In order these electronic games can be developed to

enable learning, several educational and cognitive factors

must be worked in the team, that is why the need for a

multidisciplinary team.

These factors should be showed to all the participants,

especially for the professionals in the area of computing, in

order these approaches are internalized and thus they can be

communicated in the development of an electronic game for

the teaching and learning process.

Since the area of educational electronic games has

grown rapidly due to its diversity and possibility of

integration between technology and educational method

because they can be defined as, educational games are those

created to teach while entertain [8], [9], [10].

Based on its context, the use of educational games in the

classroom allow the students opportunities to attract their

attention, because they often love playing, and these types of

games attract their attention [11] .

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

296 Int'l Conf. Software Eng. Research and Practice | SERP'14 |

Thus, to nurture the use of interactive games in school

settings, it is believed that this action will result in advantages

for the educational processes of teaching and learning. It is

considered that this methodological approach has as the claim

the interaction, ingenuity, dynamism towards the

consolidation and acquisition of knowledge, concepts and

content [12].

Besides the advantages mentioned by Fernandes and

Santos Junior [12], a game can fix the attention of the student,

facilitating the absorption of knowledge on the attractive

animations and other multimedia resources [13].

Considering the educational and cognitive possibilities

that electronic games can provide, this article aims to identify

how they are being developed by educational electronic

games development companies, and if there is a specific

procedure for the educational area.

Since these possibilities related to the knowledge of

educational theories aim to think of the existing ideas on the

cognitive processes, that is, how we are able to get

information and change it into knowledge, theories such as

behaviorism, cognitivism, constructivism and connectivism

reflect the ideas in evolution of the cognitive psychologists

over the last century [14] , because of this there was also the

need to analyze these theories in the context of the

development of educational electronic games.

Thus, as a contribution, there is the identification of this

approach in the light of the understanding of the educational

and cognitive abilities for the development of educational

electronic games, enabling a focused analysis of information

on the subject, which can be observed by companies that

develop electronic games to the process of teaching and

learning.

This work was divided into four sections: the first

section aims to present the context of the use of processes and

the development of several educational games and the

importance of the use of these games in actions that enable

teaching and learning, the second section, the methodological

approach is described, in the third section, the analysis of the

results is discussed, based on results reported by the semi-

structured questionnaire, and the fourth and last section ,the

conclusions of this subject are appreciated.

2 Research Method

This is a qualitative research, classified as Exploratory

Research, this type of research was chosen since such a

classification is designed to provide an overview of the

studied fact, and a questionnaire was developed to help collect

information [15], [16].

A semi-structured questionnaire was used to collect

information, this questionnaire consisted of 12 questions and

is presented in Table 1 of this paper.

Before being answered, the questionnaire was evaluated

by eight experts in the areas of: Computing (Software

Engineering and Games) and Education and afterwards

applied to 27 professionals as a pilot test.

After the evaluation of the pilot test, the questionnaire

developed by Google Docs was sent by e-mail to 38

companies that develop several and educational electronic

games, these companies were registered in the Abragames

website [17], as Brazilian companies of development of

electronics games, only 12 questionnaires returned within 30

days.

The body of informants in this study was composed by

twelve participants, composed of companies, and these were

identified in the analysis of data of this research by codes: E1,

E2, E3,…, E12. For the excerpts identified in the analysis,

only a few were selected, whereas these showed consistent

theoretical justifications in their notes, constituting the

"corpus" of the research.

The results were analyzed by applying the questionnaire

to the research participants. This questionnaire aimed to

identify whether these professionals are using some

development process that has some concern with the

educational area, and in case they use it, which they are,

allowing the design of the analyzed field.

TABLE I. Questionnaire to collect Information

QUESTION QUESTION OBJECTIVE

Q1 - Participant Data

Identify the professional experience

of the participant, if the participant

is autonomous or not and in case

he/she works in a company, identify

the position.

Q2 - Information about

the company

Identify the name, city, type of

business, capital formation, market

performance, company size and if it

develops some courseware. This

data was identified only for the

participants who are not

autonomous.

Q3 - What kind of

game do you develop?

Identify if several electronic games

and/or educational are developed

Q4 - Do you use any

estimation method for

game development?

Identify if the participant uses some

method of estimation.

Q5 – Do you define

strategies in the

development process,

that is, to define the

activities that will be

performed for the

development of the

game.

Identify if the participant defines

strategies in the game development

process.

Q6 - Do you use some

kind of test during the

development process

of the game?

Identify the types of tests used in the

development process.

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

Int'l Conf. Software Eng. Research and Practice | SERP'14 | 297

Q7 - Do you use any

environment for the

process of games

development?

Identify the environment of game

development used in the market.

Q8 – Have you ever

heard of specific

processes for the

development of

educational electronic

games?

Identify if the participant has any

knowledge regarding to processes

for the educational area. If yes,

identify the model or simply a report

of the steps known.

Q9 - If you know a

specific development

process for educational

digital games, would

you use it?

Identify if there is interest from the

participants in using a specific

process for developing educational

electronic games.

Q10 – Should the

process of developing

educational electronic

games take into

account in its initial

phase an educational

theory?

Identify the importance for the

participants of the association of a

pedagogical concept in the initial

process of developing educational

electronic games.

Q11 - Do you use any

process in the

development of

software in the

development of the

game?

Identify if the participant uses some

process of development of software

for game development.

Q11.1 - If YES, in

which life cycle model

is it based?

Identify the model of the life cycle

that the participant uses, if any used.

Q11.2 – Have there

been changes in the

development process

in the last three years?

Identify if there was an

improvement after inserting some

model of game development in the

last three years.

Q12. Regarding to the

development of

educational electronic

games

Identify the participant’s knowledge

about the pedagogical concepts.

Q12.1. Do you

develop educational

electronic games

composed of questions

and answers?

Identify which type of conception

you use in the process of

development of educational

electronic games.

Q12.2 – Do you

develop educational

electronic games that

use a range of

information to enable

the construction of the

knowledge?

Identify which type of design you

use in the process of development of

educational electronic games.

Q12.3. Do you define

at the beginning of the

development process

of educational games,

the educational theory

that will be used?

Identify if some kind of pedagogical

conception is defined at the initial

stages of the development.

Q12.4. If the previous

question was "yes",

which theory do you

use for the

development of

educational electronic

games?

Identify if some kind of pedagogical

conception is defined in the initial

stage of the development, if YES,

identify the theory used based on the

options available in the

questionnaire.

Q12.5. Are there

professionals in the

area of education

involved in the

development process?

Identify if there are professionals in

educational area that help in the

identification of the pedagogical

conception.

Q12.6. If "YES" in the

previous question, in

which phases?

Identify in which stage of the

development, the professional of the

educational area helps.

To identify the results of this scenario, the next section

presents the analysis of the data obtained by the questionnaire

sent to the companies of this survey.

3 Data Analisys

The data was divided into three major modules: the first

module discusses the profile of the companies and the types

of games they develop, the second module identifies the

activities and development of several educational electronic

games that these companies perform, the third module

identifies if the companies who develop educational electronic

games have some understanding of pedagogical concepts,

such as, if these companies have professionals related to the

educational area.

3.1. Module I - Profile of the Companies and

Types of Games

All the participants who work in companies involved

have professional experience in

traditional software development and several electronic

games.

In traditional software development, participants had 2

to 3 years experience; 2 participants 4-8 years, and 8

participants over 8 years of experience.

Regarding to the development experience of several

electronic games, it was found that 2 participants had up to 3

years experience; 6 participants had 4-8 years experience, and

4 participants with more than 8 years.

Interestingly, the number of participants with over 8

years according to Abragames [17] informs that this area of

games development is still relatively new comparing to the

length of experience in traditional software development, in

this case, it was observed in the participants a reasonable

number of professionals with experience in the area of

electronic games.

The data shows that there are two participants who also

work as autonomous in the area of software development and

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

298 Int'l Conf. Software Eng. Research and Practice | SERP'14 |

electronic games, and the work performed by the participants

in these companies were: programmer, with a higher

incidence, it was obtained 6 participants, and the rest of the

positions, with 1 participant each, these positions are: project

manager, business analyst, developer, consultant, partner and

director.

The companies involved in this research are mostly

private companies, totaling 11 companies and one company

was identified as a Non-Governmental Organization (NGO),

being 5 companies with up to 10 employees; 4 companies 11

to 50 employees and 3 companies with over 350 employees.

Regarding to the constitution of the corporate capital,

there are 11 companies with the constitution of National

Capital, and only one company, with the constitution of Joint

capital, it was also identified during the research that the

market performance of these companies is global (3),

national (7) and regional (2).

Based on this information, we identified that the

majority of respondents work in companies with a market of

national presence, and a significant percentage of 25% in

companies with a Global market, since many foreign

companies are operating in Brazil according to Abragames

data [17].

However, it was interesting to report the localized of the

companies analyzed in order to present the variation of

locations reached by this research: 8 companies are located in

the southern region, 3 located in the southeastern region and 1

located in the northeastern region.

The 12 companies develop several electronic games, and

on observing the data, it was found that for the type of games

that they develop there are 18 results, however, this option the

companies participants had more than one alternative choose,

it was obtained: 7 companies develop several electronic

games and 11 companies develop educational electronic

games.

3.2. Module II - Identification of Activities in the

Electronic Game Development.

This section aimed to identify, even for companies that

do not use a process of software development, the use of

independent activities that may contribute to the development

of electronic games.

3.2.1 Estimative Method

It was found that 6 companies use some estimating

method for the development of electronic games and 6 other

companies do not use estimation methods. Still, during the

analysis, it was identified that the methods used are point by

function (2), lines of code (1) man-hour (1) components (1)

and PokerPlan (1).

3.2.2. Stages in the game development

It was possible to observe that 9 companies use some

stage in the development process of electronic games and 3

companies do not use stages. Some excerpts show some of the

stages used:

During the pre-production, we created a Game

Design Document (GDD) and a prototype to

validate the basic mechanic. In the production

phase, we used SCRUM development

methodology to define the activities (E2).

Through the SCRUM (E3)

We do the development planning, we list some

architecture, design patterns, we do the

documentation and develop by components

(E11).

[...] I do not follow strictly a single

methodology (E12).

From the excerpts presented on, it can be verified the

diversity of stages that companies are using, identifying that

they do not use a specific pattern, however, they use a variety

of actions that suit the needs of the company.

3.2.3. Testing in the game development

It was observed that 9 companies use some kind of test

in the game development process and 3 companies do not use

tests. Some excerpts show some of the tests used:

Performance Tests, Usability Tests,

Functionality, Tests (E2).

Programming and testing after the development,

the general test is performed with the team

members (E3).

The unit basic test, integration and system not

very elaborated. I analyze if it is performing

properly and if it returns what it should (E12).

From the excerpts presented on, it can be identified a

variety of tests used by the companies, checking that there is

no specific pattern, however, they use this diversity in an

attempt to adapt to the needs of the company.

3.2.4. Environment in the game development

Two companies use environments and 10 companies do

not use environments for the process of games

development. The 2 companies that use different

environments cited the Unity 3D and FlexBuilder

environment.

3.2.5. Specific processes for the educational electronic

games development.

Firms were asked about the knowledge of specific

processes for the development of educational electronic

games. All respondents said they are unaware of specific

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

Int'l Conf. Software Eng. Research and Practice | SERP'14 | 299

processes for the development of educational electronic

games.

3.2.6. The use of specific processes for educational

electronic games development.

This stage had as the aim to evaluate in case the

companies knew specific development process for educational

electronic games, if these would use it.

Nine companies responded that they would use a specific

process to educational electronic games and 3 would not

use. It was observed that the three companies would not use,

do not use methods or estimates and steps during the

development of the educational computer game, ie, there is a

lack of standardization of shares in its development.

3.2.7. Initial phase of development - educational concept

It was found that 9 companies find important in the early

stage of the development process of the educational computer

game to approach an educational design and 3 companies do

not find it relevant. However, the 3 companies that do not

consider it relevant are companies that develop several

educational electronic games, with the greater emphasis on the

development of several electronic games.

3.2.8. The use of a development process

During the data analysis process it was questioned if the

companies use some type of software development process in

the development of electronic games and, if yes, which

models they based on.

It was possible to observe that 9 companies use

some software development process in the development of

electronic games, and 3 companies use their own processes.

The processes cited were: classical, cascade or linear -

sequential (2); iterative model (1), Agile methodologies (5),

RUP (1) own models (3), being:

Initially developed a prototype for the project's

feasibility (E3).

A mixture of several agile methodologies that

help in the flow of the development using only

the useful techniques and discarding the

bureaucracy. We used for example a little

Scrum, code review, etc. (E6).

Simplified Agile + Heroes (E9).

During the collection of this information, it was

identified some procedures or adaptations of models made

during the development of electronic games.

3.2.9. Changes in the development process in the last

three years

It was observed that 10 companies indicated that there

were changes in the development process in the last three

years and 2 companies indicated that they didn’t have

changes.

The main benefits with the use of a development process

were: improvement in development time, improve the quality

of the final product, improvement in productivity, relative cost

and risk reduction.

3.3. Module III - Pedagogical Identification in

the Educational Electronic Game

Development.

In further analyzes it will be approached issues related to

the development of educational electronic games

process. These analyzes will be based on the understanding of

companies in relation to the type of instructional design that is

used in order to identify if these companies use some design

and if they use, which is each one’s perception to educational

electronic game developed.

Thus, if the development team knows these conceptions,

they can use them in order to enable actions that compose

develop expectations, or even cognitive abilities, which will

be reflected in the educational electronic game.

The conceptions identified in this research were:

instructional, which aims to make games consisted of

questions and answers, creating a scenario of issues and

alternatives, and the Constructivist or Constructionist which

aims to make games formed by a set of information, creating a

scenario of question which favor information about the

algorithm to be developed, thus enabling the generation of

knowledge by the means.

These conceptions if they are worked with the

development team can be beneficial to the process of teaching

and learning since the games provide recreational and

specialized pedagogical objectives for the development of

reasoning and learning situations, these are the main factors of

the use of these instruments in the educational area [18].

The next questions are related to the understanding of the

type of educational electronic games that are developed by

companies.

3.3.1. Development of educational digital games consisted

of questions and answers.

Five companies answered that develop games consisted

of questions and answers and 7 companies replied that they do

not develop.

3.3.2. Development of educational digital games using a set

of information.

Seven companies develop educational electronic games

using questions and answers and 5 companies do not use this

format.

These questions aimed to identify if the professionals

who are part of these companies understand the types of

games developed with pedagogical concepts informed by the

companies themselves. Thus, we attempted to identify if the

development teams understands which pedagogical

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

300 Int'l Conf. Software Eng. Research and Practice | SERP'14 |

conceptions each type of game corresponds because each

conception has an action on the cognitive development

process of the learner.

3.3.3. Definition of the educational theory at the

beginning of the development process of

educational digital games.

It was identified that: 4 companies use some theory at the

beginning of the development process and 8 companies do not

use, among the concepts used it was identified as:

constructivism (2) and instructionism (2).

With that, the next question aimed to identify if there are

education professionals in the development of the educational

electronic game helping these professionals of the area in the

development of these educational issues.

But when analyzing along with the other items in this

section, the E1 develops games formed by questions and

answers and a set of information, but it identifies

instructionism even having professionals of the area on

his staff.

The E2 develops educational electronic games that

consist of questions and answers and that the instructionism

was pointed as a theory for the development, however, lack

job in education involved in the development process in stage

of creation of educational content.

The E3 develops educational electronic games which are

formed by questions and answers and using a set of

information to enable the construction of knowledge, define

the conception in the early of the process, the instructionism

theory was pointed as for the development of educational

electronic games, and they have professional in education area

involved in the development process at the stage of creation of

pedagogical content.

The E4 develops several educational electronic games

that consist of questions and answers it uses a set of

information to enable the construction of the knowledge, it

does not define conception at the beginning of the process, it

does not have professionals in the area of education involved

in the development process.

With that it identifies a disparity of information, because

the professionals of these companies that participated in the

interview indicate that they develop both types of games, 2 out

of the 4 companies have professionals in education area

working together, anyway, identifying contrary conceptions,

indicating only one.

As they develop the two types, they should have selected

for the instructional conception for the game formed by

answer and question and Constructivist or Constructionist for

the game forming a set of information.

3.3.4. Professionals in education area involved in the

development process.

When asked about the involvement of professionals in

the area of education during the development process of

educational electronic games, 6 companies answered they do

not have professionals in the area of education and 6

companies answered that they have these professionals.

In case of involvement of professionals in the area of

education, companies were asked about the benefits with this

addition, the results indicated benefits in: requirements collect

with 4 answers; systems analysis with 1answer; tests with 4

answers, statement with 3 answers.

The amount of results differs from the number of

companies as the participant could choose more than one

option.

4 Final Conclusion

The research investigated about the development of

educational electronic games in companies that develop

several electronic games focused on the process of teaching

and learning in Brazil.

It was identified during the survey that these companies

use development processes adapted, without a specific process

for the area of educational electronic games and even if they

approach some cognitive or educational issue during the

development stages.

Moreover, during the analysis, it was observed some

discrepancies in answers among the companies, since that

even developing educational electronic games, some do not

answer all the questions relating to the definition of

conception at the beginning of the development and a

confusion among which conceptions are used for each type of

educational electronic game developed even having education

professionals on their teams.

The identification of the lack of educational actions

during the development of an educational electronic game is

worrisome because these approaches are of great importance

for the development of pedagogical actions that will be

externalized for the final game.

Thus, if the developers understand the pedagogical

practices or even identify the cognitive abilities that can be

used during the development of the educational electronic

game, these actions can be inserted, thus helping to develop a

game that facilitates the process of teaching and learning of

the content proposed.

Therefore, as a consequence of the result of this research,

it has been developed an Educational Electronic Games

Development Process that enable the development teams to

contact with educational and cognitive approaches in order to

help them in generating inquiries that can be formalized in

cognitive actions in the final product.

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

Int'l Conf. Software Eng. Research and Practice | SERP'14 | 301

5 Acknowledgment

The authors would like to thank the workers at the

companies who took the time to complete the questionnaire.

We would especially like to thank the Fundação Araucária -

Foundation for Scientific and Technological Development of

the State of Paraná, Brazil, fostering agency, for financial

support in the development of this research.

6 References

[1] João Ricardo Bittencourt; Lucia Giraffa. “A

utilização dos Role-Playing Games Digitais no Processo de

Ensino-Aprendizagem”. Technical Reports Series:

PPGCC/FACIN, Number 03, September,

2003.http://www3.pucrs.br/pucrs/files/uni/poa/facin/pos/relato

riostec/tr031.pdf.

[2] Márcio Sarroglia Pinho. “Realidade Virtual como

Ferramenta de Informática na Educação”. In: VII Simpósio

Brasileiro de Informática na Educação (SBIE). Belo

Horizonte, MG: SBC. pp.1-9, 2006.

[3] Alessandra de Souza; Ivette Kafur. “O fator

emocional no desenvolvimento de jogos”. In: SBC

Proceedings of XI SBGames – Art & Design Track –

FullPapers – Brasília – DF, pp. 130-133, 2012.

[4] Vigdis Vangsnes; Nils Tore Gram Økland; Rune

Krumsvik. “Computers games in pre-school settings:

Didactical challenges when commercial educational computer

games are implemented in kindergartens”. Computers &

Education, 58, pp.1138-1148, 2012.

[5] Tiago Keller Ferreira. “Um processo para produção

de Game Concept com base em Planejamento Estratégico”.

74f. Dissertação (Mestrado em Engenharia de Produção) –

Universidade Federal de Santa Maria. Orientador: Dr. Marcos

Cordeiro d´Ornellas. Santa Maria – RS, 2010.

[6] Bruce R. Maxim; Benjamin Ridgway. “Use of

Interdisciplinary Teams in Game Development”. 37th.

ASEE/IEEE Frontiers in Education Conference, Milwaukee,

WI, pp. T2H1-T2H5, 2007.

[7] Fábio de Souza Petrillo. “Práticas ágeis no Processo

de Desenvolvimento de Jogos Eletrônicos”. 168 f. Dissertação

(Mestrado em Computação) – Universidade Federal do Rio

Grande do Sul. Orientador: Dr. Marcelo Soares Pimenta.

Porto Alegre – RS, 2008.

[8] Alexandre Souza Perucia; Antônio Córdova de

Berthêm; Guilherme L. Bertschinger; Roberto Riberto Castro

Menezes. “Desenvolvimento de Jogos Eletrônicos: Teoria e

Prática”. 2.ed. São Paulo: Novatec Editora, 2007.

[9] Pablo Lavín-Mera; Pablo Moreno-Ger; Baltasar

Fernández-Manjón. “Development of Educational

Videogames in m-Learning Contexts”. In: Second IEEE

International Conference on Digital Game and Intelligent Toy

Enhanced Learning, IEEE. doi:10.1109/DIGITEL. 21. pp. 44-

51, 2008.

[10] Jeannie Novak. “Desenvolvimento de games”. Trad.

Pedro Cesar Conti; Rev. Téc. Paulo Marcos Figueiredo de

Andrade. São Paulo: Cengage Learning, 2010.

[11] Enrique Barra Arias; Daniel Gallego Vico; Sandra

Aguirre Herrera; Juan Quemada Vives. “A web tool to create

educational content with gaming visualization”. Frontiers in

Education Conference (FIE), Seattle, WA. pp. 1-6, 2012.

[12] Rúbia Juliana Gomes Fernandes; Guataçara Santos

Junior. “The SIMS: Jogo Computacional como Ferramenta

Pedagógica na construção do Conhecimento Matemático”.

Revista Eletrônica TECCEN, Vassouras, v. 5, n. 1, pp. 21-36,

jan/abr, 2012.

[13] Alex Machado; Paôla P. Cazetta; Priscyla C. dos

Santos; Ana Mara O. Figueiredo; Leandro dos S. Sant’ana;

Sebastião de Freitas Dutra; Esteban Clua. “Uma proposta de

Jogo Digital 3D com questões didáticas”. In: XXII Simpósio

Brasileiro de Informática na Educação (SBIE). Aracajú – SE,

pp.620-629, 2011.

[14] David Gouveia; Duarte Lopes; Carlos Vaz de

Carvalho. “Serious Gaming for Experiential Learning”. 41
st

ASEE/IEEE Frontiers in Education Conference, Rapid City,

SD, , pp. T2G-1 – T2G-6, 2011.

[15] Antonio Carlos Gil. “Como elaborar Projetos de

Pesquisa”. 5ª. Edição – São Paulo, Brazil: Editora Atlas,

2010.

[16] Marina de Andrade Marconi; Eva Maria Lakatos.

“Fundamentos de Metodologia Científica”. 7ª. Edição – São

Paulo, Brazil: Atlas, 2010.

[17] Abragames “A indústria brasileira de jogos

eletrônicos: um mapeamento do crescimento do setor nos

últimos 4 anos”. 2008.

http://www.abragames.org/docs/Abragames-

Pesquisa2008.pdf.

[18] Rafael Rieder; Elisângela Mara Zanelatto; Jacques

Duílio Brancher. “Observação e Análise da Aplicação de

jogos educacionais bidimensionais em um ambiente aberto”.

In: IX Taller International de Software Educativo (TISE),

Santiago – Chile, pp. 61-66, 2004.

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

302 Int'l Conf. Software Eng. Research and Practice | SERP'14 |

Easel: Purely Functional Game Programming

Bryant Nelson, Joshua Archer, Nelson Rushton

(bryant.nelson | josh.archer | nelson.rushton) @ ttu.edu

Dept. of Computer Science, Texas Tech University

Box 43104 Lubbock, TX 79409-3104

Abstract – In response to a growing interest in functional

programming and its use in game development we’ve

developed the Easel Framework which describes an engine for

creating real time games by defining pure functions. This

paper describes the framework and an implementation of this

framework in SequenceL.

Keywords: SequenceL, Easel, Game Programming,

Functional Programming, Parallel Programming

1 Introduction

 In his keynote address at Quakecon 2013, John

Carmack, founder of Id Software and creator of the computer

games Doom and Quake, shared his views on functional

programming within the realm of video game development

[1]. Carmack expressed that the use of pure functions

simplifies the code base for very large projects by, among

other things, ensuring that various parts of the software do not

interfere with each other. The benefit of the modularity

inherent in functional programming is something that has been

known for some time [2]. This paper describes a game

programming framework which allows games to be written in

the pure functional language SequenceL [3], and an

implementation of that framework in C#. The framework is

called Easel and can be used to test Carmack's hypothesis in

its purest form, by writing games without producing any new

procedural code, or code with side effects.

 There have been previous attempts at making a purely

functional game programming framework. A fairly popular

example is the ELM language developed by Evan Czaplicki

[4]. In the case of ELM, an entirely new programming

language was developed in an attempt to facilitate the creation

of responsive GUIs using a functional language. There are

also examples of using Haskell to program games [5].

 These previous attempts at functional game engines try

to handle everything, from the I/O and rendering to the game

logic, in a functional language. Our opinion is that this leads

to unintuitive engines, and complex game programs. Easel is

an attempt to distill the logic of real time games down to its

simplest form using a functional language, and then handle the

rendering of these games in a procedural language.

2 Easel Description

 The goal of Easel is to enable the creation of real-time

games by defining pure functions. The Easel Framework is a

system description for a game engine which has two key parts,

a functional language used to write games for the engine,

called the game implementation language, and a program

which runs games written in that language, called the

rendering backend.

2.1 Overview

 The Easel framework requires a built-in data model,

consisting of the following types, to be defined in the game

implementation language:

 Point -- a structure of the form (x: int, y:int)

 Color -- a structure of the form
(red: int, blue: int, green: int)

with 0 ≤ red, blue, green ≤ 255

 ImageType -- one of the following strings:

“segment”, “circle”, “text”, “disc”, “triangle”, or

“graphic”

 Image – a structure of the form:
(kind:ImageType, iColor:Color,

vert1:Point, vert2:Point,

vert3:Point, center:Point,

radius:int, height:int, width:int,

message:string, src:string)

In practice only a subset of the fields will be used to

define a specific kind of image, and there are six

kinds of images:

o Segment --
(kind:“segment”,vert1:Point,

vert2:Point, iColor:Color)

o Circle --
(kind:“circle”,center:Point,

radius:int, iColor: Color)

o Disc --
 (kind: “disc”, center:Point,
radius:int, iColor:Color)

o FilledTriangle --
(kind:“triangle”,vert1:Point,

vert2:Point, vert3:Point,

iColor: Color)

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

Int'l Conf. Software Eng. Research and Practice | SERP'14 | 303

o ImgFile --
(kind:”graphic”,source

:string, center:Point,

height: int, width:

int)

 Sprite – a sequence of images

 Click -- a structure of the form (clicked:
bool, clPoint: Point)

If clicked is false then this interpreted that

there was no mouse click in the given

frame.

If clicked is true, then point is the mouse

click for the frame.

 Input -- a structure of the form (iClick:
Click, keys: String)

This is interpreted as the input vector for a

given frame, consisting of a possible

mouse click and a sequence ascii of codes

of pressed keys.

 Sound -- a string which is “ding”, “bang”,

“boing”, “clap”, or “click”, or the name of

a .wav or .mp3 file.

 To create a game, the game implementation

language is used to define the following type and

functions:

 State -- a data type whose instances are possible

states of the game

 initialState() -- the starting state of the game

 images(S: State) -- is a sequence whose

members are the images to be displayed in the

program window when the game is in state S.

 sounds(I: Input, S: State) -- a sequence

of sounds played when input I is accepted in state S.

 newState(I: Input, S: State) -- the new

state resulting from accepting input I in state S.

 The rendering backend is responsible for executing the

game, retrieving input from players, and displaying the images

and sounds from the game. The overall algorithm for the

rendering backend is presented in Figure 1.

Figure 1: Algorithm PlayGame

 The PlayGame algorithm is very similar to the standard

game loop that is often encoded by hand when writing a game.

The Easel engine, however, removes the need to write a main

game loop. This abstraction allows the game programmer to

focus on the logic of the game and not have to worry about

the details of handling input from the user and rendering

graphics to the screen.

2.2 Implementation

 An Easel framework has been implemented, consisting

of a rendering backend and graphical frontend written in C#,

which runs games implemented using the Easel Framework in

SequenceL. This implementation is referred to as EaselSL.

 SequenceL is a small, statically typed, general purpose,

functional programming language [3]. The key reason for

which SequenceL was chosen as the game implementation

language is the fact that it is purely functional. SequenceL

compiles to C++ code, allowing it to be easily interfaced with

a graphical front end, which is a requirement for a game

engine. Additionally, programs written in SequenceL are

automatically compiled to highly parallel C++ [6]. All of

these reasons contributed to the choice of SequenceL as the

game implementation language.

 Figure 3 shows a simple example of the SequenceL

function definitions needed to encode a very simple game in

the EaselSL game engine. The "game" simply displays the

current time.

2.3 Rendering Backend

 C# was chosen to implement the rendering backend, due

to its extensive libraries and ease of graphical development.

S := initialState()
while True:
 display images(S)
 retrieve userInput
 play sounds(userInput, S)
 S := newState(userInput, S)

Figure 2: C# Rendering GUI Playing Breakout

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

304 Int'l Conf. Software Eng. Research and Practice | SERP'14 |

An obvious drawback of this choice is that the framework is

restricted to the Windows operating system.

 The GDI+ libraries were used to render the graphics

from the games. These libraries provide access to the standard

Windows graphics API. They are not high-performance, but

they have performed adequately thus far.

 When a user runs the game engine, they are queried for

the location of a game file written in SequenceL. The

SequenceL compiler

is then called to

compile the game

source file into C++

code. The Visual

Studio C++

compiler is then

called to compile

that C++ code into a

C++ DLL. The

game engine is then

able to access the

Easel functions and

execute the game.

 The game engine runs the PlayGame algorithm until

the player interrupts it by exiting the application.

3 Conclusions

 Several simple games have now been written using the

EaselSL engine. These games range from Tic-Tac-Toe to

Breakout. The engine was in fact used in an undergraduate

Concepts of Programming Languages course at Texas Tech

University to provide students with hands-on experience using

a functional language for game programming.

 It has become apparent that there are some inherent

limitations in the design of Easel. One such limitation is that s

the state gets large, as in most games of considerable size, the

new state becomes too large to efficiently pass by value. In

addition, all game actions that affect a single intuitive state

variable must be located in one place together, which can be

unintuitive in complex games.

4 Future Work

 Work is currently under way to extend the current game

engine to directly support 3D rendering. The project has also

inspired research into what is currently being called Concrete

State Machine Language (CSML). Future work includes the

use of abstract state machines calling SequenceL functions to

address the limitations discussed in the previous section.

5 References

[1] John Carmack’s keynote at Quakecon 2013 part 4. 2013,

http://youtu.be/1PhArSujR_A.

[2] J. Hughes, “Why Functional Programming Matters,” in

The Computer Journal - Special issue on Lazy functional

programming archive Volume 32 Issue 2, April 1989, pp. 98-

107.

[3] B. Nemanich, D. Cooke, and J. N. Rushton, “SequenceL:

transparency and multi-core parallelisms,” in Proceedings of

the 5th ACM SIGPLAN workshop on Declarative aspects of

multicore programming, 2010, pp. 45–52.

[4] E. Czaplick, “Elm: Concurrent FRP for Functional GUI”,

Master’s Thesis, Harvard School of Engineering and Applied

Sciences,

www.seas.harvard.edu/sites/default/files/files/archived/Czapli

cki.pdf, March, 2012.

[5] M. H. Cheong, “Functional Programming and 3D

Games,” Master’s Thesis, The University of New South

Wales School of Computer Science and Engineering,

www.cse.unsw.edu.au/~pls/thesis/munc-thesis.pdf, 2005.

[6] B. Nelson and J. N. Rushton, “Fully Automatic Parallel

Programming,” presented at the Worldcomp 2013, at The

2013 International Conference on Foundations of Computer

Science, 2013.

Figure 3: Simple Easel Game in SequenceL

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

Int'l Conf. Software Eng. Research and Practice | SERP'14 | 305

Efficient and Effective Training in New Languages to

Developers

M. Barjaktarovic

Department of Computer Science, Hawai’i Pacific University, Honolulu, Hawai’i, U.S.A.

Abstract - Learning to program is similar to learning a

foreign language. There are many programs for “fast

learning” of various foreign languages. How can such an

efficient outcome be accomplished in programming? In

industry, workers are expected to learn new languages,

systems, and environments. In college, students often arrive

with less than desirable level of skills in mathematics, reading

comprehension, and a structured approach to studying and

solving problems, in general. In this paper we describe a

beginners’ class in programming that efficiently and

effectively trains learners to design and implement correct,

documented, and tested code. After about 10 hours of in-class

training, students can look up and use math API functions and

solve quadratic equations. After about 15 hours of in-class

training, students can look up and use random number

function API and design, implement and test a simple game

such as “heads or tails” or “paper, rock, scissors.”

Keywords: training, software, programming, language, test,

development.

1 Introduction

 Graduates with good programming skills are in high

demand. Industry continuously demands higher quality and

more competence in graduates as well as current state-of-the-

art skills, such as test driven development, agile development,

design patterns, and modern languages and environments such

as Ruby or Hadoop. Industry expects employees to keep their

skills current, typically on their own. Graduate school also

expects students to arrive with sufficient training. For example,

the new Georgia Tech online master’s degree, produced in

collaboration with AT&T, emphasizes the real-life skills of

“systematic functional testing approach” which depends on

working with functional specification and proceeding to

identify and design test cases to drive the software

development [10].

The issue then is how to train both experienced and

newcomers in the new technologies, efficiently and effectively.

Any programmers should be able to learn new technologies

rather quickly if they have a solid foundation in programming

concepts, deeply rooted in mathematics. Given that younger

generations in the USA do not feel strongly about studying

STEM fields and thus are less likely to choose and excel in

programming, how do we produce adequate numbers of

competent technical work force, capable of using mathematics

and computer science tools to solve real-world problems.

These questions are very important when assuring a country’s

economic prosperity and security; for example, competing in

the global market and digitally protecting and defending the

country's resources [3][7][9]. Efforts to increase understanding

of effective undergraduate STEM education produced analysis

of effective practices, directions for future research and

suitable evaluation criteria [4][5][6][8].

The results of the 2012 PISA study show that American

teenagers are scoring quite low in mathematics and reading

skills. The U.S. ranking is 23-29 out of 34 developed countries

worldwide [2]. In addition, college students tend to study less

than desirable 2 hours per week of study outside of class per

credit hour of instruction [1]. The issue that many faculty face

in institutions in higher-level learning becomes: how to fill in

the lack of prerequisite knowledge that students have when

they enter college and how to prepare students to keep on

progressing in their academic work. The same issue faces

industry in terms of skills updates of current employees.

What steps are necessary to establish a solid foundation in the

concepts and to keep learning and improving? As many

mathematics and programming instructors know, there are

particular issues when training students to program, due

largely to students’ lack of a solid mathematical foundation,

formalized thinking, reading and comprehension skills, and

structured work and study skills, all required for success in

programming. Teaching substitution skills to students of all

levels is discussed in [12]. More advanced technical skills of

modular design, more advanced features of programming and

extensive test development are described in [11] and [13].

In this paper we describe a beginners’ class in programming,

intended for students with no programming experience and/or

anyone learning a new language/environment, that produces

rather effective and efficient results. This class can be offered

in academia, as in-house training, or as an independent course

for only learning to program. After about 10 hours of in-class

training, students can look up and use math application

programming interface (API) functions and solve quadratic

equation. After about 15 hours of in-class training, students

can look up and use random number function API and design,

implement and test a simple game such as “heads or tails” or

“paper, rock, scissors.”

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

306 Int'l Conf. Software Eng. Research and Practice | SERP'14 |

The class is based on our own notes as a textbook. We

examined many “learn to program books” and have not seen

any using our approach, based on traditional practices in

engineering. The language used is Java, but concepts apply to

many other languages. We show students examples of the same

code done in different languages to illustrate that the same

concepts are used although the syntax may be different.

2 Prerequisites

There are certain skills necessary for success in

programming, yet likely to be lacking in students and thus

preventing them from learning. The most commonly lacking

skills are:

1. substitution into formulas, which leads to not

understanding how to use basic rules of programming

language syntax and especially how to use API to call

various functions.

2. ability to understand written instructions, i.e. reading and

comprehension skills. Lack of these skills leads to

inability to set up the problem, which then leads to

inability to program it. This lack is amplified by the lack

of mathematical understanding. Confusion is often

related to mathematical and technical concepts, such as

“ask the user to enter the input and then check if the

input is in the right range” or “tabulate the results.”

3. ability to think in a formalized, structured way,

understanding steps. In other words, ability to think

algorithmically and to design correct code.

These skills should be mastered in discrete mathematics

course typically required of computer science freshman;

however, students might have done poorly in the class and/or

have not taken the class (for example, they are learning in a

community college setting, this is in-house training for a new

language, etc.). The programming instructor is well advised to

somehow fill in the missing knowledge and further polish it, in

a time efficient manner. The investment in mastering these

skills will lead to a more productive and satisfactory

programming experience. We find it most efficient to teach

these skills through programming exercises.

3 Skills

 Currently, programming is experiencing a renaissance in

terms of mathematics, as unit testing and test-driven

development has brought back flow charts, algorithms, and

first order logic into programming. Without reliance on

formalism of mathematics, programming can seem a

mysterious activity that requires memorizing many seemingly

meaningless and unrelated steps. Students are not able to see

the similarity of concepts between various languages and then

quickly shift from one language to another. In our experience,

students learn rather fast when they are taught the “story” aka

the reasoning behind the programming (involving hardware,

computer architecture, and Boolean nature of digital

components) and taught to program with awareness of the

underlying hardware mechanisms. In addition, programming

becomes a very effective tool to sharpen mathematical skills,

because every step and every assumption has to be made

explicit. We use a proven-to-be effective, traditional, basic

engineering approach of “testable boxes,” which requires some

skills in abstract thinking and formalized approach.

The rigor and objectivity of mathematics requires some

training. We observe in our classrooms that students

unexperienced in mathematics do not like “being wrong.” One

aspect of programming is that compiler will report (in writing)

anything “wrong” and will refuse to continue. A typical

response from a new programmer (young or not) is to say:

“The computer doesn’t like me!” and to get rather frustrated.

Indeed, programming is an objective activity, it is essentially

an interaction with raw hardware without any artificial

intelligence. We tell students that they are talking to a robot

that has been programmed in a very limited way and

understands only certain things, as specified by Java syntax.

Students become enthusiastic about “interacting with a robot”

since that viewpoint makes programming more of a game and

most students love to play computer games.

Test-driven development is emphasized by enforcing a unit

testing approach: designing suitable test cases and test stubs,

providing expected results, running the code to see if it does

produce the same results, and commenting on the process.

System analysis skills, working with functional specification

and following instructions is emphasized by providing

problems with simple yet particular instructions to be

followed. For example, the exact format of pretty print, or the

units and values required for calculation.

4 Starting with Hardware

 The sequence of lessons followed can be described as:

1. Review of digital literacy concepts (hardware, operating

system, computer architecture, programming languages,

compilers, integrated development environments (IDEs).

(1.5 hours)

2. Introduction to basic computing concepts (memory

layout, variables, storing of variables, declaration,

initialization, assignment statements). (1.5 hours)

3. Introduction to the first program: “Hello world!” to get

students used to compiling and running code and IDE.

(1.5 hours)

4. Introduction to basic programming concepts:

assignments, using common functions, basic I/O,

conditionals, loops, random numbers, arrays and strings.

(the rest of semester, and covered in varied level of detail

depending on students’ abilities, needs, and number of

credit hours counted towards the class, i.e. allocated

time.)

In the following sections, we will describe each programming

unit individually.

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

Int'l Conf. Software Eng. Research and Practice | SERP'14 | 307

4.1 Learning by Mimicking Patterns

 This portion of class is an introduction to variable

naming conventions, code documentation, conversion of units,

and appropriate print statements aka pretty print. Students are

given a simple program that accomplishes something tangible

in terms of computation; a simple problem that they have

solved on paper in some math class. There are several

purposes of this program: 1) Introduce different types of

statements; get the students to intuitively grasp the meaning of

various statements in code and learn the technical terminology

of higher-level imperative languages such as initialization,

declaration, assignment. 2) Introduce basic debugging and

testing skills and test-driven development concepts. Students

debug the code using the print statements as well as the

debugger. 3) Introduce the concept of what the program

knows and what must be kept in mind of the programmer, such

as meaning of variables and their units.

For this purpose, we like to use a program that calculates the

surface area and volume of a sphere, because these formulas

are rather simple, familiar, yet illustrative enough. The code

given to students always has an intentional bug in calculations.

For example, we calculate the surface area of a sphere with

radius to the third power, instead of second. Since students are

just learning to program, they typically will miss that the

formula is wrong until we test the program. Also, they expect

code to be “correct” and this intentional twist is teaching them

to look at code with a critical eye, read it carefully, and test it.

They learn that a program that compiles does not necessarily

produce correct results; they learn that it is very necessary to

come up with test cases and test in an organized manner. (3

hours, with extensive review of all concepts learned so far.)

4.2 Memory and Variables, Terminology

 The first program introduces the basic terminology and

syntax and the intuitive feel for it. We proceed to explain the

concepts in a more formalized way. Students are introduced to

the concept of data types, variable storage, variable

overwriting, integer truncation and casting, as it pertains to

different types of basic statements (declaration, initialization,

assignment, read-in, print). Memory layout and the way that

variables are stored is discussed, in a rather simplistic but

visually illustrative manner that students can relate to. In this

portion of the class, students get used to the idea of reading

code from top to bottom without any ability to return back to

the earlier lines of code. Also, they learn to appreciate

different data types and the storage required for them. At this

point, features of different languages are discussed, such as

automatic initialization vs. not, memory content of unused

and/or uninitialized cells, type checking, and automatic

casting. (1.5 hours)

4.3 Common Functions

We continue to work with the concepts from the first

program in a more formal way. Students are introduced to

commonly used mathematical functions and their API. This

strategy is often not used for teaching programming to new

beginners because it is rather mathematical and does require

knowledge of mathematical functions, input arguments, output

arguments, and substitution. However, this portion of class is

meant as a speedy course in discrete mathematics, intended to

address all such likely weak areas. The investment in this

foundation pays off as students are able to independently use

any functions from its API, such as random number generator

and string operations. In addition, this portion of the course is

used as a speedy course in reading skills and independent

research, as students are asked to look up Java API and write a

test stub for a particular function. Typically, many students

have problems with these topics because their substitution aka

pattern matching skills need to be more developed. (3 hours)

4.4 Conditionals; Defensive Programming

 Students are introduced to conditional statements. This

portion of class is an opportunity to introduce flow charts,

logic, and algorithms. Conditional statements are taught first

with pseudocode, in order to grasp underlying mathematical

concepts behind syntax of any programming language.

Students typically quickly grasp logic when it is explained in

rather formal notation, such as unary and binary operators,

starting from a Boolean variable and making more complex

Boolean statements using Boolean operators. Again, students

are given intentionally buggy code and find errors in it; in this

case, the most common errors are wrong data types, e.g. not

using Boolean values for the “if” condition. Eventually,

students work with actual Java syntax. Students are shown

C/C++, Ruby, Python and Fortran syntax, and demonstrated

the similarities in actual syntax and their equivalence in

semantics. Students often have difficulties with switch

statements. Depending on the class, it might or might not be

necessary that all students fully grasp switch statements and

thus not necessary to spend extra time on it.

This portion of class introduces skills for independent study

and test-driven development by designing simple test

programs to learn new concepts. Students run given Java code

that uses “if” and nested “if” statements with print statements

that help trace the program. Following the given pattern,

students are asked to create and add their own test statements.

Software security is an important feature of good programs.

Students are introduced to defensive programming by using

conditionals to test if user input is valid for a particular

function that is called. For example, is the user entering a

positive number when calling a log function; is a square_root

function called with an argument greater than or equal to 0. (3

hours)

At this point, students can independently write code to solve a

quadratic equation with non-complex roots.

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

308 Int'l Conf. Software Eng. Research and Practice | SERP'14 |

4.5 Random Numbers

 At this point in the course, which is about 1.5 months of

instruction 3 hours per week at a rather slow and methodical

pace, students can write their own program from scratch,

without any sample code shown by the instructor. During class,

on their own, individually, they look up random() method from

Java Math class API, and use it to generate a HEAD or TAILS

message to the user. Most students move on and complete a

“paper, rock, scissors” game which requires nested “if”

statements and avoiding integer division. At this point,

students are quite enthusiastic about their programming

abilities and many will complete the game in its full form as

“human versus computer.” (1.5 hours)

4.6 Strings and Arrays

 Students are introduced to strings first by intuitive feel

and then by a more formalized approach. Students are given

sample code using Java String class method substring(. , .).

They are asked to use this code as a starting pattern, apply

their knowledge of how to use function declarations from API,

and write their own test stubs for methods length() and

concat(.,.).

In order to understand strings and various array specific

terminology used in String API (such as beginning index, end

index, sequence, or character array), students are introduced to

the concept of array, array index, and value at the index. Since

students are familiar with the concept of memory and storage,

they can grasp the visual representation of array as a “row in

memory” rather than “one cell” used for a single integer

variable. (3 hours)

4.7 Loops as “if jump”

 Students are introduced to “while,” “for” and “do-while”

loops. A while loop is simply an “if-jump” structure (for

example, as in assembly language syntax). When explained in

this way (assuming that students truly understand the “if”

statement and the concept of executing code line by line, top

down, as covered in earlier sections), “while” loop can be

learned in literally 10 minutes. From this point of view, it is

easy to then introduce a “for” loop. Students also learn the

concept of loop counters. The next step is to introduce loops in

which the counter is used as a variable for some calculation

inside the loop, and loops which do not depend on counters but

some conditions. (3 hours)

4.8 Team Project

 Students pair up and do a project of their choice. There is

a list of suggested projects, however students are free to pick

their own with the consent of instructor. The project will

require some conditional statements, looping, strings, random

numbers, and will most likely be in a form of a game. Students

are very enthusiastic about writing their own game. More

advanced students at this point can write code for matrix

manipulation, for example to display an “avatar” in a random

slot of a grid and to move it around. The class is allowed to

spend about 2 last weeks of the semester coding during class

time. (about 6 hrs)

4.9 Arrays and Subprograms

If time permits (e.g. the students came in better prepared)

and/or depending on the needs of students (e.g. the entire class

consists of only engineering students and/or is the only

programming class in their curriculum), the next section would

introduce arrays, including 2-D arrays, and writing

subprograms. If it is necessary to make time to cover these

topics, some of the previous topics can be skipped. However,

if the entire class consists of engineering students, it is quite

likely that everything can be covered.

5 Outcomes

We have taught programming at a large research university

with generally better prepared students, at a smaller teaching

university with a diverse student population, and at evening

programs for adults changing their occupation to be more

technical. The outcomes that we present here can be

accomplished in 1 credit hour (1.5 hours of meeting per week

in computer lab, for 15 weeks) with better prepared students;

and in 3 credit hours (3 hours of meeting per week in computer

lab, for 13 weeks) with less prepared students.

We provide the examples of tests used for learning Java,

demonstrating what students can learn rather quickly. The tests

can be easily translated into any other higher-level language.

5.1 Checkpoint #1

At the end of the first month (4 weeks of instruction for 3

hours per week in computer lab), a diverse group of new

students, many not well prepared, can solve the following

problems on their first test. “SOP” stands for

“System.out.println” and is used just in this paper for the sake

of saving space. Also, code is shown without any blank spaces

for the same reason.

1. Complete the code below with the following:

a. Declare an integer variable called k.

b. Initialize k to 3.

c. Add a user-friendly interface when inputting radius

(with units)

d. Add declaration and assignment statement for area

e. Add declaration and assignment statement for volume

f. Replace the 2 existing print statements with 1 print

statement to print the values of area and volume on

one line

g. Replace the 2 existing print statements with 3 print

statements that print a header and the values, showing

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

Int'l Conf. Software Eng. Research and Practice | SERP'14 | 309

radius, area and volume with units. It should look

approximately like this:

 Radius Area Volume

 cm cm^2 cm^3

 1 2.4 4.5

h. Write a message to the user on the screen, saying

“Good bye!”

i. The data type of radius is ________.

//This code calculates area and volume of

sphere, given its radius

//Input: radius (from the screen)

//Output: area and volume of a sphere (to the

screen)

import java.util.Scanner;

public class Sphere {

public static void main(String argv[]) {

 Scanner input = new Scanner(System.in);

 double radius = input.nextDouble();

 SOP("Sphere volume is : " + (4.0/3.0) *

Math.PI * Math.pow(radius,2));

 SOP("Sphere Surface Area is : " + 4.0 *

Math.PI * Math.pow(radius,3));

}

The most common mistakes in this problem are not following

the instructions carefully and printing two statements instead

of one, wrong use of print statements, and declaring

incorrectly.

2. Trace the following code. (If it could not run, say so).

int x = 5; SOP(x) //would print _____

int y = 6.8; SOP(y); _____

double z = 3; SOP(z); _____

x = x+1; SOP(x); _____

x = 8; SOP(x); _____

About 98% of all students get this problem correctly.

5.1.1 Results

This exam was taken by 19 new students, most in their second

semester of attending college, many unprepared for college

and one with a learning disability. The grades are shown

below.

 Exam 1

Average grade 83.6

Std dev in grade 24.0

Max grade 100 out of 100

Min grade 17 out of 100

of grades == 100 6
of grades 90-100 7

of grades 58-78 4

of grades <36 2

5.2 Checkpoint #2

After an additional month of classes (total of 8 weeks, 3 hours

of class per week in computer lab) new students can solve the

following problems. Since new students might be still catching

up with their mathematical skills, descriptions of Boolean

operators and the algorithm for finding the solutions to

quadratic equation are provided on the exam.

1. Trace the following pseudocode and fill in the blanks with

what gets printed. If nothing gets printed, indicate so. Put check

marks next to statements that get executed. Suggestion: also keep

track of variables on the side.

 A = 7

 B = 10

 IF (A > 5)

 B = 3

 END IF

 PRINT A, B ________ ________

 A = 10

 IF (A > 5 AND A < 8)

 B = 4

 ELSE

 B = 5

 END IF

 PRINT A, B ________ ________

 A = 1

 IF (A > 5 OR A < 8)

 B = 10

 IF (A > 5)

 B = 20

 END IF

 ELSE

 B = 30

 END IF

 PRINT A, B _______ _______

97% of all students solved this problem correctly and did not

need to put check marks next to lines that “fired.”

2. You have looked up Java API for Math class and you found

the method called “random.” This declaration and

documentation is in the API:

// Returns a double value with a positive sign, greater than or

equal to 0.0 and less than 1.0.

static double random();

Fill in the following code skeleton to be able to call this

method and test if it works correctly.

a. What is the data type of input argument to random()?

b. What is the data type of output?

c. Call the random method and store the result.

d. Print the result (PRINT or SOP is fine)

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

310 Int'l Conf. Software Eng. Research and Practice | SERP'14 |

public class TestRandom {

 public static void main(String argv[]) {

 }

}

Only a few students could not do this problem. Most points

were taken if students forgot to answer questions a. and b., or

to declare the data type of the result of random().

3. a. Fill in code below to make a simple game. Ask the user

to enter a number between 0 and 1. First check if the user

entered a number in the right range. If not, inform the user and

quit the program. If yes, inform them if they got head or tails.

If the number is less than 0.5, print HEAD! to the screen.

Otherwise, print TAIL! If you need Java logical operators,

their descriptions are on page 1.

b. Provide three test cases (two “straightforward” and one

“tricky”) and expected results.

c. Extra credit: instead of asking user to enter the initial

number, generate the number using random() method.

import java.util.Scanner;

public class HeadsTails {

 public static void main(String argv[]) {

 Scanner input = new Scanner(System.in);

 x = input.next_________();

 }

 }

About 95% of students completed part a. correctly. Five

students lost 10 points since they did not answer part b. at all,

either because they did not read the instructions, or because

they did not understand how to generate test cases.

4. a. Write the code to calculate the solution(s) to quadratic

equation. Ask the user to enter a, b and c, calculate x, and print

out the result(s).

 Use Math class sqrt(.) method. This is its declaration:

static double sqrt(double x);

 b. Describe how you would design the test cases and

which test cases you would use.

Review:

Quadratic equation is of the form:

 ax
2
 +bx + c = 0 where a,b, and c are real

constants, and x is any number

If b^2 – 4*a*c is less than 0, the solutions are complex

and we do not know how to calculate them at this point.

Inform the user.

If b^2 – 4*a*c is greater or equal to 0, and if a is not equal

to 0, then there are two solutions for x (one solution for x

has + and the other has – in front of the square root):

//This code provides solution to quadratic

equation ax
2
 +bx + c = 0

//Input: a,b,c (from the screen)

//Output: x (there can be one or two

values) (to the screen)

import java.util.Scanner;

public class Quadratic {

 public static void main(String argv[]) {

 Scanner input = new Scanner(System.in);

 }

}

This problem led to the most mistakes. Five students lost 10

points since they did not answer part b. at all, either because

they did not read the instructions, or because they did not

understand how to generate test cases. Among the incorrect

solutions provided, the two most common problems are: 1.

wrong algorithm; x is calculated before b^2 – 4*a*c <0 is

checked. 2. students with less mathematical prowess were

unsure how to translate the formulas given into code.

5.2.1 Results

This exam was taken by 17 beginner students. Two students

with lowest grades on exam 1 dropped out, because they were

missing class and/or not submitting homework. The grades are

shown below.

 Exam 2

Average grade 88.4

Std dev in grade 12.5

Max grade 105 out of 100+5 pts extra

credit
Min grade 66

of grades ≥ 100 4
of grades 90-100 7

of grades 80-90 1

of grades 66-78 5

of grades <66 0

5.3 Student Feedback

It is known that students tend to study less than recommended

2 hrs per credit hour [1]. There are many reasons for this,

including a lack of study skills, the need to work long hours

which take away from study time, or a lack of motivation. 17

students filled midterm class evaluation after the second exam.

Table 1 – Student midterm feedback: number of students

reporting their most difficult and easiest topics

Topics: if variables strings functions trace

Most difficult 3 0 3 4 0

Easiest 5 4 0 1 1

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

Int'l Conf. Software Eng. Research and Practice | SERP'14 | 311

Table 2 – Student midterm feedback: study habits.

Legend: 0 –none; 1-little; 2-some; 3-a lot

% of

class

atten

ded

hrs

studi

ed

outsi

de of

class

hrs I

think I

should

study

% of

class

for

which

I was

prepa

red

How

muc

h I

aske

d

ques

tions

How

much

I paid

attenti

on in

class

How

much

I

learn

in

class

99 3 5-6 90 3 3 3

100 2 6 90 0 3 2

95 1-2 1-2 90 1 2 3

98 2 3 90 1 3 3

100 2 6 95 3 2.5 2.5

99 5 10 100 1 3 3

99 2-4 4-5 10 3 3 2

100 8 8 85 2 2 2

100 6 6 100 1 3 3

100 2-3 3 90 0 3 3

98 5 5 90 1 3 2

75 8 20 65 1 1 3

100 6-10 4-6 95 3 3 3

Aver

age: 4.6 7.4 83.8 1.5 2.7 2.7

6 Conclusions

 This paper presents our approach and results in teaching

programming to beginners without any previous programming

experience. This approach can be used in many environments

such as academia, in-house training, independent

programming courses, for both new programmers and

experienced programmers learning a new language/system.

The approach is based on a traditional engineering practice of

testable units and understanding the underlying mechanisms.

After about 10 hours of in-class training, students can look up

and use math API functions and solve quadratic equation.

After about 15 hours of in-class training, students can look up

and use random number function API and design, implement

and test a simple game such as “heads or tails” or “paper,

rock, scissors.”

7 References

[1] A. C. McCormick, "It's About Time: What to Make of

Reported Declines in How Much College Students

Study (published in Liberaral Education vol.97, no.1),"

2014. [Online].Available:

https://www.aacu.org/liberaleducation/le-

wi11/LEWI11_McCormick.cfm.

[2] OECD, "Results for PISA 2012: United States,"

December 2013. [Online]. Available:

http://www.oecd.org/pisa/keyfindings/PISA-2012-

results-US.pdf.

[3] US News, "Report: Shortage of cyber experts may

hinder government," 2014. [Online]. Available:

http://abcnews.go.com/Technology/story?id=8147774.

[4] National Science Foundation (NSF), "NSF13-126

Common Guidelines for Education Research and

Development," September 2013. [Online]. Available:

http://www.nsf.gov/publications/pub_summ.jsp?ods_key

=nsf13126.

[5] National Science Foundation (NSF), "NSF 13-127

FAQs for Common Guidelines for Education Research

and Development," September 2013. [Online].

Available:

http://www.nsf.gov/publications/pub_summ.jsp?ods_key

=nsf13127.

[6] National Intitiative for Cybersecurity Education (NICE),

"Home Page," 2014. [Online]. Available:

http://csrc.nist.gov/nice/index.htm.

[7] PCAST, "Engage to Excel: Producing One Million

Additional College Graduates with Degrees in STEM,"

February 2012. [Online]. Available: President’s Council

of Advisors.

[8] National Research Council of National Academies,

"Discipline Based Education Research: Understanding

and Improving Learning in STEM" 2012. [Online].

Available:

http://www.nap.edu/openbook.php?record_id=13362.

[9] The Joint Task Force on Computing Curricula ACM and

IEEE Computer Society, "Computer Science Curricula

2013: Curriculum Guidelines forUndergraduate Degree

Programs in Computer Science," December 2013.

[Online]. Available:

http://www.acm.org/education/CS2013-final-report.pdf.

[10] Georgia Institute of Technology, "Georgia Tech Online

Master in Computer Science," 2014. [Online].

Available: http://www.omscs.gatech.edu/courses/.

[11] M. Barjaktarovic, "Training Effective Developers," in The

11th International Conference on Software Engineering

Research and Practice (SERP'12) (pp.375-380), Las

Vegas, 2012.

[12] M. Barjaktarovic, "Teaching Mathematics and

Programming Foundations Early in Curriculum Using

Real-Life Multicultural Examples.," in The International

Conference on Frontiers of Education: Computer Science

and Computer Engineering (FECS'12) (pp.78-84)., Las

Vegas, 2012.

[13] M. Barjaktarovic, "Teaching Design and Testing in

Computer Science Curriculum," in International

Conference on Frontiers in Education: Computer Science

and Computer Engineering (FECS'12) (pp. 106-112). ,

Las Vegas, 2012.

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

312 Int'l Conf. Software Eng. Research and Practice | SERP'14 |

An Experiment Comparing Easel with Pygame

Josh Archer, Bryant Nelson, and Nelson Rushton (nelson.rushton@gmail.com)

Computer Science, Texas Tech University, Lubbock, Texas, USA

Abstract – A framework for developing games using a

functional language was designed and implemented at Texas

Tech. After it was created, a study took place. It consisted of

taking a group of developers with the same task, splitting them

in half and giving one group our system, and the other group a

well known system. This paper describes the experiment,

results, and future work.

1 Introduction

 Easel [Nelson 2014] is a framework for creating real

time games by defining pure functions. It was designed

principally for the purpose of game programming for math

education. An easel game is created by defining the following

types and functions in the functional programming language

SequenceL [Cooke 2008]:

 State -- a structure type whose instances are possible

states of the game

 initialState() -- the starting state of the game

 images(S) -- If S is a state, images(S) is a sequence

whose members are the images to be displayed in the

game window when the game is in state S.

 sounds(I,S) -- a sequence of sounds played when

input I is accepted in state S.

 newState(I,S) -- the new state resulting from

accepting input I in state S.

 Given a file containing definitions for the types and

functions above (and any helpers necessary), the game

algorithm runs as follows until interrupted (typically, by the

user closing the game window). Note that the PlayGame

algorithm is implemented as a fixed C# program to be linked

with SequenceL code written by the student/developer.

 Algorithm PlayGame:

State variables:

 S: State, C: Click, K: list<char>, I: Input,

lastFrameTime: time-in-seconds

Procedure:

S := initialState()

while True:

set lastFrameTime to the current time

flip screen display to images(S)

If the left mouse button has clicked downward since the last

frame, while the mouse was positioned in the game window,

store the mouse position in C; otherwise set C equal to

(clicked:false).

Set K equal to the list of depressed keys

I := (C,K)

play all of the sounds in sounds(I,S)

S := newState(I,S)

Pause until currentTime >= lastFrameTime + 0.0

This paper describes an exploratory study designed to test the

ability of new game programmers (who are not new

programmers) to develop simple games using Easel. The

experiment is described in Section 2. The observed results are

reported in Section 3, and Section 4 describes new hypotheses

and future work.

2 Experimental Design

A group of 35 undergraduate students was divided into two

groups alphabetically by last name, and two game design

projects were assigned to each group. The first project that

was assigned was called Box Spin, a simple game where the

player can rotate and scale a box drawn on the screen. The

second game was Collision Course, in which there is a disc in

the center of the screen, and darts created by the player move

at a constant rate towards the disc until they hit it. The

specifications for the games follow, they take place on a

1000x800 pixel screen, with a constant framerate of 30 FPS

The specification for Box Spin is as follows: There is a

square box in the center of the screen. The box can rotate left

or right, and the box can grow or shrink. The box always

remains centered, and the four edges of the box must be

visible at any time. The state of the game consists of the

length of the box’s sides, and the box’s orientation angle. The

box begins with its size as 10x10 pixels, and its sides parallel

to the x and y axes. The player can press any of the following

keys to interact with the game: ‘W’, ‘A’, ‘S’, ‘D’, ‘X. In each

frame, the player can perform the following actions:

1. If ‘A’ is pressed and ‘D’ is not pressed, box rotates

left by 3 degrees.

2. If ‘D’ is pressed and ‘A’ is not pressed, box rotates

right by 3 degrees.

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

Int'l Conf. Software Eng. Research and Practice | SERP'14 | 313

3. If ‘W’ is pressed and ‘S’ is not pressed and the size

of the box is less than or equal to 500x500 pixels,

then the sides of the box grow by 4 pixels.

4. If ‘S’ is pressed and ‘W’ is not pressed and the size

of the box is greater than or equal to 10x10 pixels,

then the sides of the box shrink by 4 pixels.

5. If ‘X’ is pressed then the game returns to the initial

state.

The Collision Course game is defined as follows. There is a

disc in the center of the screen. Darts (smaller discs) can

appear wherever the player clicks on the screen. Darts will

always move directly toward the disc in the center at a

constant velocity until they reach the center, after which they

disappear. The state of the game consists of a collection of

darts and their positions, and whether the game is paused or

not. The initial state of the game is an empty collection of

darts, and unpaused. The player can press ‘X’, or ‘P’ to

interact with the game. The player can click at any location on

the game window. In each frame,

1. If the player clicks on the game window at point (x,

y) outside of the disc, then a dart is created and

centered at (x, y).

2. If the player presses ‘X’ then the game returns to its

initial state.

3. If the player presses ‘P’ and the game is paused then,

the game is unpaused.

4. If the player presses ‘P’ and the game is unpaused

then, the game is paused.

5. If the game is not paused, then every dart moves

directly toward the center of the screen by a distance

of 3 pixels.

6. Any dart that reaches the center (will pass through

(500,400) in the next frame) disappears.

In Phase I of the study, each student in the class was

assigned to write Box Spin, with students in Group I using

Easel and SequenceL, and students in Group II using Pygame

and Python. The entire class was given the same specification

for Box Spin, by which their submissions would be graded for

success or failure. In addition to the spec, the class was given

a lecture covering the math needed to implement the game.

They were encouraged to come ask any questions needed

during office hours.

In Phase II the students wrote Collision Course, and

switched the languages, with Group I now using Pygame and

Group II now using Easel. Once again the entire class was

given a specification, a lecture on the math needed, and

available office hours for help.

During both phases, students received links to the

documentation for Python Pygame, SequenceL, and Easel.

The documentation for SequenceL and Easel can be found at

http://goo.gl/1UcEty. One of the Pygame tutorials students

received was http://goo.gl/Ul8wZ4, which discusses the

architecture of game loops and how to set the frame rate in a

real time game. It is worth noting that most of the students had

not used SequenceL before, while most had used Python since

it is the CS1 language at Texas Tech.

3 A Priori Hypotheses

 Going into the experiment, we had a few patterns that

we would look for. Once such pattern would be that, contrary

to intuition, the abundance of documentation and examples

for Python/Pygame would actually cause difficulties for the

students developing in that language. The idea behind this

hypothesis is that given a plethora of information written by

numerous authors on numerous subject, the developer would

be overloaded with information that was not directly relevant

to their task: learning to use the language properly for

development.

 The other hypothesis was that the nature of a functional

language would greatly increase the ease of developing a

game. We decided to look very closely at the flow of the

programs that the subjects would create, seeing if ones built

in SequenceL/Easel seemed to allow the developer to

implement the specification as closely as possible with

minimal translation from spec to product.

4 Observed Results

 For project 1, the success rate for students who used

Easel was 6 successes out of 18 attempts, and the success rate

for students using PyGame was 3 successes out of 17

attempts. A “success” is defined here as writing a game that

functions according to its specification. For project 2, the

success rate for Easel was 7 out of 17, and the success rate

for Pygame was 2 out of 18.

 For both projects, incorrect submissions in PyGame

were due to framerate most of the time. There were more

runnable PyGame submissions than Easel ones. All but two

runnable submissions (i.e., submitted programs that did not

crash on opening) in Easel were correct.

5 New Hypotheses and Future Work

The most frequent errors in the Pygame programs involved

handling the frame rate. We thus hypothesize that this is a

stumbling block for new game programmers, and that the fact

that it is handled automatically in Easel was a significant

reason for the higher success rates for students using Easel. In

the Box Spin game, frame rate errors explain all of the

difference in success rates. They were, however, not a

significant factor in Collision Course.

The large number of tutorials, and large amount of sample

code available for Python and Pygame seemed to actually hurt

the students’ success rates when using these tools. It seemed

that students searched repeatedly for a library function or

example that would solve their problems for them, ultimately

without success. With Easel, on the other hand, students knew

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

314 Int'l Conf. Software Eng. Research and Practice | SERP'14 |

http://goo.gl/1UcEty
http://goo.gl/Ul8wZ4

they would have to solve the kernel of the problem

themselves, and so they rolled up their sleeves, got to it, and

ultimately succeeded at a higher rate.

Ideally, we would like to conduct an experiment in which

the students do each project in one observable session. We, as

observers, have no real way to gauge exactly what the

individual students’ issues were with the games since they

took the work home. This would also allow us to keep

accurate track of the time students spent on each game.

6 References

[Cooke 2008] Daniel E. Cooke, J. Nelson Rushton, Brad

Nemanich, Robert G. Watson, Per Andersen: Normalize,

transpose, and distribute: An automatic approach for handling

nonscalars. ACM Trans. Program. Lang. Syst. 30(2) (2008)

[Nelson 2014] Bryant Nelson, Josh Archer, and Nelson

Rushton. Easel: Purely Functional Game Programming.

Submitted to SERP 2014.

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

Int'l Conf. Software Eng. Research and Practice | SERP'14 | 315

Electronic Private Library Portal

Shahriar Movafaghi
Department of Computer Information Technology

Southern New Hampshire University

ABSTRACT

The Electronic Private Library (EPL)
consists of several different categories of
media such as books, mail, photographs,
audio, and video. Often these entities are
located on different platforms. They may be
accessible from personal computers, mobile
devices, or located in cloud files. For the
purpose of creating easy access to all user
information, this paper explores the use of a
portal to navigate through various
applications and gather all items to one EPL.

Data is often accessible through various
platforms, creating duplicates when
aggregated. First, this paper explores the
migration of data, and addresses the best
way to handle duplicate data in the EPL.
Second, the recommended process to
becoming a wholly digitalized entity is
explained. Third, should the user desire to
create different versions of any given
document, the issues associated with the
complexity of the data manipulation and
eBook versioning are addressed.

Finally, the means associated with creating
an EPL is explored. This discussion focuses
on several issues such as taxonomy,
cost/benefits, archiving, customization and
personalization of the portal. Information
security is also discussed considering its
paramount importance when creating an
EPL.

1. INTRODUCTION

This paper explores how an individual can
create an EPL consisting of several different
categories, such as books, mail,
photographs, audio, and video. In the
industry, a digital firm is defined as an [1]:
organization where nearly all significant
business processes and relationships with
customers, suppliers and employees are
digitally enabled, and key corporate assets
are managed through digital means. In any
industry, the main reason for becoming a
digital firm is to increase productivity and
efficiency; ultimately helping the digital
firm reach its goal of becoming more
profitable. However, there is no correlation
between the funds that a firm spends on
information technology and productivity [2].
Similarly, one may assume there is no
correlation between the amount an
individual spends on an EPL and the overall
monetary savings. Some of the data in an
EPL may have sentimental value, such as
photographs and video. These items may
not be measurable solely in monetary
values.

Personal libraries can include almost
anything, although books may be the most
typical component [3]. Some individuals
disassociate themselves from electronic
apparatus, to the extent that the user will ask
their assistant to print their emails and then
type the user's written response. Some
individuals and students prefer print books
rather than eBooks. However, print book
circulation declined by 23% between 2005

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

316 Int'l Conf. Software Eng. Research and Practice | SERP'14 |

and 2009 [4], suggesting the trend is towards
a greater use of eBooks.

2. E-Documentations and eBooks

The creation of an EPL and the
establishment of a paperless environment
can be an overwhelming task for an
individual. Therefore, we recommend
gradual implementation. To begin with, the
user should receive all transaction
statements through primary personal email,

forwarding all necessary emails from
secondary accounts (personal or work
related). This would include items such as
financial institution statements, bank
statements, credit card statements, tax
statements, and store purchase receipts. If
you are responding to an email using the
secondary account, make sure to BCC
(Blind Carbon Copy) the primary email
account. The primary personal email
account is the repository of all emails,
therefore it can be an easy access source to
search for all categories of documents.

Incoming Mail: Yes

Maually Sub-Divide Mail Between Household Memembers

Incoming Mail: NO

Junk Mail: Yes
Discard Junk Mail

Junk Mail: No

House M
ember: 1

House Member: n

House M
em

ber: 2

Tag For Archive and Scan the DocumentDiscard Mail

Archive: YesArchive: No

Archive: Yes Archive: No

Figure 1 - Activity Diagram for Distribution of Incoming Mail for House Members

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

Int'l Conf. Software Eng. Research and Practice | SERP'14 | 317

Figure 1 is the activity diagram for the
distribution of incoming mail for house
members. The primary household member
is responsible to identify documentation that
is important enough to scan and store
digitally. We recommend selecting one
platform to store your sensitive data such
as Microsoft Windows or Mac OS, which is
distributed by Apple, Inc. One can store
non-sensitive data in the clouds. Cloud
computing is based on virtual servers. A
virtual machine (VM) is a software
implementation in a computing environment
upon which an operating system (OS) or
program can be installed and run. The
virtual machine typically emulates a
physical computing environment, but
requests for CPU, memory, hard disk,
network and other hardware resources are
managed by a virtualization layer which
translates these requests to the underlying
physical hardware [5.a]. Virtual server
technology can host various operating
systems and applications using several
features such as load balancing and failover
[6].

With all its benefits, cloud computing also
brings concerns about the security and
privacy of information as a result of its size,
structure, and geographical dispersion. Such
concerns involve the following [7]:

• Leakage and unauthorized access of
data among virtual machines running
on the same server

• Failure of a cloud provider to
properly handle and protect sensitive
information

• Release of critical and sensitive data
to law enforcement or government
agencies without the approval and/or
knowledge of the client

• Ability to meet compliance and
regulatory requirements

• System crashes and failures that
make the cloud service unavailable
for extended periods of time

• Hackers breaking into client
applications hosted on the cloud and
acquiring and distributing sensitive
information

• The robustness of the security
protections instituted by the cloud
provider

• The degree of interoperability
available so that a client can easily
move applications among different
cloud providers and avoid "lock-in"

E-Documents can be stored using file
systems or a documentation management
system that uses a database system. When
creating an EPL with a file system, store all
documentations in one root directory which
is subdivided to different categories. This
makes it easier to back up the root directory
by removing the need to remember different
disk volumes and directories to back-up.
Consistent use of standard file names is
helpful and should be employed, for
example name a file with a date stamp and
file description (yyyy-mm-dd – description).

We recommend several levels of security for
each file category. The user can set the level
of security for different objects. You may
consider four levels of security. The highest
level of security would cover direct financial
information for logging into your bank
accounts or credit card providers. The
second level would likely cover indirect
financial, such as logging into an online
store that will take credit card information,
the third level would cover emails for
personal use and social media and the lowest
level would cover usernames/passwords to
play games, watch video and/or animation.

Each level of security has many
requirements that a user can establish. For

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

318 Int'l Conf. Software Eng. Research and Practice | SERP'14 |

example,
require a
both up
numbers,
the passw
the user t
list of ite
The sec
complex
security
includes
password
contain a

The use
proliferat
reading
popular w
generatio
computer
high-tech
electroni
education
Educator

, the highe
a complex

pper and l
, and special
word, the sec
to select a p

ems as well
ond level

password.
may have

alphanum
ds, and the
alphanumeric

of electron
ted in the
devices app
with young
on of stu
rs, cell pho
h devices is
c book t
nal and
rs and

Figu

est levels
password th
ower case
l symbols. In
curity login

preselected p
as use of a n
may only
 The third
a password

meric and
fourth leve

c characters.

nic reading
last few y

pear to be
readers. For

udents fam
ones, iPods
more likely
technology
recreationa

school

ure 2 – Typi

of security
hat includes

characters,
n addition to
may require

photo from a
numeric pin.
include the
d level of
d that only

d numeric
el may only
.

devices has
years. These

particularly
r example, a
miliar with
, and other

y to embrace
for both

al reading.
librarians

ical Archite

y
s
,

o
e
a
.
e
f
y
c
y

s
e
y
a
h
r
e
h
.
s

enth
devi
to re
stud
appl
Goo
Thes
usin
stick
diffe
shou
with

We
port
the f
the
appl
the
info
com
the
laye
how

ecture of the

husiastically
ices as a me
ead and exp

dents and p
lications suc
odReader [5.
se applicatio

ng features
ky notes, a
erent applic
uld be trans
hout losing th

recommend
table to othe
formulation

typical ar
lication. The

presentatio
rmation to

mmands from
domain and

ers improve
wever perform

e Portable A

support th
eans of enco
plore inform
professional
ch as Note
.c], and Ado
ons allow fo

such as h
and shapes
cations used
sferable to
he comment

d using eBo
er devices w
of an EPL.

rchitecture
e primary re
on layer

the user
m the user in
d data sourc
es mainten
mance declin

Applications

he use of
ouraging stu

mation [8]. S
ls use diff
Taker HD

obe Reader
r commentin

highlighting
. Regardles
d, the docu
another plat
ts.

ok tools tha
when consid

 Figure 2 s
of a por

esponsibiliti
are to di
and to inte
nto actions
ce [9]. Cre

nance and
nes.

s

these
udents
Some
ferent
[5.b],
[5.d].
ng by

text,
ss of
ument
tform

at are
dering
shows
rtable
ies of
isplay
erpret
upon

eating
cost,

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

Int'l Conf. Software Eng. Research and Practice | SERP'14 | 319

A Web Service is a business component that
provides a useful, reusable functionality to
clients or consumers. A Web Service can be
thought of as a component with truly global
accessibility—if you have the appropriate
access rights, you can make use of a Web
service from anywhere in the world as long
as your computer is connected to the
Internet [10]. SQL server is used to access
the data from the database.

3. Digital Photographs

Digital Photographs are files with formats
such as: JPEG, PNG, GIF, TIFF, and BMP.
The highest quality digital photo format is
TIFF because TIFF files save all the
characteristic of an image including layers.
However, the size of the file is very large
[5.e]. TIFF is a widely used image format
that permits multiple representations of the
same image [11]. Both PNG and BMP are
lossless, meaning the quality in both of the
formats will not degrade no matter what the
image. PNG is supported by a majority of
editing software available for images. BMP
file format tends to be a large file size and
not all programs will support BMP. The
JPEG format is the smallest file format type
available.

Most editing software supports the JPEG
format, however, images may experience
reduced quality upon conversion to the
JPEG format. The size as well as the quality
of the converted file to JPEG can be affected
by the software a user choses to utilize to
convert the file. The format commonly
used for graphics displayed on web pages is
GIF. The compression process for GIF files
is lossless, similar to PNG and BMP,
however, saving images that contain many
colors using the GIF format which has a

limited palette of colors, will result in
decreased quality of photos. GIF files,
unlike JPG files, support backgrounds that
are transparent allowing GIF files to blend
with the colors on the backgrounds of
websites. The market share of the three
leading formats on websites are from highest
to lowest JPG, GIF and PNG, respectively
[12]. We recommend using TIFF file format
whenever possible in order to best aggregate
digital photographs in an EPL. However, it
is most convenient to convert your images to
JPG for posting on the web and/or sending
through email since the size is smaller than
the TIFF format and there is minimal quality
difference.

Petrelli and Whittaker [13] characterize and
compare physical and digital mementos in
the home, “Physical mementos are highly
valued, heterogeneous and support different
types of recollection. Contrary to
expectations, they are not purely
representational, and can involve
appropriating common objects and more
idiosyncratic forms. In contrast, digital
mementos were initially perceived as less
valuable, although participants later
reconsidered this. Overall digital mementos
were more limited in function and
expression than their physical counterparts,
largely involving representational photos
and videos.” We recommend taking a
photo of items in the home that will remind
you of an event that happened and then add
an explanation of that event (Figure 3).

Rodden and Wood discuss the findings of a
study that investigated how people manage
their collection of digital photographs [14].
In any case, we recommend that users store
photographs utilizing cloud computing
services. Since the requirements for e-
documentation, photos, audio and videos

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

320 Int'l Conf. Software Eng. Research and Practice | SERP'14 |

involve personal preference; we investigate
three major cloud-computing services.
Cloud computing companies were assessed
according to a rating system based on the
following criteria: reliability, price, security,
company stability, application
integration/migration, user friendliness, ease
of accessibility, performance, support and

tools. The three cloud computing
companies that will be reviewed in this
document include: Google Drive, Microsoft
SkyDrive and Amazon Cloud Drive. Cloud
computing needs can vary from user to user,
so it is up to the user to select criteria that
best satisfies the user needs.

Frame Caption:
I feel that my
life is like a
puzzle: All the
pieces fall into
the place
eventually and
the amazing
thing is that
none of the
pieces are
missing.

July 1999,
Shahriar
Movafaghi

“On Christmas 1997, my
daughter Olivia, who was
only seven years old,
received a 1000 piece
puzzle from her brothers,
Matthew and Stephen. I
started working on the
puzzle next to the
Christmas tree. As time
passed I had to move it to
several other rooms until
it was done. I was
amazed that over a year
and a half, I kept finding
stray puzzle pieces in
different locations.”

Figure 3- 1000 Pieces Puzzle Photograph

Google Drive allows users to have control
over all “file types in a single place,
including images” [5.f]. Users can “sync or
upload files types in the following formats:
.jpeg, .png, .gif, .tiff, and .bmp” [5.f].
Google Drive also allows users to share
images with other users through email.

Microsoft SkyDrive allows users to store
digital photos in the formats of JPG, JPEG,
GIF, BMP, TIF, and TIFF. These images
are displayed as thumbnails and can be
viewed by other users on SkyDrive as well
as in a slide show online, depending on the
permission rights.

Amazon Cloud Drive grants users 5 GB of
storage for free, which is roughly enough
space to store around 2,000 photos.
Compatible photo formats that can be
uploaded to the Cloud Drive include: PNG,
JPG, JPEG, GIF, BMP, TIF, and TIFF.

Amazon Cloud Drive grants users 5 GB of
storage for free, which is roughly enough
space to store around 2,000 photos.
Compatible photo formats that can be
uploaded to the Cloud Drive include: PNG,
JPG, JPEG, GIF, BMP, TIF, and TIFF.

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

Int'l Conf. Software Eng. Research and Practice | SERP'14 | 321

4. Digital Audio

There are many different types of digital
audio files with various features and benefits
that appeal to users depending on their
needs. There are three basic types of digital
audio files: uncompressed, or "common"
systems, such as the WAV format; formats
that use a compression technique, but lose
absolutely none of the data in the
compression, known as lossless
compression; and formats that do lose some
of the original data, but retain fairly high
quality, known as lossy compression [5.g].

One of the most commonly utilized digital
audio formats is WAV. WAV files are
typically large in size due to the fact they are
not at all compressed. WAV files are best
used in situations where there is no concern
for space.

Another well-known digital audio format is
the MP3. MP3 files are very good to use
when sharing online and can be used when
space is a factor. MP3 can be compressed to
a much more compact size than WAV
formatted files. Although the quality is
reduced due to compression, the difference
is very small and is unnoticeable to most
users.

Advanced Audio Coding, more commonly
referred to as AAC is a popular digital audio
format used on the Internet. It is a newer
compression system, and is generally agreed
to have a higher-quality sound at the same
compression levels as MP3. AAC is also
able to accept digital rights management
(DRM) systems, which limit how the files
can be used or transported [5.g].

A digital audio format that is not very well-
known is Vorbis (.ogg extension). It is
similar to MP3 and AAC and can be used as

an alternative to MP3. The quality of
Vorbis to MP3 is very comparable.

Google Drive permits users to “sync and
upload” audio files such as: “Vorbis Audio
codec, AAC audio codec, PCM audio, MP2
audio, MP3 audio, and WAV.

Microsoft SkyDrive allows users to store
digital audio using a separate application
called Sky Player. In order for users to
access Sky Player they must sign into their
SkyDrive account. Sky Player will catalog a
user’s entire collection automatically. Sky
Player gives users the ability to edit meta-
data information as well as download songs
to a phone, and create playlists [5.h].

Amazon Cloud Drive allows you to store
photos, documents, and videos. In order to
store digital audio files users must use
Amazon Cloud Player. Cloud Drive and
Cloud Player are separate services, each
with their own subscription offerings. Cloud
Player is used to store and play MP3s, and
Cloud Drive is a user’s hard drive in the
cloud [5.i]. If a user wishes to store audio
files other than in the MP3 or AAC format,
such as a wav format, it is recommended
that the user use the Amazon Cloud Player
Converter. Amazon Cloud Converter
allows users to convert wav to MP3 or AAC
that are supported by the Amazon Cloud
Player [5.j].

5. Digital Video

There is a wide variety of digital video
formats. The Moving Picture Experts Group
often referred to as MPG is one of the most
popular formats in the world. The quality of
MPEG-1 is very low. The next
advancement of MPEG is MPEG-2 followed
by MPEG-4, or MP4 or M4v. MPEG-4 has
the highest quality and contains many of the

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

322 Int'l Conf. Software Eng. Research and Practice | SERP'14 |

features of the MPEG-1 and MPEG-2 and
other related standards. In addition, it adds
new features such as (extended) VRML
support for 3D rendering, object-oriented
composite files (including audio, video and
VRML objects), support for externally-
specified Digital Rights Management and
various types of interactivity [5.k].

Another digital video format is Audio Video
Interleave, or AVI. AVI is simplistic in
reference to its operation of storage and has
the capabilities to be played in a wide range
of available media players. The MOV file
extension was created by Apple as a means
to store and play video files [5.k]. The
MOV format is used often due to the
impressive capabilities for compression.
The majority of videos created using digital
cameras are typically saved in the MOV
format as a default setting. MOV format is
also associated with .qt and QuickTime.
Advanced System Format, ASF, is
comparable to AVI in relation to file
compression. Streaming media is the most
common use for the ASF format. Windows
Media Video, or WMV, is another digital
video format that can run with WMP and
RealPlayer. Over the years the WMV
format has grown to include support for high
definition 720 and 1080 video [5.l]. There
are several other digital video formats that
are less popular than the ones mentioned
above, including: Advanced System Format
(ASF), Advanced Video Coding, High
Definition (AVCHD); as well as Flash
Video (FLV or SWF).

Google Drive gives users the ability to
regulate file types in a single place,
including video files. Google drive allows
users to sync or upload video files up to
10GB in size, and sync or upload video files
in the formats of: WebM files (Vp8 video
codec; .MPEG4, 3GPP and MOV files –
h264 and mpeg4 video codecs; AAC audio

codec, .AVI [MJPEG video codec,
.MPEGPS] MPEG2 video codec; .WMV,
and .FLV (Adobe – FLV1 video codec).

Microsoft SkyDrive can play most MP4
(.mp4), Windows Media Video (.wmv),
QuickTime movie (.mov), and Apple video
files (.m4v) directly from SkyDrive which is
found in most web browsers [5.m]. In order
to play videos stored on SkyDrive in a web
browser, Silverlight is usually a required
installation.

The first half of the Cloud Player equation is
the browser-based Amazon Cloud Player.
This Web-based music player lets you play
songs, create and manage playlists, and
upload audio files. Unfortunately, you
cannot upload files directly into Cloud
Player. You are required to download
Amazon MP3 Uploader to accomplish that
task, which automatically scans your hard
drive and uploads files into Amazon Cloud
Drive [5.n]. Amazon Cloud Drive is
compatible with AVI, MOV and WMV
formats.

Table 1 shows the typical scoring model
used to evaluate the three vendors, namely
Google, Microsoft and Amazon based on
each company’s cloud computing services.
The criteria is defined by the user and can
vary depending on different needs and
expectations. The criteria weight is
determined by what is most important to the
user. However, reliability always gets a
weight of 10 because if it does not regularly
work the other criteria are irrelevant. The
user should choose the top three vendors he
or she believes will best meet their
requirements, and after assessing these
vendors, a score can be derived. There are
several other resources available including
the Internet, product reviews, and other
related literature and documentation that can
be researched. Once the assessment is

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

Int'l Conf. Software Eng. Research and Practice | SERP'14 | 323

complete a score will be generated and the
highest grand total score will assist the user
to make an informed choice of a qualified

cloud computing option that will fit the
needs of the user.

 Amazon Google Microsoft

No Criteria Weight % Score % Score % Score
1 Reliability 10 80 800 95 950 51 510
2 Price 8 70 560 97 776 50 400
3 Security 5 60 300 93 465 52 260

4
Company Stability

7 98 686 98 686 98 686

5

Application
Integration/Migration

6 70 420 97 582 52 312

6
User Friendliness

3 88 264 93 279 75 225

7
Ease of Accessibility

4 60 240 92 368 70 280
8 Performance 9 76 684 97 873 50 450
9 Support 2 80 160 89 178 85 170
10 Tools 1 87 87 95 95 67 67

Grand Total 4201 5252 3360

Table 1 – Typical Scoring Model for Selecting an Application

6. Library Portal

As was mentioned in the previous section,
the user can store documentation, audio, and
video using file systems or a documentation
management system that uses a database
system. eBooks can be stored in PDF
formats, or on mobile devices that can be
accessible from other mobile devices or the
web.

There are several tools on the market that
can be used to create the EPL portal. We
recommend that the tool used for the EPL
portal have a user-friendly customization
feature. Various definitions exist for the
term customization and the term

personalization in e-commerce. For our
purposes, customization occurs when the
user has the ability to change the user
interface they are viewing using
mechanisms that are already built into the
system. Personalization occurs when the
system modifies the user interface pages on
its own without direct input from the user
[15]. Personalization is expensive and is
used for more professional websites such the
Health SmartLibrary [16].

Figure 5 shows a typical EPL portal using
Microsoft SharePoint [17]. Microsoft
SharePoint can be deployed on the intranet
which has a highest security level, or
deployed to cloud computing. SharePoint

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

324 Int'l Conf. Software Eng. Research and Practice | SERP'14 |

has an easy-to-use customization capability.
The image on the right is the name Shahriar
written in Farsi. The user can create several
SharePoint websites with different

categories for ease of access. You can also
store and retrieve different version of a
document using SharePoint.

Figure 4 - Typical Private Library Portal Using Microsoft SharePoint

7. Conclusion

The creation of an EPL and establishment of
a paperless environment may take weeks,
months or years to complete depending on
resources and the complexity of integration
of the applications used. In this paper we
explore how an individual can create a
private library consisting of several different
categories such as books, mail, photographs,

audio, and video files. The recommendation
of how to store and retrieve each data type is
discussed. The cloud computing capabilities
for three vendors was analyzed and the
reviews and recommendations are noted
based on a scoring model sample. Finally,
the typical EPL portal using Microsoft
SharePoint is explained.

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

Int'l Conf. Software Eng. Research and Practice | SERP'14 | 325

References

[1] Laudon, K., and Laudon J.,

Management Information Systems
(12th Edition). Prentice-Hall, 2012.
ISBN-13: 978-0-13-214285-6.

[2] Brynjolfsson, E., VII Pillars Of
Productivity, Optimize 2005.

[3] The Chronicle of Higher Education, six
academics' comment on what is in
their EPLs, ISSN 0009-5982, 09/2005,
Volume 52, Issue 6, p. B.16.

[4] Rose-Wilesa, L., Are Print Books
Dead? An Investigation of Book
Circulation at a Mid-Sized Academic
Library, Technical Services Quarterly,
Volume 30, Issue 2, 2013, Pages 129-
152.

[5] URLs for different websites
a. Definition of Virtual machine (VM)
http://searchservervirtualization.techtar
get.com/definition/virtual-machine
b. Note Taker HD
http://www.notetakerhd.com/index.ht
ml
c. GoodReader
http://www.goodiware.com/goodreade
r.html
d. Adobe Reader
http://www.adobe.com/downloads/
e. TIFF, PNG, JPEG or BMP: Which
image format offers the best quality
Not for web use?
http://uk.answers.yahoo.com/question/

index?qid=20100210043542AALKiUO
f. Images in Google Drive
https://support.google.com/drive/answer

/2423575?hl=en
g. What are Different Types of Digital

Audio Files?
www.wisegeek.org/what-are-different-

types-of-digital-audio-files.htm
h. Sky Player is an Elegant Way to

Play Your SkyDrive Music

http://winsource.com/2012/02/16/sky-
player-is-an-elegant-way-to-play-your-
skydrive-music/

i. What's the difference between Cloud
Drive and Cloud Player?

http://www.amazon.com/gp/help/custo
mer/display.html?nodeId=200143320

j. WAV to amazon cloud player, hot to
convert and upload WAV to amazon
cloud player

http://dream-cometure.over-
blog.com/article-wav-to-amazon-
cloud-player-how-to-convert-and-
upload-wav-to-amazon-cloud-player-
107810477.html
k. The Ultimate Guide to Digital
Video Formats
http://www.cepro.com/article/the_ulti
mate_guide_to_digital_video_formats/
l. Video Formats Explained
http://www.videomaker.com/article/15
362-video-formats-explained
m. Windows - Supported video
formats
http://windows.microsoft.com/en-
us/skydrive/video-formats-supported-
faq
n. Amazon Cloud Player
http://www.pcmag.com/article2/0,2817
,2382832,00.asp

[6] Movafaghi, S., Hojjati, S.,
Pournaghshband, H., Chan.T. , Collins,
J.S, “Impact of Virtualization
Technology in the IT Classroom”,
WORLDCOMP'12 - The 2012 World
Congress in Comp, Las Vegas,
Nevada.

[7] Krutz. R., Vines, D., Cloud Security:
A Comprehensive Guide to Secure
Cloud Computing. ISBN:
9780470589878, John Wiley & Sons
© 2010.

[8] Theresa, C., Privacy and E-Books,
Knowledge, Quest 40. 3 (Jan/Feb
2012): 62-65.

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

326 Int'l Conf. Software Eng. Research and Practice | SERP'14 |

[9] Fowler, M., Mee, R., Hieatt, E.,
Foemmel, M., Rice, D., Patterns of
Enterprise Application Architecture,
Addison-Wesley, 2012. ISBN-13: 978-
0-321-12742-6.

[10] Sharp, J. Visual C# 2010. Microsoft
Press, 2010. ISBN: 978-0-13-7356-
2670-6

[11] Kanade, A., Alur, R., Rajamani, S.,
Representation Dependence Testing
using Program Inversion, 2010, 10
Proceedings of the eighteenth ACM
SIGSOFT international symposium on
Foundations of software engineering,
Pages 277-286.

[12] Kemerer, C., Liu, C., Smith, M,
Strategies for Tomorrow’s ‘Winners-
Take-Some’ Digital Goods Markets ,
Communications of the ACM, May
2013, Vol. 56, No. 5

[13] Petrelli, D., and Whittaker, S., Family
memories in the home: contrasting
physical and digital mementos,
Personal and Ubiquitous Computing,
ISSN 1617-4909, 02/2010, Volume 14,
Issue 2, pp. 153 – 169.

[14] Rodden,K., Wood,K, How Do People
Manage Their Digital Photographs?,
Proceedings of the SIGCHI
Conference on Human Factors in
Computing Systems, 2003.

[15] Movafaghi, S., Chan, T.,
Pournaghband, H., Collins, J., The
Customization and Personalization for
Library Portal, The International
Journal of the Book, Volume 5, Issue
3, pp.7-14, 2008.

[16] Shedlock, J., Frisque M., Hunt S.,
Walton L., Handler, J., Gillam M.,
Case study: the Health SmartLibrary
experiences in web personalization and
customization at the Galter Health
Sciences Library, Northwestern
University, Journal of the Medical
Library Association : JMLA, ISSN
1536-5050, 04/2010, Volume 98, Issue
2, pp. 98 – 104.

[17] Microsoft Office System and Servers
Team, Getting started with Microsoft
SharePoint Foundation 2010,
Microsoft Corporation, Published:
June 2011.

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

Int'l Conf. Software Eng. Research and Practice | SERP'14 | 327

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

328 Int'l Conf. Software Eng. Research and Practice | SERP'14 |

SESSION

POSTERS

Chair(s)

TBA

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

Int'l Conf. Software Eng. Research and Practice | SERP'14 | 329

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

330 Int'l Conf. Software Eng. Research and Practice | SERP'14 |

Does Domain Knowledge Increase Creativity during

Requirements Development: An Empirical Study
Sonu Sharma

1
, Gursimran Walia

2
, Kenneth Magel

3

Microsoft Dynamics
1
, Computer Science Department

2, 3

Microsoft Corporation
1
, North Dakota State University

2, 3

Sonu.sharma@gmail.com
1
, gursimran.walia@ndsu.edu

2
, kenneth.magel@ndsu.edu

3

Abstract— To design and build a system/software, we need to

understand the business of the organization. So, understanding

the business is very important for requirement analysis of such

system and requires an effective and efficient use of domain

knowledge. In this paper we discuss the results of the empirical

study that was carried out to understand the influence of domain

knowledge on the creativity during requirements development.

I. INTRODUCTION

Creativity refers to “the ability to produce new and original
ideas and things” [1]. To that end, software development is the
process of creating software solutions that are original and
useful to end users. Researchers have begun to realize the
importance of creativity in software development, especially
during the later stages (e.g., design, implementation) of the
software process [7]. Majority of creativity research has
focused on developing computer-based tools for promoting
creativity during the design phase of software development [7].

Generally, requirements engineering is not considered as
creative process because of the notion that requirements are
gathered from stakeholder and written in a particular notation
and that all the creativity happens in the design phase.
However, the invention of new software systems and products
reveal that the process of discovering what the system will and
would not do (i.e., requirements) require creativity. The design
of each innovative product has a requirements stage where the
stakeholders create, invent, ideas which form the requirements
for the software system to be developed [9].

There are multiple factors (e.g., process, technology,
domain etc.) that can affect the creativity during different
stages (e.g., gathering, analysis, specification, management etc)
of the requirements engineering process. We are trying to
investigate the effect of “domain knowledge” on the creativity
during the requirements gathering process. To accomplish that,
we compared the creative solutions (i.e., requirement gathered)
prepared by domain experts in their familiar domain and
unfamiliar domain. This paper reports the results from an
empirical study that evaluates the creativity of requirements
developers by giving them two problems; one from the domain
they are familiar with, and the other one from an unfamiliar
domain. They were asked to come up with set of requirements
based on problem statement and then another set of
requirements based on detailed use case. Then, the set of
requirements for each domain were plotted in a detailed
concept map and each requirement was given a score based on
a scoring technique. The cumulative score of all requirements
for each participant is considered as their creativity score.

II. RESEARCH APPROACH: QUANTIFYING CREATIVITY

In this section we will describe our approach to quantify

creativity in requirement phase. In order to understand the

creativity scoring we used, we need to first understand concept

map and its use in computing the creativity score. A concept

map is a type of graphic organizer used to help organize and

represent knowledge of a subject. Concept maps begin with a

main idea (or concept) and then branch out to show how that

main idea can be broken down into specific topic. Concept

maps consist of nodes (points/vertices) and links (arcs/edges).

Each node of the concept map represents a requirement..

Creativity Calculation: The requirement gets more specific

as the level increase; this means Creativity is directly

proportional to the depth of concept map. To keep the scoring

simple we kept value of each node at same level equal to level

value. Top level has value 1 and the level value increment by 1

at each level. Creativity score for each participant in each

domain (familiar and unfamiliar) is calculated in two Phases. In

order to describe C precisely, we introduce the following

definitions and notations;

Let M = (R, E) represent a mental map tree, with r ∈ R

representing the set of requirements and eij ∈ E, represents the

hierarchical relationship between ri and rj. Let Rs ⊆ R define

the set of nodes covered by requirements by a participant.

 ∑
; Where depth(r) represents the depth of

node r. Note that depth of root node is 1. Let RPD be the set of

requirements identified using problem description. Let RUC be

the set of requirements identified using use cases.

For Phase I (gathering requirements by reading problem

description), the score is computed as; ∑
;

For Phase II (gathering requirements by using detailed use

cases), the score is computed as; ∑
;

To keep the scoring simple we kept value of each node at

same level equal to level value. Top level has value 1 and the

level value increment by 1 at each level. Creativity score for

each participant in each domain (familiar and unfamiliar) is

calculated in two Phases.

III. EXPERIMENT DESIGN

The main goal of this study is to compare the creativity of

solution of domain experts in gathering requirements. The

research question is focused with a part of study to evaluate the

creativity of domain experts in software problem solving in

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

Int'l Conf. Software Eng. Research and Practice | SERP'14 | 331

their own domain and then compare the creativity of their

solution in other domain.

We decided to utilize Concept Maps to judge the creativity
in finding solution. A very detailed concept map showing
requirement flow was created by experts in both the system
used for case study in this paper. To quantify creativity, each
node of the detailed concept map is given a score based on the
level they are in. Each participant’s sets of requirements are
plotted into the detailed concept. The cumulative score of each
participant set of requirement on the concept map is considered
their creativity score. The higher a score the higher is
considered the creativity of requirements. Even if two
participants have same number of requirements their creativity
score can differ. The lower a node in concept map a
requirement fit in higher is its creativity score.

Nine Computer Science graduate students enrolled in the
Software Design course at NDSU were given a problem
description on ATM machine (familiar domain) and
Communication process software (unfamiliar domain) and
were asked to write functional requirements. Each individual
was given a set of requirements from familiar domain and an
unfamiliar domain and were asked to write the functional
requirements. Each participant was required to list all different
use cases and the requirements related to each of those use
cases. Then, they analyzed each use case to come up with
additional set of requirements.

The correctness of the solution/requirements was evaluated
and each participant’s requirements were placed in a detailed
concept map to find the nodes of concept map covered by each
participant’s set of requirements. Once the detailed concept
map was ready for each system, a score was provided to each
node of concept map. The topmost node had value 1. And for
each level the value of the node was increased by 1. Each node
of the concept map represents a requirement for the system.
The lower node in the concept map represents more specific
requirements that their parents. The scoring of requirement for
each participant was divided into two Phases. In Phase I, all the
requirements gathered from problem description were plotted
into each node of the concept map. And a score was calculated
as summation ∑ (of each covered node value). In Phase II, the
requirements gathered from detailed Use Case text were also
plotted into the concept map and the score was calculated as
summation ∑ (each node value covered by requirement created
by use case).

IV. RESEARCH RESULTS

 This section provides results regarding the comparison of the
creativity of requirements engineers’ w.r.t the familiarity of the
domain. We analyzed the creativity score for familiar and
unfamiliar domain. Looking at the creativity score for each
phase (I and II) and in each domain (familiar and unfamiliar),
the requirements that user chose on Unfamiliar domain have
higher creative score, thus they cover more complex scenarios.

When we consider the detail Use Case approach, the
number of requirement and the creative score is much higher in
familiar domain as compared to the unfamiliar domain. For
detailed use case, the number of requirements gathered for

familiar domain is much higher than those for unfamiliar
domain. The same pattern is seen for creativity score.

The creativity score for requirements gathered on problem
descriptions shows that out of 9, 6 participants scored higher in
creativity of finding requirements. So, using problem
description technique, 66.66% of participants had higher
creative score in the domain they were not familiar with. But,
with inclusion of detailed use case technique 77.77% of
participants had higher creative score in familiar domain.

A one-way ANOVA was conducted to compare if there
was a significant difference between familiar problem
description creativity score (FAM_PD) and unfamiliar problem
description creativity score (UNFAM_PD). Similar analysis
was conducted to compare the creativity score as a result of
utilizing the use cases between familiar (FAM_UC) and
unfamiliar domains (UNFAM_UC). The analysis for FAM_PD
and UNFAM_PD revealed that people in unfamiliar group
exhibited statistically higher significant score (M=20.58,
SD=6.36) when compared to scores obtained in familiar
domain (M=12.57, SD=5.19) at p=0.01. These results show
that domain experts come up with more creative requirements
by reading problem description in unfamiliar domain.

Phase II (gathering requirements using use cases). One-
way ANOVA between FAM_UC and UNFAM_UC revealed
that people in familiar group exhibited statistically higher
significant score (M=8.86, SD=4.22) when compared to scores
obtained in unfamiliar domain (M=2.77, SD=1.85) at p=0.001.
This result shows that the expertise in a domain helped
stakeholders to consider more scenarios to come up with more
creative requirements. This result shows that domain experts
come up with more creative requirements in familiar domain
using detailed use cases.

V. DISCUSSION OF RESULTS

 This study provides evidence that the creativity of an
individual varies between the domains he/she is familiar with.
The results show the importance of detailed use case in
requirement phase. It can help a software organization be more
creative in gathering requirements. This study shows that
domain experts do a better job of finding requirements in their
domain compare to unfamiliar domain. This study showed that
using detailed use case approach did help in finding lot of new
requirements for both domains. The number of requirements
gathered in familiar domain using use case template approach
was almost the double of unfamiliar domain.

REFERENCES

[1] N. Bonnardel. Creativity in Design Activities: The Role of Analogies in
a Constrained Cognitive Environment. 1999.

[2] U. Farooq, J.M. Carroll, C.H. Ganoe. Supporting Creativity in
Distributed Scientific Communities. 2005.

[3] M.Bailey, C. Coats, K. Hamilton. Understanding Knowledge
Management Practices for Early Design Activity and Its Implications for
Reuse. 2009.

[4] L. Gabora. Cognitive Mechanisms Underlying the Creative Process.

[5] B. Rolfe. On the Production of Creative Subjectivity. 2009.

[6] The role of domain knowledge representation in requirements elicitation

[7] Neil Maiden, Suzanne Robertson & Alexis Gizikis Centre for HCI
Design, City University, London Atlantic Systems Guild, London
Provoking Creativity: Imagine What Your Requirements Could be Like.

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

332 Int'l Conf. Software Eng. Research and Practice | SERP'14 |

Program Dependence Graph

for Python's Dynamic Reference

Jangwu Jo
1
, Hye-Yeon Lim

2
 and Dae-Seong Kang

2

1
Department of Computer Engineering

2
Department of Electronic Engineering

Dong-A University, Hadan-dong, Saha-gu, Busan Korea

Abstract – A program dependence graph (PDG) is a graphic

representation of the data and control dependencies within a

procedure. PDGs have been used to detect software

plagiarism. The current methods of constructing PDGs do not

include data dependence incurred by Python's dynamic

reference. This paper describes the situation when the

conventional PDGs do not include data dependence incurred

by Python's dynamic reference, and proposes an algorithm to

add data dependence edges of Python's dynamic reference to

PDGs.

Keywords: Program dependence graph, Python, Dynamic

reference, Program plagiarism detection

1 Introduction

 Python is a general purpose, dynamic programming

language, and is widely used in various fields, such as web

applications, game development and the creation of desktop

and mobile applications[1][2]. Like other dynamic languages,

programs in Python are executed through interpreters. This

means that source codes of Python can be open to its users.

The easiness to access source code enables software

plagiarism to be convenient. The research to detect plagiarism

of Python software is needed.

 The current techniques for plagiarism detection fall into

four categories: String-based, AST(Abstract Syntax Tree)-

based, Token-based, and PDG(Program Dependence Graph)

based[3]. The first three techniques are known to be generally

fragile to tricky plagiarism disguises, such as statement

reordering and code insertion, but the last technique, PDG-

based, is shown to be strong to above disguises[4][5].

 Although PDG-based plagiarism detection is state of the

art, it has shortcoming to detect plagiarism of Python

programs. Due to the dynamic feature of Python, conventional

methods of constructing PDGs cannot reflect the data

dependence relation that is induced by Python’s dynamic

reference.

 This paper describes the situation when the conventional

PDGs do not include data dependence incurred by Python's

dynamic reference, and proposes an algorithm to add data

dependence edges of Python's dynamic reference to PDGs.

2 PDG and Dynamic reference of Python

 Program Dependence Graph(PDG) is a graphic

representation of the source code of a procedure[6]. The data

and control dependencies between statements are represented

by edges between program nodes in PDGs.

Figure 1 An illustrative Example of Python's dynamic

reference and its PDG

(b) a conventional PDG

(c) a PDG reflecting dynamic reference of python

S0: alice = { }

S1: alice['x'] = 1

S2: alice['y'] = 2

S3: str = raw_input()

S4: a = alice['x']

S5: b = alice[str]

(a) Example code in Python

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

Int'l Conf. Software Eng. Research and Practice | SERP'14 | 333

 Figure 1 provides an example to illustrate the

conventional PDG and PDG with Python’s dynamic reference.

Figure 1(b) depicts the PDG of the example code in Python in

Figure 1(a). The edges in solid lines in Figure 1(b) represent

data dependencies. But Figure 1(b) does not represent data

dependencies caused by dynamic reference of Python. Even

though the value of 'str' in assignment S5 cannot be known

before execution, there may be data dependencies from

assignment S1 and S2 to S5, since the value of ‘str’, the value

from raw_input() in S3, may be ‘x’ or ‘y’. Figure 1(c) shows

the added edges from Python's dynamic reference, as well as

the edges in Figure 1(b).

3 Data dependencies from Python's

dynamic reference

 Figure 2. outlines how to add data dependencies of

Python's dynamic reference. At line 1, every α[β], that is not

used as definition and both α and β are variable, needs to be

checked if there may be dependency into the node of α[β].

Then at lines 2, we checked if we can know the value of β

must be string constants s. If true, then at line 4, we compute

the live definitions of α[s] and we connect them to the use of

α[s], that is, α[β]. If we cannot guarantee that the value of β is

constant, at lines 6, live definitions of α[γ], γ is any string,

need to be connected to node of α[β].

1 : for each α [β] in program, both α and β are

variable, and α [β] is not used as a definition

of an assignment statement.

2 : if β evaluates to string constants s

3 : Then

4 : make edges from nodes that define α [s],

where, α [s] is live to a node of current

α [β]

5 : else

6 : make edges from nodes that define α [γ],

where α [γ] is live to node of current

α [β] and γ is any string

Figure 2 Algorithm to build data dependencies from

Python's dynamic reference

 If we apply the algorithm in Figure 2. to the example

code in Python in Figure 1(a), we can get the PDG in Figure

1(c). The dynamic reference, alice['str'] at line 5 in Figure

1(c) needs to be checked if the value of ‘str’ must be string

constant or not. Because we cannot guarantee the value of

‘str’ to be string constant, live definitions of alice['str'] are

alice['x'] at line 1 and alice['y'] at line 2. So the new two

edges, node S1 to S5 and node S2 to S5, are added to the

PDG reflecting dynamic reference of Python in Figure 1(c).

4 Conclusion

 This paper describes Python's dynamic reference, which

makes PDG lack of data dependence incurred by Python's

dynamic reference. This paper also proposes how to add data

dependence edges of Python's dynamic reference to PDG.

5 Acknowledgement

This work was supported by M2M terminal and solution

development project through IT cooperative study research

center foundation support project (Dong-A University

Media Device Lab) funded by the Korea Telecommunications

Operators Association.

6 References

[1] Python,

http://en.wikipedia.org/wiki/Python_(programming_language)

[2] TIOBE Programming Community index,

www.tiobe.com/tiobe_index/index.htm

[3] Vítor T. Martins, et. Al., “Plagiarism Detection: A Tool

Survey and Comparison”, In Proc. of 3rd Symposium on

Languages, Applications and Technologies (SLATE’14), pp.

143–158

[4] J. Krinke, “ Identifying similar code with program

dependence graphs,” In Proc. of WCRE’01 IEEE, 2001

[5] C. Liu, et al. “GPLAG: Detection of Software Plagiarism

by Program Dependence Graph Analysis” , In Proc. of Int

Conf on Knowledge discovery and data mining, pp 872-881,

2006

[6] J. Ferrante, et.al. “The Program Dependence Graph and

its use in optimization”, ACM Trans. on Program. Lang. and

Syst., 9(3)319-349, 1987

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

334 Int'l Conf. Software Eng. Research and Practice | SERP'14 |

http://en.wikipedia.org/wiki/Python_(programming_language)
http://www.tiobe.com/tiobe_index/index.htm

Can we make and use Carbon-Copy relationship to

recommend developers to fix bug?
*

Jungil Kim and Eunjoo Lee
 2

School of Computer Science and Engineering, Kyungpook National University, Daegu, Korea

Abstract - Bug triage is a task to find appropriate developers

to fix a new reported bug. As it is a time consuming task to

manually perform the bug triage, an automated developer

recommendation is helpful to efficiently support bug triage.

Previous studies mainly leverage text in bug reports such as

description, summary and comments. In this paper, we

leverage carbon-copy list (cc list) in bug reports. At first, CC-

DSN (cc-relation among developers), which is a developer

social network graph, is created with cc list. After that, we

tried to recommend appropriate developers using the CC-DSN

and several social network metrics like Indegree, Outdegree,

Closeness, Centrality, etc. The experimental results show that

our approach outperformed the performance of DREX with

3%, 9% of precision and 3%, 6% of recall respectively in JDT

and Firefox.

Keywords: Bug triage; repository mining; software

maintenance; Developer recommendation; Issue tracking

1 Introduction

 Large open source projects, such as Eclipse and Mozilla,

mostly adopt a Bug Tracking System (BTS) like BugZilla to

keep track of bug history. When a user encounters a new bug,

he/she writes detail of the bug according to form of bug report

and submits it to the project's BTS. A project manager then

assigns the bug report to a developer who is able to handle the

bug [1]. This process is often called as bug triage. It is hard to

manually assign all of the submitted bug reports since at least

300 bug reports are commonly submitted in large open source

project every day [2]. Therefore, it is significant to

automatically recommend developers for each bug report [2].

John et al. proposed a technique for automated developer

assignment using text of description and summary of bug

report. Wenjin et al. proposed a bug recommendation system,

DREX [3], which recommends appropriated developers with

K-Nearest-Neighbor Search and expertise ranking. In DREX,

the expert of developer is determined with the number of

comments which each developer added during bug resolution

[3]. In Bugzilla, carbon-copy list (cc list) is defined as follows.

“Users who may not have a direct role to play on this bug,

but who are interested in its progress.”
1

1
 https://bugs.eclipse.org/bugs/page.cgi?id=fields.html#bug_status

2
 Corresponding author

*
This study was supported by the BK21 Plus project (SW Human Resource

Development Program for Supporting Smart Life) funded by the Ministry of Education,

School of Computer Science and Engineering, Kyungpook National University, Korea

(2012R1A1A3011005).

From cc list, it is possible to infer the users who are

interested in resolving the bug. Therefore, not only summary

and description, but cc list may also be significant factor to

determine contributors of a specific bug, in addition to

description, summary and comments,.

In this paper, we construct CC-DSN graph, which presents

cc relation among developers by mining cc list of bug reports

and perform developer recommendation using social network

metrics such as indegree, outdegree, degree, betweenness

centrality and closeness centrality. In the experiment on open

source projects, we show the effectiveness of our approach by

comparing with DREX.

2 Construction of DSN using cc-

relationship

 A DSN usually represents communication network among

developers. In DSN, a node indicates a developer and an edge

refers communication relationship between nodes [4, 5]. A

communication relationship can be established by exchanging

comments between developers in a bug report [3]. Wenjin et

al. has proposed constructing DSN based on comments

remained in a bug report by developers. In [3], each edge is

made from a developer, where is at the latter place in a

comment sequence of a bug report, to all its previous

developers in comment sequence.

In this paper, CC-DSN is proposed which represents cc

relationship among developers based on cc list of a bug report.

A developer can be added to cc list of a bug report if the

developer is interested in processing the resolution of bug.

After added to cc list, the developer will receive all of the

change information until being resolved. Therefore,

developers who were added to same bug report’s cc list may

have more knowledge about resolution of the bug than others.

In the CC-DSN, nodes represent developers who have been

added to cc list and edges between nodes can be established if

developers have been added to same bug report’s cc list. The

weight of edge is degree of relationship between developers.

3 Experiments of recommending

developers

The research question (RQ) in this paper is as follows.

RQ: Can we use the CC-DSN to recommend appropriate

developers to fix bug?

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

Int'l Conf. Software Eng. Research and Practice | SERP'14 | 335

https://bugs.eclipse.org/bugs/page.cgi?id=fields.html#bug_status

Table 1 The Experiment data

 Date # Bug Report # Fold Size

CDT 2009 - 2013 3179 317

JDT 2009 - 2013 3286 328

FireFox 2009 - 2013 9931 993

Thunderbird 2009 - 2013 2903 290

Table 2 The result of precision and recall of DREX and CC-DSN

 DREX CC-DSN

 SF IND OUTD DGRE BW CN

Proj. P R P R P R P R P R P R

CDT 57 29 46 23 44 22 46 23 43 22 33 16

JDT 54 32 56 33 56 34 58 35 59 35 21 13

FireFox 21 19 28 23 26 23 30 25 26 23 5 4

Thunderbird 41 32 34 25 39 30 39 30 37 28 10 6

(SF : Simple Frequency, IND : Indegree, OUTD : Outdegree,

DGRE : Degree, BW : Betweenness Centrality, CN : Closeness

Centrality)

To answer to the above RQ, we conducted an experiment on

four open source projects (CDT, JDT, Firefox and

Thunderbird). At first, we constructed CC-DSN for each

component by mining bug reports in each project, to

recommend appropriate developers. The social network

metrics is selected for ranking developers. When a new bug is

reported in a specific component, we find developers who

have the top most value of the metrics and suggest them. The

precision and recall are used to compare with DREX.

3.1 Experiment data

 We collected bug reports from 2009 to 2013 in all of

projects represented as Table 1. As the experiment in [3], we

only considered fixed bug repots as experiment data set. The

number of fixed bug reports extracted from the open source

projects, CDT, JDT, Firefox and Thunderbird are 3179, 3286,

9931 and 2903, respectively.

3.2 Setup DREX

 DREX employs K-NN search algorithm and ranking

methods to perform developer recommendation. Before

adopting DREX, k value and ranking method should be

determined. The ranking method can be some of social

network metrics or simple frequency value. At the experiment

performed in [3], the best performance of DREX was shown

when the value of k was 15 and the simple frequency was

used. Therefore, we set the value of k to 15 and selected the

simple frequency metric as ranking method for DREX.

3.3 Evaluation

 We used 10-fold validation, a folding-based training and

validation approach, to achieve higher prediction accuracy.

All bug reports in each project were divided into 10 fold with

the fold size. In i-th fold phase, fold-i is used as training set

and next fold (i+1) is used as validation set. After the i-th

validation performed, the validated fold is also added to train

set to validate next fold data.

The performance of DREX and our approach were evaluated

with following precision and recall formula.

| |

| |
 (1)

| |

| |
 (2)

Where, and mean that set of developers which

contribute the bug report i to be fixed and Set of

recommended developers respectively.

3.4 Results

The results of DREX and our approach are presented in

Table 2. In CDT and Thunderbird, DREX outperformed our

approach by 10%, 3% with the precisions and by 6%, 2% with

recall respectively. However, except BW and CN, our

approach outperformed DREX by 3 %, 9% with precision and

by 3%, 6% with recall respectively in JDT and Firefox.

4 Conclusion and future work

 According to the result of experiment in section 3.D, we

should answer to RQ as follow.

“CC-DSN partially shows improved results than DREX.

Therefore, we confirm that CC-DSN is also applicable to

recommend suitable developers.”

 We believe that the cc-relationship proposed in this paper is

essential factor to improve developer recommendation system.

5 References

[1] J, Gaeul, S. Kim, and T. Zimmermann. "Improving bug

triage with bug tossing graphs." In Proceedings of the the 7th

joint meeting of the European software engineering

conference and the ACM SIGSOFT symposium on The

foundations of software engineering, 2009, pp.111-120.

[2] J Anvik, L Hiew and GC Murphy. "Who should fix this

bug?."Proceedings of the 28th international conference on

Software engineering, 2006, PP.361-370.

[3] W. Zhang, Y. Yang and Q. Wang, "Drex: Developer

recommendation with k-nearest-neighbor search and expertise

ranking." In Proceeding of 18th Asia Pacific Software

Engineering Conference, 2011, pp.389-396.

[4] Q. Hong, S. Kim, S.C. Cheung and C. Bird,

“Understanding a developer social network and its evolution”,

In Proceeding of 27th IEEE International Conference on

Software Maintenance, 2011, pp.323-332.

[5] M.S. Zanetti, I. Scholtes, C. J. Tessone, F. Schweitzer,

"Categorizing bugs with social networks: A case study on

four open source software communities.”, In Proceedings of

the International Conference on Software IEEE Engineering,

2013, pp. 1032-1041.

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

336 Int'l Conf. Software Eng. Research and Practice | SERP'14 |

SESSION

LATE BREAKING PAPERS AND POSITION
PAPERS: SOFTWARE ENGINEERING RESEARCH

AND PRACTICE

Chair(s)

Prof. Hamid R. Arabnia

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

Int'l Conf. Software Eng. Research and Practice | SERP'14 | 337

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

338 Int'l Conf. Software Eng. Research and Practice | SERP'14 |

Formal Specification-Driven Development
Richard Rutledge

College of Computing
Georgia Institute of Technology

Atlanta, GA
rrutledge@gatech.edu

Sheryl Duggins, Dan Lo, Frank Tsui
Department of CS and Software Engineering

Southern Polytechnic State University
Marietta, GA

{ sduggins, clo, ftsui }@spsu.edu

Abstract—! Since the inception of software engineering we have
focused on product quality and the process that was needed to
develop safety critical products. The definitions of quality and
associated attributes grew as software engineering matured. One
of the early “silver bullets” was the hope that incorporating
formalism in the process would bring us marked quality
improvement, but the drawback of extensive training and
competency detracted from that approach. Nevertheless, recently
we have made significant progress in this area, especially in the
form of improved tools and training. This paper examines some
of the recent improvements made in processes such as Test-
Driven Development (TDD), Behavior-Driven Development
(BDD), and associated automation tools. It proposes a related
methodology, a Formal Specification-Driven Development
(FSDD) process that embraces these recent improvements. The
paper recognizes that in the area of knowledge transfer, humans
will always make errors, however, FSDD will lessen those errors
through improved unambiguity, correctness, completeness, and
consistency.

Keywords-component; formal methods; test-driven
development; formal specification; behavior-driven development;

I. INTRODUCTION

In search of productivity and quality gains, some software
engineers have modified the traditional software development
process model. Early work stressed evolutionary, incremental
improvement. Efforts such as the Software Engineering
Institute (SEI) Capability Maturity Model (CMM) and
Software Process Improvement and Capability Determination
(SPICE/ISO 15504) encouraged increasingly heavyweight
process models. In counter-point, proponents of agile software
development often promote revolutionary, lightweight process
models. These models may prune sub-processes and/or
fundamentally reorder the remaining sub-processes. This paper
will examine some of the advantages and shortcomings of one
such approach, Test-Driven Development (TDD) [1] and a
derivative, Behavior-Driven Development (BDD) [2]. The
paper will then introduce a new artifact to the traditional
process model and present an argument that this traditional-
derived model delivers the advantages of TDD and BDD
without their shortcomings. The new artifact is a formal design
specification expressed in a behavioral specification language.
Hence, the process model proposed herein is referred to as
Formal Specification-Driven Development (FSDD).

The scope of this paper will be restricted to a qualitative
argument presenting the advantages of a FSDD approach. It
should be viewed as a proposed methodology leading to future
research to establish the quantitative efficacy of FSDD.
Attaining the quantitative efficacy of a process model is
difficult due to a number of factors. Consider TDD: although
introduced in 2003, TDD still lacks such quantifiable

justification. Tsui defines a set of 5 items or criteria that should
be included in a process definition: i) activities, ii) control, iii)
artifacts, iv) resources and v) tools [3]. Here, we will examine
the merits of FSDD mainly through the perspective of Tsui’s
item iii) and item v), the artifact and the tool.

Analogously to TDD/BDD, the practical application of
FSDD requires considerable automation and tool support.
Since TDD requires the frequent execution of all test cases by
the developer, the cases must be run quickly and efficiently.
Hence, the test suite must be fully automated. Similarly, FSDD
requires the formal design specification to be utilized in both
the implementation and test phases. Although it is possible to
perform these steps manually, specification without automation
would probably be impractical and would abrogate many of the
advantages cited in this paper.

This paper will demonstrate why new methods of software
development are needed and provide the underlying
motivation. It will establish the viability of the tool and
automation support presumed above. It will describe TDD and
BDD and introduce FSDD and work through a process
example using FSDD. Finally the paper will suggest future
work in this area.

II. MOTIVATION

Computer software plays an essential and critical role in
managing the infrastructure of a modern society. It is integral
to the operation of nuclear power plants, household toasters,
and all manner of environments in between. When software
fails, airplanes do not fly and cars do not drive. Yet the
challenge of building reliable software remains even as the size
of software projects scales ever larger. Even the ubiquitous cell
phone contains about five million lines of code [4]. Under
research funded by the Department of Homeland Security,
Chelf at Coverity examined 32 well established, open-source
software projects encompassing 17.5 million Lines of Code
(LOC) [5]. They calculated an average defect density of .434
per thousand lines of code. In addition to the risk to safety,
software defects are also expensive. In 2002 the National
Institute of Standards and Technology (NIST) estimated that
software defects cost the US economy over $60 billion each
year. Further, NIST also determined this figure could be
reduced by $22 billion if these defects could have been found
more efficiently.

In response to the current state of software quality, the
Verified Software Initiative (VSI) was founded to “gain deep
theoretical insights into the nature of correct software
construction, to radically advance the power of automated tools
for the construction and verification of software, and to
benchmark the capabilities of such tools through convincing

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

Int'l Conf. Software Eng. Research and Practice | SERP'14 | 339

Submitted to 2014 SERP - FDPTA: LATE BREAKING PAPER

experiments [6].” The VSI is a 15-year collaborative research
project with ambitious goals toward an ultimate objective of
defect free software. These goals include both the
establishment of the theoretical foundations of software
verification and the development of a sufficient toolset to
validate the approach with real-world software.

While formal specification languages, such as Z, could be
employed to demonstrate program correctness, they are still
unwieldy, impractical, and cost prohibitive for the vast majority
of projects. In current industry practice, an implementer is
given a module design specification consisting of Unified
Modeling Language (UML) and natural language. The
implementer then develops both the source code and the unit
tests for validation. However, this process can be substantially
flawed. If the implementer misinterprets the design
specification, that error will be reflected in both the code and
the unit tests, and is likely to remain undetected at least until
module integration, if not even later. The VSI effort is one
promising attempt to resolve this problem.

A formal specification language is a mathematically precise
notation for stating the properties of a software component. A
behavioral specification language is a type of formal language
intended to express the behavior of a module. A behavioral
specification language similar to Java Modeling Language
(JML), Spec#, Vienna Development Method Specification
Language (VDM-SL), or the Object Constraint Language
(OCL) can be employed to mitigate this process flaw. With
sufficient tool support, a behavioral design specification can be
used for both dynamic, run-time analysis and static analysis of
an implementation. Much of the current implementer written
unit tests could be replaced with automated specification driven
testing, combining the advantages of Bertrand Meyer’s Design
by Contract [7] with Test Driven Development. Additional
tools could support steps in the Software Development Life
Cycle (SDLC) beyond implementation. For example,
specifications could be scanned for boundary value conditions
[8] to aid the quality assurance team in test case generation.

An ideal behavioral specification language would be
rigorous, expressive, assessable, executable and abstract.
However, note that aspects of these attributes conflict.
Otherwise, designers would long since have adopted Z or a
derivative as the specification language of choice. An ideal
specification language must discern an appropriate blend.

III. TRADITIONAL SOFTWARE DEVELOPMENT LIFE CYCLE
(SDLC)

A. Description
Traditional software development process methodologies

recognize a common sub-set of distinct activities. These
include, among others, requirements analysis, software design,
implementation, and test. Methodologies differ in how these
activities are organized and performed. At the completion of
each element of an activity partition, an artifact must be
produced to transfer project specific knowledge to the next
agent in the selected process. Thus the artifact can be seen as a
project-specific bridge between knowledge domains. Both the
provider and the consumer of an artifact must be able to
comprehend it, and the extent to which they each understand
the artifact identically has a significant effect on the fidelity of
the next activity performed. Since this is an iterative cycle,

such transfer comprehension errors accumulate. The nature of
the artifacts and methods of knowledge transfer will be
examined more closely below.

B. Issues
Formal inspections and reviews of artifacts in software

engineering to detect and remove defects is a natural part of
the software process for large and complex projects today.
However, an error in knowledge transfer is unlikely to be
detected early in the process so the knowledge transfer error
may be propagated indefinitely.

The possibility of error exists whenever an artifact is
transferred to another agent. In order to minimize knowledge
transfer errors, artifacts should possess a subset of the
characteristics Pfleeger has identified for one particular artifact,
a software requirement [9]. This list includes correct,
consistent, unambiguous, and complete. Additionally, these
characteristics must apply equally in both the producer and
consumer knowledge domains. Considering the traditional
SDLC, note that agent re-interpretation of artifacts occurs
throughout the model. Thus a unit test can only detect an
activity error and will be oblivious to knowledge transfer
errors.

IV. BEHAVIORAL/TEST DRIVEN DEVELOPMENT

!
Figure 1. TDD/BDD Artifact Production

A. Description
1. Test-Driven Development (TDD)

Programmers construct unit tests to exercise the proposed
unit of source code before releasing as completed functionality.
In 2000, Kent Beck introduced eXtreme Programming (XP), an
agile development methodology [10]. One of the key practices
of XP requires the programmer to build the unit tests first,
before any source code is written. Beck later generalized this
practice as Test-Driven Development (TDD) [1] and
summarized the practice as repeated iterations of the following:

1. Write a new test case.
2. Run all the test cases and see the new one fail.
3. Write just enough code to make the test pass.
4. Re-run the test cases and see them all pass.
5. Refactor code to remove duplication.

For practical usage, the frequent application of this
procedure implies the full automation of unit test performance.
Since passing all unit tests is synonymous with code
completion, the collective set of unit tests is the design
specification. As such, the unit tests serve both verification and
validation. Thus TDD enhances unambiguity and completeness
as compared to a traditional model.

One clear advantage to TDD is that it provides an
unambiguous design specification. Thus the source code either
conforms to its specification, or it does not. In 2004, Erdogmus
et al conducted an empirical study of TDD (referred to as Test-

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

340 Int'l Conf. Software Eng. Research and Practice | SERP'14 |

First) [11] and found a small productivity gain. This gain was
attributed to better task understanding, better task focus, faster
learning, and lower rework effort.

2. Behavior-Driven Development (BDD)
While teaching agile practices to industry, Dan North

noticed a few recurrent problems with TDD [12].
“Programmers wanted to know where to start, what to test and
what not to test, how much to test in one go, what to call their
tests, and how to understand why a test fails”. Some of these
questions arose because TDD inverted their standard practice.
They knew what they wanted to code, and then tested what
they wrote. TDD requires them to first decide what they want
to test. Other questions resulted because Beck described TDD
in general terms rather than a procedure. North responded with
Behavior-Driven Development (BDD). It is a process
implementation of the TDD approach. Hence it possesses the
TDD advantages, while addressing what North perceived as its
shortcomings. In order for unit testing to drive the
implementation process, the tests must constitute a behavioral
specification. Supporting the terminology shift, North derived
his automation test tool, JBehavior, from Java’s JUnit.

North’s next significant insight from the phraseology shift
was that the semantics of the unit tests (behaviors) was now
accessible outside the programming staff. When BDD’s
naming conventions are followed, a straightforward processing
of the unit tests produces a set of English sentences accessible
to an analyst. The final step to current BDD practice is
provision for a “ubiquitous language” that can be read and
written by analysts, and read by frameworks such as JBehavior.
These goals are realized by projects such as rSpec and
Cucumber for the Ruby language [2]. By extending
applicability back into the analysis domain, BDD yields
additional completeness and some consistency improvements
over TDD.

B. Issues

Several issues with TDD/BDD can be qualitatively
considered and have been quantitatively analyzed. This paper
will discuss the specific first (BDD), and then proceed to the
general (TDD). Since the collection of scenarios is the
specification, the analyst is constrained to a language provided
for by the developer and the analyst may only make pre-
arranged lexical changes to the scenario specification. These
limitations are in stark contrast to the goal of a ubiquitous
language. Thus the process is exposed to the same knowledge
transfer errors as before and the observed process improvement
with regard to consistency is severely restricted.

Without the expansion into the analysis and test realms,
BDD devolves into TDD with a specific vocabulary. BDD
activities are limited to the developer who specified behaviors
(unit tests) before writing any implementation code. In 2005,
Erdogmus et al performed one of the first empirical studies of
TDD [11]. In a study involving thirty-five third-year students,
he found no impact on quality and a statistically insignificant
improvement in productivity. Erdogmus explained this lack of
clear results in terms of the limited scope of the projects under
test and the inexperience of the participants. However, another
explanation is that TDD does not address knowledge transfer
errors, and thus is not a major contributor to product quality. In
2010, Kollanus reviewed forty empirical studies of TDD [13].
She summarized the results of the findings as follows:

1. Weak evidence of better external quality with TDD
2. Very little evidence of better internal quality with TDD
3. Moderate evidence of decreased productivity with TDD

Summarizing many of the concerns with scaling TDD to
significant projects, John McGregor states, “Design coordinates
interacting entities. Choosing test cases that will adequately fill
this role is difficult though not impossible. It is true that a test
case is an unambiguous requirement, but is it the correct
requirement?” He goes on to suggest that unlike more robust
design techniques, it is not clear how TDD ensures “the
correctness, completeness, and consistency of the design [14].”

So the quantitative studies of TDD are decidedly
ambivalent. And the qualitative discussion argues strongly that
both TDD and BDD, when applied properly to a narrow band
of projects and teams, provide quality gains in terms of
unambiguity, completeness, and (partially) consistency. Note
that since neither process model mitigates the potential for
knowledge-transfer errors, correctness is unaffected.

V. FORMAL SPECIFICATION-DRIVEN DEVELOPMENT
The objective of this paper is not merely to argue that

formalism is good, but rather to demonstrate how a specific
application of formalism within the software development
process, together with adequate tool support, can yield the
benefits of TDD and further make significant gains in both
correctness and consistency attributes.

!
Figure 2. FSDD Artifact Production

A. Description
Unlike TDD and BDD, Formal Specification-Driven

Development (FSDD) does not affect the underlying process
model. Rather, it modifies the principle software design artifact
to change the type and nature of knowledge transfer to follow.
The design produces a formal specification in an
organizationally selected behavioral specification language
(JML, Dafny, Spec#, etc.), which becomes the artifact of record
for both implementation and test agents. The introduction of a
formal specification is a key step towards making significant
progress improving both correctness and consistency
properties. Although no additional steps have been inserted into
the traditional SDLC, a new artifact has been introduced and it
will likely require more rigor than prior artifacts. One may
reasonably conclude that the design effort is likely to increase.
However, the following sections will present a qualitative case
that the additional effort would be more than offset by a
reduction in re-work due to knowledge transfer errors and
downstream activity efficiencies.

The artifacts produced by FSDD are illustrated in Figure 2.
Arrows indicate FSDD processes and are labeled to indicate
manual and automated steps. Arrows also indicate the artifact
flow for input and output of each process. Automation support

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

Int'l Conf. Software Eng. Research and Practice | SERP'14 | 341

for artifact production reduces the risk of introducing
knowledge transfer errors. The production of a formal design
specification allows tool chain support in the development of
source code, unit tests, and test cases.

B. Tool Requirements
Tool support is a critical component of FSDD. Even though

FSDD can be manually implemented as an intellectual
exercise, employing FSDD without automation is impractical
at best. The following tools are anticipated in order to apply
FSDD in non-trivial circumstances.

1. Design Specifiation Analyzer
The designer uses the design specification analyzer to

verify the consistency and completeness of a formal design
specification. Referenced entities must be defined and
consistent in the specification language typing system.
Although this tool does not directly reduce knowledge transfer
errors, it does support quality assurance of the design phase
artifacts.

2. Implementation-Stub Generator
A subset of the behavioral specification will include an

interface specification. This includes such information as
classes, methods, pure functions, arguments, and return types.
This tool realizes behavior-less stubs in the implementation
language of these entities and maps specification fundamental
types (Integer) into implementation types (int). The intent of
the implementation-stub generator is not behavioral code
generation. It saves the coder considerable typing, and more
importantly, insures a minimal, ‘lexical-level’ compliance with
the specification. The specification must include all public
access to a class, although the coder is free to elaborate private
entities.

3. Specification-Aware Compiler
An FSDD-enabled compiler is expected to accept the

specification as input in addition to programmer-generated
source code. The compiler ensures that the source code is
‘lexically’ compliant to the specification as generated by the
stub generator. Non-compliance will be flagged as an error.
The addition of public entities not contained in the
specification will also be flagged as an error. The source code
will be statically analyzed and predicates that can be proven
will be discharged. Unproven predicates will be injected as
program logic in the target program to be validated
dynamically during program execution.

4. Unit-Test Framework
The unit-test framework will generate automated unit tests

from the formal specification. This tool provides the ‘driven’ in
FSDD. The goal of the programmer is to elaborate the
generated stubs with source code to create the behavior that
successfully completes the unit tests and thus is compliant with
the formal specification. The combination of tools and
activities works together to enhance correctness.

5. Test Case Analyzer
The test case analysis tool is an aide to Quality Assurance

(QA) engineers. It scans the formal specification and reports
detected boundary values for subsequent use in acceptance
testing against the requirements specification.

C. Issues
1. Formal Specifications Are Hard To Write

FSDD requires the software designer to learn to read and
write a new, more abstract language. Additionally, designers
with an implementation background will have to adopt a new
approach. They must learn to think in terms of ‘what’ an entity
does, rather than ‘how’ an entity does it. The requirement for
this new skill is restricted to software designers. No other labor
category within the process must be able to write a formal
specification and designers should account for a small
percentage of the complete development team.

2. Formal Specifications Are Hard To Read
Formal specification is a challenging subject. Many

(perhaps most) programmers lack the training and experience
to read and comprehend a formal design specification. In order
to evaluate the worst-case ramifications, consider the case in
which the entire coding team is unable to read the formal
design specification. The specification is a sealed, black box
artifact that is only comprehended by the support tools. The
coding team can still use the implementation-stub generator to
create the initial source files. They would still use designer-
specified unit tests to validate their work. But, they would have
to rely on the design support artifacts such as UML diagrams
and narrative description to convey behavior. This situation
does admit the potential for a knowledge transfer error. But the
error is contained since coders do not write the unit tests. In
those instances in which code completed behavior does not
pass unit testing, the coder must coordinate with the designer to
resolve the issue.

Although the above scenario is less than ideal due to the
additional coordination, the outcome is still superior to the non-
FSDD outcome. Without the formal specification, the
knowledge transfer error is likely to remain undetected until
this particular coding element is integrated with the rest of the
developing system. Ideally, the coders can read and
comprehend the specification. Then they need coordinate with
the designer only when the specification or design
documentation is in error.

3. FSDD, Validation, and Non-Functional
Requirements
Formal methods and automation can assist primarily with

verification. Is the artifact built the right way? Validation is
quite a bit more difficult. Is this the right artifact? Answering
these questions generally requires more than formal logic.
Specifically, they require a qualitative judgment from a
knowledgeable subject matter expert. Also, verification of non-
functional requirements is challenged by the initial selection of
specification language. Naturally, a behavioral specification
language is specifically designed to express behavior, not
performance characteristics. Behavioral specifications are
selected as the initial focus of FSDD due to their scope at
addressing knowledge transfer issues. But FSDD is not
behavioral specific. The specification language can be
augmented with additional logics such as temporal logic to
specify performance, which is beyond the scope of this paper.

D. Advantages
 The utilization of FSDD with full tool support provides

numerous advantages to the development process. Similar to
TDD, the goal of the programmer is to satisfy the automated
tests. However, the tests are not generated by the programmer,
but rather are generated by automation from the specification.
The programmer continues to add implementation until full

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

342 Int'l Conf. Software Eng. Research and Practice | SERP'14 |

compliance is achieved as validated by both static and dynamic
analysis. The module/class is then ready for integration.

1. Static Analysis: Implementation
Using the techniques reviewed above, a specification aware

compiler will warn the programmer when the implementation
does not satisfy its specification.

The compiler will first statically analyze the implementation
for compliancy to its specification with three possible
outcomes: proven non-compliant, indeterminate, and proven
compliant. If non-compliant, the compiler would emit a
warning message. After the programmer corrects the mistake,
the compiler may be able to prove the new implementation is
correct. In this case, unit testing is not required.

2. Specification Derived Unit Tests
The creation of unit tests from the specification is

straightforward. The pre-conditions specify the input domain of
the specification element. Analysis can readily provide test
case data for input partitioning and boundary testing [8]. With
test cases selected, unit testing consists of evoking the element
with each case and checking the post-conditions and invariants.
Any failure constitutes a failure of the unit test.

3. Static Analysis: Test
The test case analyzer can also provide material benefit to

functional testing in the Quality Assurance (QA) phase of
software development. With a formal behavioral specification,
tooling can extract key boundary values to use in functional,
black box testing without requiring input domain partitioning
and boundary testing [8].

4. Dynamic Analysis: Test
After development of the test cases, integration and system

testing will then be performed with instrumented builds of the
implementation. Remember that an instrumented build is one in
which the unproven pre-conditions, post-conditions, and
invariants are asserted (validated dynamically). This approach
will detect failures that might otherwise go undetected, and
establish responsibility down to the lowest specified element.
Kosmatov noted that software testing comprises about 50% of
the total cost of software development [15]. In FSDD, the
model is provided to the QA engineer without additional effort.

5. Resource Optimization (Personnel)
TDD presumes a uniformly high level of capability amongst

the design team [16]. This follows from the assumption that
programmers develop their own tests before coding any
implementation. Since the test is the specification, each
programmer shares equal responsibility for design. This
process does not scale beyond small (1 – 5) developer teams
for two principle reasons. First is the difficulty with attracting
and keeping a large group of top-tier software developers. The
second reason is fiscal justification. TDD requires uniform
capability amongst the development team and would require
more highly skilled software engineers than would FSDD,
which does not require uniformity and shifts complex tasks
onto a smaller design team resulting in reduced costs.

6. Specification Compliance Verification
During the development process, a significant percentage of

total effort is expended on verification activities. According to
Tian, “Software verification activities check the conformance
of a software system to its specifications [8]." FSDD enforces
conformity to the specification throughout the code
development phase and provides designers assurance that the

produced source code adheres to their intent. However, the
FSDD automation cannot replace all review activities. Manual
checks of new or modified code are still required to verify
compliance to organizational standards.

E. Summary of Impact on Quality Attributes
Table 1 provides a summary of the results of the

qualitative analysis and discussion of the process
methodologies with regards to the attributes of unambiguity,
completeness, consistency and correctness.

VI. PROCESS EXAMPLE

This section will provide a simplified hypothetical
walkthrough of an application of Formal Specification-Driven
Design (FSDD). The example application will be a simple
element of a banking application, the realization of a bank
account. The walkthrough will begin with its specification,
continue through its implementation, and conclude with some
aspects of functional testing.

After reviewing the Software Requirements Specification
(SRS), the designer completes a design specification in an
organizationally appropriate specification language. The
language used in this walkthrough does not represent any
specific language, but was chosen for maximum simplicity and
comprehension. The specification for this design is provided
below.
class%BankAcount%%
{%//%Model%Variables%
%%constant%Decimal%MAX_BALANCE%=%999999999.99;%
%%constant%Decimal%MAX_TRANSACT%=%99999999.99;%
%
%%//%Class%Predicates%
%%preGcondition:%GetBalance()%==%0;%
%%preGcondition:%IsLocked()%==%false;%
%%postGcondition:%GetBalance()%==%0;%
%%postGcondition:%IsLocked()%==%false;%
%%invariant:%GetBalance()%in%[0%..%MAX_BALANCE];%…}%

The above specification fragment declares one model
variable. It exists only in the model and is used to specify
behavior. The constant keyword declares the model variable to
be un-modifiable. Decimal and Boolean are specification
language fundamental data types. For each implementation
language, these must be mapped to implementation data types.
In this example, classes can have three differing predicates:
pre-conditions, post-conditions, and invariants. The pre-
condition for a class must evaluate to true at the conclusion of
object construction. The post-condition for a class must
evaluate to true before object destruction. The invariant for a
class must evaluate to true after class construction, before and
after any specification methods, and before object destruction.
Class method specifications continue below.
//%Class%Methods%
void%Credit(Decimal[0%..%MAX_TRANSACT]%amount)%
{%preGcondition:%not%IsLocked();%

postGcondition:%post%GetBalance()%==%pre%GetBalance()%
+%amount;}%

Table 1: Attribute Impact Summary

Methodology Impact
Unambig Complete Consistent Correct

Traditional Baseline
TDD Improved Improved Minor Improved
BDD Improved Improved Minor Improved
FSDD Improved Improved Improved Improved

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

Int'l Conf. Software Eng. Research and Practice | SERP'14 | 343

%
void%Debit(Decimal[0%..%MAX_TRANSACT]%amount)%
{%preGcondition:%not%IsLocked();%

postGcondition:%post%GetBalance()%==%pre%GetBalance()%%%%
G%amount;}%

%
void%Lock()%
{%preGcondition:%not%IsLocked();%
%%postGcondition:%IsLocked();}%
%
void%Unlock()%
{%preGcondition:%IsLocked();%
%%postGcondition:%NOT%IsLocked();}%
%
pure%Boolean%IsLocked();%
pure%Decimal%GetBalance();%

Each of these methods must exist in a compliant
implementation. Additionally, the two pure methods,
IsLocked() and GetBalance(), must have no side effects. This
enhances the ability of the static analyzer to reason about them.
After examination with the design specification analyzer, this
design specification is committed to source version control. At
some later point, the complete (or partially-complete) design is
delivered for coding. In this example, the system is to be built
in C++. The programmer assigned to implement the
BankAccount class begins with the stub generator, which
creates two files, BankAccount.h and empty methods with
signatures in BankAccount.cpp:

BankAccount.h:
class%BankAccount%
{public:%
%const%BCD_Type%MAX_BALANCE(999999999.99);%
%const%BCD_Type%MAX_TRANSACT(99999999.99);%
%void%Credit(BCD_Type%amount);%
%void%Debit(BCD_Type%amount);%
%void%Lock();%
%void%Unlock();%
%bool%IsLocked()%const;%
%BCD_Type%GetBalance()%const;};%

If coders were to modify any method names, parameters, or
attributes they will receive an error message from the compiler,
because the source is no longer compliant with its specification.
The coder compiles the source file and is rewarded with
compiler error messages. The formal methods have not come
into play yet. Any traditional C++ compiler would fault the
same conditions.

The programmer would then make the modifications to fix
the compiler errors to include missing return types. At this
point, the FSDD-enabled compiler is able to improve the
standard process. Since the compiler has access to the expected
behavior, compiling this code would now yield a series of
“missing functional implementation” warning messages for
each of the empty methods.

The workflow proceeds much as it would under
TDD/BDD. The object is to make the errors/warnings go away.
So they start to implement the missing behavior. They add
behavior, get compiler messages, each time fleshing out more
of the code. The static analysis phase of the compiler knows
from class pre-conditions that a specific method should return a
value after construction. But, if it is missing a functional
implementation, the compiler is able to reason that the
specified behavior is unlikely to be implemented. Similarly,
post-conditions are analyzed and may be shown not to hold in
all execution paths. The coder then corrects the errors and

continues the implementation until the source code compiles
without errors or warnings.

The coder is now ready for unit testing. The coder uses the
unit-testing framework to generate the test harness and test
cases. The framework examines the specification parameters,
pre-conditions and invariants to partition input/class state for
selection of test cases. For example, Credit() takes an input
Decimal type ranging from 0 to 99999999.99. One reasonable
automated partitioning might be minimum, minimum + 1,
average, maximum – 1, and maximum or {0, 1, 49999999.99,
99999998.99, 99999999.99}. The framework’s test harness
would invoke Credit() with each of these parameters and verify
post-conditions and invariants. The process is repeated for
every specified entity in the source file. If the unit testing
reports an error in any method, the coder will again correct the
code until the implementation of BankAccount compiles
without warnings or errors and all unit tests pass. This signals
task completion. Both the coder and the designer have initial
confidence that the implementation complies with the design
specification. A senior programmer will still need to perform a
code review to validate that the implementation uses
appropriate data structures, employs suitable algorithms, and
adheres to coding standards.

The BankAccount module is now ready for integration by
Quality Assurance (QA) engineers. They use the test case
analyzer to reveal input partitioning values much as with unit
testing above. It aids them in the creation of the integration test
cases, which are then run against an instrumented build of the
system to dynamically verify specification predicates. A
manually created rendition of an instrumented BankAccount
follows. Instrumentation code has been highlighted in yellow.
If a predicate within an assert() evaluates as false, then a
runtime exception is thrown which halts the application and
displays identifying information. The instrumented build would
be used for integration and system testing. If the performance
of the instrumented system was acceptable for deployment,
then it could also be used in acceptance testing and delivered as
the final product. Otherwise, instrumentation would have to be
removed prior to performance and acceptance testing. Also
note that static analysis could absolve the need for some of the
instrumentation. If an invariant or method post-condition could
be proven to hold, then those predicates would not need to be
asserted. Similarly, if a method pre-condition could be proven
to hold at all call-sites, then its assertion could also be
removed.
BankAccount::BankAccount()%
{%balance%=%BCD_Type(0);%
%%locked%=%false;%
%%//%class%preGconditions%
%%assert(GetBalance()%==%0);%
%%assert(IsLocked()%==%false);%%
%%//%preGcondition%1%=>%invariant}%
%
BankAccount::~BankAccount()%
{%//%postGcondition%1%=>%invariant%
%%//%class%postGconditions%
%%assert(GetBalance()%==%0);%
%%assert(IsLocked()%==%false);}%
%
void%BankAccount::Credit(BCD_Type%amount)%
{%//%preGconditions%
%%assert(amount%>=%0)%&&%(amount%<=%MAX_TRANSACT));%
%%assert(IsLocked()%==%false);%
%%//%invariant%
%%assert((GetBalance()%>=%0)%&&%%
%%%%%(GetBalance()%<=%MAX_BALANCE));%

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

344 Int'l Conf. Software Eng. Research and Practice | SERP'14 |

%%//%postGconditions%require%twoGstate%
%%BCD_Type%preBalance%=%GetBalance();%
%%balance.Add(amount);%
%%//%invariant%
%%assert((GetBalance()%>=%0)%&&%%
%%%%%(GetBalance()%<=%MAX_BALANCE));%
%%//%postGconditions%
%%assert(GetBalance()%==%preBalance%+%amount);}%
%
void%BankAccount::Debit(BCD_Type%amount)%
{%//%preGconditions%
%%assert(amount%>=%0)%&&%(amount%<=%MAX_TRANSACT));%
%%assert(IsLocked()%==%false);%
%%//%invariant%
%%assert((GetBalance()%>=%0)%&&%%
%%%%%(GetBalance()%<=%MAX_BALANCE));%
%%//%postGconditions%require%twoGstate%
%%BCD_Type%preBalance%=%GetBalance();%
%%balance.Subtract(amount);%
%%//%invariant%
%%assert((GetBalance()%>=%0)%&&%%
%%%%%(GetBalance()%<=%MAX_BALANCE));%
%%//%postGconditions%
%%assert(GetBalance()%==%preBalance%G%amount);}%
%
void%BankAccount::Lock()%
{%//%preGconditions%
%%assert(IsLocked()%==%false);%
%%//%invariant%
%%assert((GetBalance()%>=%0)%&&%%
%%%%%(GetBalance()%<=%MAX_BALANCE));%
%%locked%=%true;%
%%//%invariant%
%%assert((GetBalance()%>=%0)%&&%%
%%%%%(GetBalance()%<=%MAX_BALANCE));%
%%//%postGconditions%
%%assert(IsLocked()%==%true);}%
%
void%BankAccount::Unlock()%
{%//%preGconditions%
%%assert(IsLocked()%==%true);%
%%//%invariant%
%%assert((GetBalance()%>=%0)%&&%%
%%%%%(GetBalance()%<=%MAX_BALANCE));%
%%locked%=%false;%
%%//%invariant%
%%assert((GetBalance()%>=%0)%&&%%
%%%%%(GetBalance()%<=%MAX_BALANCE));%
%%//%postGconditions%
%%assert(IsLocked()%==%false);}%
%
bool%BankAccount::IsLocked()%const%
{%//%invariant%
%%assert((GetBalance()%>=%0)%&&%%
%%%%%(GetBalance()%<=%MAX_BALANCE));%
%%return%locked;%
%%//%invariant:%not%required%on%exit%from%pure%method}%
%
BCD_Type%BankAccount::GetBalance()%const%
{%//%invariant%
%%assert((GetBalance()%>=%0)%&&%%
%%%%%(GetBalance()%<=%MAX_BALANCE)%);%
%%return%balance;%
%%//%invariant:%not%required%on%exit%from%pure%method%

VI. CONCLUSIONS AND FUTURE WORK

As consumers, we routinely and knowingly purchase
defective software. We proceed to install it on our computers
and entrust our sensitive and valuable data to it. We don’t
really trust the system manipulating our data, so we back it up.
Sometimes, we also don’t trust the backup system and back it
up as well. When colleagues lose important work due to a
software application freezing or becoming unresponsive, we
advise them to save more often. Not only do we accept that
software is defective, we expect it. As users, we demand new

features when the existing ones only mostly work.
Corporations staff entire departments to be on call and assist
employees when software fails. If architects designed with
equivalent defect densities, buildings would only mostly stay
up, people would only enter when necessary, would never
wander far from an exit, and would keep emergency services
on speed dial while inside.

Reliably producing quality software requires discipline and
rigor. And verification technologies are not a panacea for all
software development challenges. But formal specifications
and FSDD mitigate many of the current difficulties. Future
work in this area extends from basic research to tool
implementation. In order to gain industry traction, a single,
general-purpose behavioral specification language needs to
emerge with the needed language features. There is still much
work to be done in static analysis. Also, the efficiency of
current static analysis techniques needs to improve sufficiently
to allow completion during an ordinary compilation operation.
Current strategies require much more time than compilation
itself. Existing tools must also be adapted to fit the descriptions
outlined in the previous section. In order to take advantage of
modern, multi-core systems, behavioral specification languages
must be extended to allow reasoning about concurrency.
Finally, in order to spur widespread adoption by the software
industry, objective, empirical, quantitative studies of FSDD and
formal specification in general must be conducted to establish
its business value.

RERERENCES
[1] K. Beck, Test-Driven Development: By Example. Boston: Addison-

Wesley, 2003.
[2] M. Wynne, The Cucumber Book: Behaviour-Driven Development for

Testers and Developers. Dallas, Tex: Pragmatic Bookshelf, 2012.
[3] F. Tsui, “Process: Definition and Communication.,” in Encyclopedia

of Software Engineering, 2010, pp. 715–728.
[4] “The Verified Software Initiative,” 2008. [Online]. Available:

http://qpq.csl.sri.com/vsr/vsi.pdf/view. [Accessed: 14-Feb-2013].
[5] Chelf, Ben, “Measuring Software Quality: A Study of Open Source

Software,” Coverity, Inc., 2006.
[6] C. A. R. Hoare, J. Misra, G. T. Leavens, and N. Shankar, “The

Verified Software Initiative: A Manifesto,” ACM Comput Surv, vol.
41, no. 4, pp. 22:1–22:8, Oct. 2009.

[7] B. Meyer, Object-Oriented Software Construction (2nd Ed.). Upper
Saddle River, NJ, USA: Prentice-Hall, Inc., 1997.

[8] J. Tian, Software Quality Engineering: Testing, Quality Assurance,
and Quantifiable Improvement. Hoboken, N.J: Wiley, 2005.

[9] S. L. Pfleeger, Software Engineering: Theory and Practice, 4th ed.
Upper Saddle River [N.J.]: Prentice Hall, 2010.

[10] K. Beck, Extreme Programming Explained: Embrace Change.
Reading, MA: Addison-Wesley, 2000.

[11] H. Erdogmus, M. Morisio, and M. Torchiano, “On the Effectiveness
of the Test-First Approach to Programming,” Softw. Eng. IEEE
Trans. On, vol. 31, no. 3, pp. 226–237, 2005.

[12] “Introducing BDD,” Dan North & Associates. .
[13] S. Kollanus, “Test-Driven Development - Still a Promising

Approach?,” in Quality of Information and Communications
Technology (QUATIC), 2010 Seventh International Conference on
the, 2010, pp. 403–408.

[14] S. Fraser, D. Astels, K. Beck, B. Boehm, J. McGregor, J. Newkirk,
and C. Poole, “Discipline and Practices of TDD: (Test Driven
Development),” in Companion of the 18th annual ACM SIGPLAN
conference on Object-oriented programming, systems, languages,
and applications, New York, NY, USA, 2003, pp. 268–270.

[15] N. Kosmatov, “Constraint-Based Techniques for Software Testing,”
in Artificial Intelligence Applications for Improved Software
Engineering Development, F. Meziane and S. Vadera, Eds. IGI
Global, 2009.

[16] Boehm and R. Turner, Balancing Agility and Discipline: A Guide for
the Perplexed. Boston, MA, USA: Addison-Wesley Longman
Publishing Co., Inc., 2003.

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

Int'l Conf. Software Eng. Research and Practice | SERP'14 | 345

Automatic High Performance Structural Optimisation for
Agent-based Models

A.V. Husselmann1 and K.A. Hawick2

1Computer Science, Massey University, North Shore 102-904, Auckland, New Zealand
2Computer Science, University of Hull, Robert Blackburn, Hull, HU6 7RX, United Kingdom

email: 1a.v.husselmann@massey.ac.nz, 2k.a.hawick@hull.ac.uk
Tel: +64 9 414 0800 Fax: +64 9 441 8181

Abstract— The problem of structural optimisation for
agent-based models is one which holds great promise. Being
able to optimise a set of behaviours has potential to improve
productivity greatly, and at the very least, generate inspira-
tion. This problem consists of three smaller problems which
must be mitigated: ease of use, performance, and also the
use of combinatorial optimisation.

In this article, these three problems are managed by in-
troducing a domain-specific language (DSL) operating over
graphical processing units (and also single-threading) for
performance, and a suitable optimiser for this architecture.
We carry out a number of experiments to demonstrate and
evaluate the performance and effectiveness of this approach.
We conclude that such a methodology is indeed useful and
performs adequately but is currently limited by the lack of
debugging support and visual programming tools.

Keywords: CUDA, parallel, optimisation, domain-specific lan-
guages, agent-based models, karva.

1. Introduction
Agent-based Modelling (ABM) is an elegant and inter-

disciplinary simulation methodology. It is particularly appli-
cable in areas where a system is comprised of individual
components which are situated in some manner, communi-
cate or interact in a restricted manner, and have some level
of autonomy [1]. The practice of ABM has already reached
into several diverse disciplines and studies including cancer
immunology [2], social science [3], synthetic biology [4],
land change modelling [5] and even criminology [6].

There is a lack of agreement over the precise definitions of
ABM, but as noted by Macal and North, the set of the most
common attributes of agent-based models in the literature
are [1]:

1) Identity - Agents must be identifiable, discrete indi-
viduals.

2) Situation - Agents are situated in some fashion.
3) Goal-oriented - Agents have goals to achieve.
4) Autonomy - Agents are autonomous and may operate

independently.
5) Learning - Agents could potentially learn and adapt.

A well-known agent-based model is the Predator-prey
model [7], [8]. In essence, this model emulates a simple
“food chain” wherein individual predators pursue prey. Prey
attempt to flee, but if predators surround the prey, it is eaten.
Should a predator not catch prey, it dies of starvation. Both
prey and predators breed. This causes an interesting effect
on population numbers. In general, this model is useful for
ecological inquiry, and also gives a useful benchmarking tool
for machine learning algorithms such as Genetic Program-
ming [9]. Despite its simplicity, interesting discoveries have
been made with this model. Jim and Giles showed that if
predators communicate with simple evolved languages, they
are able to catch prey more easily [10].

Such models normally have parameters that require cali-
bration for the purpose of model validation and verification.
Instead of laborious trial-and-error tuning, the calibration
process is typically reinterpreted as an optimisation problem
[11], [12], [13]. Several attempts have been documented
in the past, mostly involving genetic algorithms [12], [14],
and other evolutionary algorithms [13]. A limitation of such
systems is that they only make provision for automatically
calibrating scalar parameters.

These efforts can be very useful, but cannot extensively
modify the structure of the model itself without considerable
difficulty in representation. Should a model be structurally
suboptimal, it may well be that a properly configured pa-
rameter optimisation effort could be entirely fruitless. The
work of Epstein in 1999 perhaps earmarked evolutionary al-
gorithms (EAs) for structural optimisation with agent-based
models [15]. Epstein noted that, in comparison, parameter
optimisation deals with a much smaller search space than
that of the search for a set of behaviours, or rules.

Like parameter optimisation, there have been a number
of attempts to optimise structure in agent-based models.
In 2012, van Berkel proposed the use of Grammatical
Evolution (GE) [16] for the purpose of generating NetLogo
[17] programs based on a set of predetermined “building
blocks” [18], [19]. EAs such as GE do require a cost
function to indicate the relative fitness difference between
individual candidates. In his work, van Berkel conceded
issues regarding the process of selecting these functions.
Earlier, in 2010, Learning classifier systems, Q-learning and

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

346 Int'l Conf. Software Eng. Research and Practice | SERP'14 |

neural networks were investigated for the same purpose [20].
Among these algorithms, none were clearly better than the
others. Another attempt involved the Ant Hill problem, and
was done by the evolution of finite state machines using EAs
[21].

It is not generally easy to write an agent-based model
in C++ and implement an evolutionary algorithm optimiser
on top of it. Therefore, these previous attempts suggest
that some method of improving usability is very important.
Moreover, this would allow experts in agent-based modelling
in other disciplines unrelated to computer science to imme-
diately harness this technology.

In terms of performance, meta-optimisation on the particle
swarm optimiser (PSO) [22] gives clear indications of what
to expect when optimising any aspects of an agent-based
model. At its heart, the PSO is a modified flocking model
[23], [24], as it is inspired from such behaviour as seen
in simulations such as Boids [25]. Van Berkel’s work was
distributed on a set of processors, however, experiments were
deemed to still be too expensive to compute (3 or more
hours) [18]. Privošnik approached the problem by having
a heuristic to reduce fitness evaluations [26]. Coupled with
a growing interest in larger-scale agent-based models, and
recent breakthroughs in general purpose graphics processing
unit usage (GPGPU), parallel ABMs has emerged [27],
which is capable of mitigating performance issues.

Here, emphasis is given to performance improvements
using Graphical Processing Units (GPUs) for the purpose of
parallelisation. In our previous works, we have investigated
the use of GPUs in the context of a domain-specific language
(DSL) [28], [29], [30]. DSLs are special languages devel-
oped for the purpose of servicing a very specific problem
domain [31]. The main purpose in doing so was to ensure
that optimisation tasks could be specified within the same
language that the model is written, and ensuring that it is
easy to do so. It has been proposed that DSLs be known by
having a well defined domain, a clear notation; the semantics
of which is to be formally and informally equivalent [31].

We have previously developed a DSL named SOL, which
is primarily intended for lattice-oriented ABM [28], [29],
[30]. It includes two optimisation algorithms, one is based
on Karva [32], Genetic Programming [33], and Compute
Unified Device Architecture (CUDA) [34]. The other is a
very simple tree-based evolutionary algorithm.

The language itself is built on Terra [35], which is a very
recent multi-stage programming language [36]. It makes use
of LLVM [37], which is a very mature compiler architecture.
Part of the motivation behind this choice was the release of
NVidia’s parallel thread execution (PTX) backend compiler
for LLVM (NVPTX) [38]. In this article, we aim to introduce
the modifications necessary to the SOL language and demon-
strate its performance characteristics. We also demonstrate
the use of the SOL language to solve a well known problem
used in Genetic Programming.

In Section 2 the use of optimisation in the SOL language
is described. SOL is extended in Section 3 with GPGPU,
and some experiments are then carried out and reported on
in Section 4. Finally, we draw some conclusions in Section 5.

2. SOL Model Optimisation
In the optimisation methodology described here, instead

of a modeller providing fine-grained and carefully articulated
local behaviours in a custom optimiser, the modeller instead
provides an objective function and some possible behaviour
within simulation code. The difficulty in both these tasks
are comparable: small variations in local behaviours as well
as different choices of objective function can both lead
to radically different results. However, the novelty in this
approach to the problem lies in the elegance with which a
model can be prototyped with all aspects including optimi-
sation encapsulated within it, without suffering performance
penalties.

In cases where an objective function is more natural to
use in modelling, it can be a great advantage to have the
behaviour generated from it, or at least provide a suggestion
which can be used as the basis for manual experimentation.
By allowing a modeller to express most of a simulation
with reasonable certainty, and other parts with annotated
uncertainty and clear objectives, an underlying optimiser can
usefully generate some behaviours.

One of the factors which sets this new language apart
from other model induction attempts is that the syntax used
for optimisation is itself a constraint upon the search space.
Techniques such as Genetic Programming have been used
in the past for evolving entire models [19] which were
provided with user-defined actions and perceptions of agents.
In the case of SOL, only relevant actions and perceptions
are provided, but they are given in terms of a potential
solution given by the user. This kind of syntax serves to (1)
provide a good starting solution and more importantly (2)
limit the immense search space. It is reasonable to assume
that the dynamics of a system is at least partially known
by the expert, and therefore, it is worth optimising only the
uncertain portions.

Given a method for expressing the objective function and
for measuring it, some method of configuring the output
desired from the optimiser is required. Certain constraints
apart from search space define, in large part, the operation
of the optimiser, or even what kind of optimiser is used.
Three such configurations are implemented by specifying
one of the keywords recombination, single, or permutation.
These qualifiers tell the compiler which kind of optimisation
is required. What is referred to by these qualifiers is some
kind of reorganisation of statements marked for optimisa-
tion. While single and permutation refer to the selection
of a single statement only, or a permutation of statements
(with replacement), recombination refers to a disassembly
of the provided code into terminals and nonterminals for

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

Int'l Conf. Software Eng. Research and Practice | SERP'14 | 347

recombination. The recombination qualifier is given the most
attention in this article, since the other two qualifiers have
been previously described [28], [30].

A complete example of this is given in Listing 1. Lines
34–56 contain what will be referred to as an uncertain
construct. This term is purely related to the structure of
the model, and not of code semantics. The quantity is
count_sheep() and the objective is to minimise this (hence
the minimise keyword given on line 34).

In cases where the fitness of a model depends partly on
stochastic behaviours, it is important to obtain statistically
significant scores. This is typically done by averaging mul-
tiple evaluations of the objective function. This has certain
implications on performance, which is a major factor in our
decision to use parallel computing on GPUs. Though these
devices are less expensive than grid computers, effort is
required to ensure that a program maximises their computing
power.

In this process, a user first provides a program with an
uncertain code segment within a model. Upon execution of
the host program which is written in C++, the Terra runtime
parses the provided code immediately, transforming it into a
type-checked abstract syntax tree (AST). This tree is what is
modified by the optimiser in a later stage. The host Lua script
then duplicates this tree several times until a population of
N trees is made. At this point, the optimiser searches for
an optimisation statement, of which there can be only one
within a program. The optimiser then initialises each pro-
gram’s code segment with randomly chosen statements taken
from within the provided construct. Depending on the type
of construct, there will be one chosen statement (single), or
a combination of statements (permutation) with replacement,
or a complete recombination of code (recombination).

In summary, the overall process is detailed in Algorithm 1.
This algorithm contains all the components generally ex-
pected within an EA, and more specifically one which
uses genetic operators. The termination criteria shown is
simply a maximum number of generations. Computing a
new generation of programs is done by the process shown
in Algorithm 2.

3. Parallel SOL
Previously, a lattice along with a temporary write-only

lattice was allocated on the host. Should CUDA be enabled
in a SOL model, the data is instead allocated on the GPU
hardware by using the CUDA API [34] at runtime. These
device pointers are provided to the Terra compiled function,
which SOL is compiled to in turn, instead of pointers to
host memory. The compiled SOL code is therefore able to
operate on the lattice, as allocated by the host on the GPU
hardware. The code parser and type checker are identical,
but a separate CUDA code generator is used in order to
accommodate the restrictions imposed by the CUDA GPU
architecture. Compiled code is then mostly PTX instructions,

1 sol
2 defvar count = 1
3 defvar pred = 1
4
5 query neighbours6
6 if neighbour == 1 then
7 count = count + 1
8 else
9 if neighbour == 2 then

10 pred = pred + 1
11 end
12 end
13 done
14
15 defvar predator = 2
16 defvar prey = 1
17
18 if me == predator then
19 defvar temp = get_closest_prey
20 move towards temp
21 if pred == 6 then die end
22 split
23 end
24
25 defvar eq = count_sheep()
26
27 if me == prey then
28 defvar closepred = get_closest_predator()
29 if (distance to (closepred)) < 2
30 then
31 die
32 else
33 defvar closeprey = get_closest_prey()
34 select permutation to minimise(eq)
35 −− flee predator (F)
36 if (distance to (closepred)) < 3
37 then
38 move awayfrom closepred
39 end
40 −− breed (B)
41 if (distance to(closeprey)) < 2
42 then
43 split
44 end
45 −− overcrowding
46 if (count > 7) then
47 die
48 end
49 −− move randomly
50 move random 4
51 −− seek mate (M)
52 if (distance to(closeprey)) >= 2
53 then
54 move towards closeprey
55 end
56 end
57 end
58 end
59 end

Listing 1: A program written in the SOL DSL for the
Predator-Prey model, containing an uncertain construct (lines
42–64).

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

348 Int'l Conf. Software Eng. Research and Practice | SERP'14 |

Algorithm 1 The complete simulation process eliminating
uncertain constructs.

Terra custom parser reads agent description
Read user-provided parameters
Allocate & initialise space for n candidates
{small variations when no uncertainty is present}
Compute and compile a new generation of candidates
Zero all scores
while Termination criteria not met do

for x frames do
Execute model programs
Collect new scores into running totals by model
Visualise the result

end for
Compute a new generation using collected scores

end while
Output best candidate in final population.

Algorithm 2 The process of generating a new generation of
candidate models for evaluation.

Collect scores
for x candidate models do

Optimiser performs evolutionary operators
Pass modified typed tree through code generator
Wrap generated function code with arguments
Emit wrapped code

end for
Overall generated code is compiled to machine code
Fn pointer to compiled function passed to C++ via Lua

wrapped with the necessary host code to launch CUDA
kernels with the correct thread grid and block dimensions.
Once a timestep is computed, the data is copied back from
the GPU to the host and then passed to the visualiser.

Compiling Terra code for CUDA is straightforward, pro-
vided that the boundaries of the device in terms of memory
and thread resources are respected. The usual Terra code
generated is essentially compiled into a single CUDA kernel,
which is launched with a grid and block configuration, and
its arguments, by a separate host Terra function. Given that
an appropriate grid and block must be provided, this presents
an opportunity to discuss different parallelisation techniques.

Three parallelisation strategies are implemented from
which the user may freely choose. The first is a simple “one-
thread, one-model” (1T1M) strategy, where a single CUDA
thread is assigned a candidate model. This CUDA thread is
then responsible for executing the entire model simulation
once per time step. This is unsuitable most of the time, espe-
cially when one candidate model operates on a larger lattice,
or the model is demanding of processing time required. The
second strategy is named “one-block, one-model” (1B1M),
in which an entire CUDA block is dedicated to computing a

single model simulation once per timestep. While this may
seem the obvious choice in nearly all circumstances, the
limitations of block sizes (1024 threads maximum at the time
of writing), mean that the lattice sizes have a limit. A great
many candidate model simulations can be executed con-
currently at reasonable speeds using this, but the limitation
in lattice size is a considerable issue. The third strategy is
termed “many-blocks, one-model” (*B1M), where multiple
blocks are assigned to a single candidate model. This allows
much larger model sizes, but race conditions become more
difficult to eliminate, which require further strategies.

Another considerable issue is the source of random de-
viates on the GPU hardware. There are various methods to
accomplish this [39]. In this case, this was implemented by
maintaining a separate GPU array with three unsigned long
integers for every candidate model. These integers represent
the u, v and w parameters of the Ran random number
generator [40]. They are initialised by the host before being
copied to the device. The host computes a new Ran state
for each candidate model using a master Ran for providing
a seed. This allows the SOL code to use as many random
deviates as it needs to operate, since Ran also provides a
colossal period, approximately 3.138(1057) [40]. To generate
a random number, code is automatically generated from
a macro function to update the Ran state and compute a
random deviate of the specific thread.

4. Selected Results
Two experiments are conducted to evaluate convergence

and computing performance. The first is The Santa Fe
Ant Trail problem which Koza solved using Genetic Pro-
gramming [41]. This problem was approached using a
select recombination structure, in order to evolve the ap-
propriate decision tree (expression tree) for an ant to collect
all food placed on an irregular trail. The second experiment
pertains to a more classical model: the Predator-prey model
[42], [43]. The chosen objective in the Predator-prey model
is to evolve a list of ordered rules which are most suitable
for the predators to catch the prey.

The parameters used for these experiments are shown in
Table 1.

4.1 Santa Fe Ant Trail
The fitness plot for this experiment is shown in Figure 1.

There is a gradual (though small) decrease in mean fitness up
to generation 120, and followed later by a slight drop around
generation 280. The minimum fitness does decrease over
time, indicating progress in the search. Though, during this
run, the optimum fitness (zero) was not achieved, a number
of semi-suitable programs were generated. It is worth noting
that no generated program can achieve maximum fitness by
brute force iteration of the entire lattice due to the 400 time
step maximum [41].

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

Int'l Conf. Software Eng. Research and Practice | SERP'14 | 349

Santa Fe Parameter Value
Population Size 500
P (mutate) 0.2
P (crossover) 0.8
Program head length 12
Timesteps per Generation 400
Predator-prey Parameter Value
Population Size 500
P (mutate) 0.2
P (crossover) 0.8
Timesteps per Generation 200
Generation Repeats 3

Table 1: Optimisation parameters used for the Santa Fe Ant
Trail problem and the Predator-prey model.

Fig. 1: Fitness plot by generation for the Santa Fe Ant Trail
problem computed by the host using the single-threaded
version of SOL.

The time taken to compile all 500 typed Terra trees to
host code (in single-threaded SOL) is approximately 14.8
seconds (averaged five times). Whereas, the time to compile
500 unique typed trees to PTX is approximately 473 seconds.
This is clearly an undesirable amount of time, considering
that this dwarfs the evaluation time.

The time taken to compute a single timestep of a system
with 500 candidates is approximately 3.57msec (averaged
five times) for the single-threaded host version, whereas
the GPU-parallel version computes a frame in 2.5msec
(averaged five times). These are both of the order of a second
for evaluating the entire population in the current generation.
Additional scaling data for increasing population sizes are
shown in Figures 2(a) and 2(b). In these plots it is clear
that unless there is excessive computation necessary in the
evaluation of a population of candidates, then it is likely that
the GPU version of SOL is not necessary. At this point it
is not clear why there appears to be an exponential rise in
compute time required for compiling larger simulations at
runtime for GPU, though the use of CUDA run-time code
generation (RTCG) in Terra is experimental at this point.
Also interesting in the timestep plot is that the GPU code
surpasses the CPU code at relatively small population sizes.
Though the CPU code is faster for population sizes of 32

and less, it was expected that the CPU code will surpass the
GPU until at least 128 candidate programs. Altogether, the
total lattice size operated on for the largest population was
sized 512(32) = 16384 by 32 lattice sites. This is a colossal
524,288 lattice sites, which makes the computing time for
one frame considerably more reassuring for both CPU and
GPU code.

(a) Generation population compilation. Data point for GPU at 512
population size not shown: 539000msec. Parallelisation strategy used
was “one-block, one-model.”

(b) Timestep computation.

Fig. 2: Performance plots of timestep computation and
population compiling between CPU and GPU compiled SOL
code. Data is averaged over the first 300 time steps of
randomly initialised runs.

4.2 Predator-Prey Model
For the Predator-prey model, timestep computation times

were measured for the single-threaded and GPU-parallel
compilations for different population sizes and lattice sizes.
This model is more computationally expensive to compute

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

350 Int'l Conf. Software Eng. Research and Practice | SERP'14 |

per timestep than the Santa Fe Ant Trail. The reason for
this is that both predators and prey must execute a SOL
program, meaning that at times, every lattice site will execute
a program, whereas in the Santa Fe Ant Trail, there was only
one program being executed, that of the ant.

The optimisation objective is to select a permutation (with
replacement) of rules for prey, to maximise the number of
prey. Usually, the evasion strategy for prey is to find the
closest predator, and move directly away from it. This is
a simple but effective strategy. Emphasis here is given on
performance results instead of convergence results.

The measured data in log-linear plots are shown in Fig-
ure 3. Different configurations of candidate model lattice
sizes (8x8,16x16,32x32,64x64 and 128x128) were used,
along with the “one-block, one-model” (1B1M) CUDA par-
allelisation strategy, the “many-blocks, one model” (*B1M)
strategy, as well as single-threaded CPU configurations.
The largest candidate model lattice (128x128) proved pro-
hibitively expensive to compute by the single-threaded CPU
configurations. There exist rapid increases in computing time
between candidate lattice sizes, but increases in population
size of these are relatively slower. The mere ability to
simulate a lattice of size 128x128 with 64 heterogeneous
candidates is enormously encouraging, considering that a
population of this size is advantageous with regard to
population-based optimisers. Unfortunately, while timestep
computation scales well, compile time does not, however.

Fig. 3: Performance plot for different system sizes both
in candidate model lattice sizes and number of candidates
in populations for both the parallelisation strategies “one-
block, one-model” (1B1M) and “many-blocks, one model”
(*B1M). CUDA block sizes in *B1M were restricted to
16x16.

For the complete program shown in Listing 1, compile
times from a SOL typed syntax tree to Terra code takes

between 25msec and 30msec, however, some programs take
up to 130msec to compile for the predator-prey model with
heterogeneous programs (caused by the optimiser exploring
the search space). The CUDA kernel compile time for 32
heterogeneous programs is approximately 40 seconds. For a
trivially simple program (sol move left end), compile time
from SOL typed tree to Terra is approximately 1msec, and
kernel compilation is 530msec for 32 identical programs.
A slightly more complex trivial program, but one still
containing an optimisation construct such as the following
takes on average 5msec to compile from a SOL typed tree
to Terra, and approximately 1msec for a CUDA kernel to
compile:

sol select recombination to minimise(1) move left end end

5. Conclusion
The use of run-time code generation is a good method for

improving performance, provided that the evaluation phase
of a population of candidate models is sufficiently complex.
For models in which evaluation is less expensive (such as
the Santa Fe Ant Trail model), it is more appropriate to use
the single-threaded version of SOL. This allows programs
to be compiled faster, while suffering a very small drop in
timestep computation performance.

Systems larger than 512 candidate models appear to be out
of reach of GPU run-time code generation. Such a result
was expected, given that Cupertino et al. chose to evolve
PTX code itself rather than use the CUDA run-time library
to compile C code [44] noting that the latter would be too
computationally expensive.

These limitations reaffirm that it is unwise to ignore the
power of the newer multi-core processors available [45]. At
the same time, the GPU should be applied when most or
all of its theoretical computing power can be achieved. This
demands proper choice in parallelisation strategy, which is
anticipated to be automatically selected using relevant model
information in the future. It is certainly possible to generate
multi-threaded code on the host processor instead of CUDA
code. This is a promising area for future work.

In summary, our SOL system is considerably more power-
ful and useful when it is supported by underpinning parallel
computing capabilities. At the time of writing, SOL is a
useful tool for experts, but there is scope for additional
debugging and other user-friendly features that would make
it useful for application domain users. We believe this
approach has great power in providing a basis for devel-
oping initial application domain ideas into practical running
simulations.

References
[1] Macal, C.M., North, M.J.: Tutorial on agent-based modeling and

simulation part 2: How to model with agents. In: Proc. 2006 Winter
Simulation Conference, Monterey, CA, USA. (3-6 December 2006)
73–83 ISBN 1-4244-0501-7/06.

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

Int'l Conf. Software Eng. Research and Practice | SERP'14 | 351

[2] Figueredo, G.P., Siebers, P.O., Aickelin, U.: Investigating mathemat-
ical models of immuno-interactions with early-stage cancer under an
agent-based modelling perspective. BMC Bioinformatics 14(6) (2013)
1–38

[3] Macy, M.W., Willer, R.: From factors to actors: Computational
sociology and agent-based modeling. Annual Review of Sociology
28 (2002)

[4] Gorochowski, T.E., Matyjaszkiewicz, A., Todd, T., Oak, N., Kowalska,
K., Reid, S., Tsaneva-Atanasova, K.T., Savery, N.J., Grierson, C.S.,
di Bernardo, M.: BSim: An agent-based tool for modeling bacterial
populations in systems and synthetic biology. PLoS ONE 7(8) (August
2012)

[5] Manson, S.M.: Agent-based modeling and genetic programming for
modeling land change in the Southern Yucatán peninsular region of
Mexico. Agriculture Ecosystems & Environment 111 (2005) 47–62

[6] Birks, D., Townsley, M., Stewart, A.: Generative explanations of
crime: Using simulation to test criminological theory. Criminology
50 (2012) 221–254

[7] Lotka, A.J.: Elements of Physical Biology. Williams & Williams,
Baltimore (1925)

[8] Volterra, V.: Variazioni e fluttuazioni del numero d’individui in specie
animali conviventi. Mem. R. Accad. Naz. dei Lincei, Ser VI 2 (1926)

[9] Luke, S., Spector, L.: Evolving teamwork and coordination with
genetic programming. In: Proceedings of the First Annual Conference
on Genetic Programming, MIT Press (1996) 150–156

[10] Jim, K., Giles, C.: Talking helps: evolving communicating agents for
the predator-prey pursuit problem. Artificial Life 6(3) (2000) 237–254
Summer.

[11] Calvez, B., Hutzler, G., et al.: Adaptative dichotomic optimization: a
new method for the calibration of agent-based models. In: A. Tanguy
C. Bertelle J. Sklenar et G. Fortino, éditeurs, Proceedings of the 2007
European Simulation and Modelling Conference (ESMâĂŹ07). (2007)
415–419

[12] Calvez, B., Hutzler, G.: Automatic tuning of agent-based models using
genetic algorithms. In: Proceedings of the 6th International Workshop
on Multi-Agent Based Simulation (MABS 2005). (2005) 41–57

[13] Stonedahl, F., Wilensky, U.: Finding forms of flocking: Evolutionary
search in abm parameter-spaces. In: Multi-Agent-Based Simulation
XI. Springer (2011)

[14] Said, L.B., Bouron, T., Drogoul, A.: Agent-based interaction analysis
of consumer behaviour. In: Proceedings of the First International Joint
Conference on Autonomous agents and multiagent systems: part 1,
ACM (July 2002) 184–190

[15] Epstein, J.M.: Agent-based computational models and generative
social science. Generative Social Science: Studies in Agent-Based
Computational Modeling (1999) 4–46

[16] Ryan, C., Collins, J., O’Neill, M.: Grammatical evolution: Evolving
programs for an arbitrary language. In: Proceedings of the First Eu-
ropean Workshop on Genetic Programming. Volume 1391 of LNCS.,
Paris, Springer-Verlag (April 1998) 83–95

[17] Tisue, Wilensky: NetLogo: A simple environment for modeling
complexity. In: International Conference on Complex Systems. (2004)

[18] van Berkel, S.: Automatic discovery of distributed algorithms for
large-scale systems. Master’s thesis, Delft University of Technology
(2012)

[19] van Berkel, S., Turi, D., Pruteanu, A., Dulman, S.: Automatic
discovery of algorithms for multi-agent systems. In: Proceedings of
the fourteenth international conference on Genetic and evolutionary
computation conference companion. (July 2012) 337–334

[20] Junges, R., Klügl, F.: Evaluation of techniques for a learning-driven
modeling methodology in multiagent simulation. In Dix, J., Witteveen,
C., eds.: Multiagent System Technologies. Volume 6251 of Lecture
Notes in Computer Science. Springer Berlin Heidelberg (2010) 185–
196

[21] Privošnik, M., Marolt, M., Kavčič, A., Divjak, S.: Construction
of cooperative behavior in multi-agent systems. In: Proceedings
of the 2nd International Conference on Simulation, Modeling and
optimization (ICOSMO 2002), Skiathos, Greece, World Scientific and
Engineering Academy and Society (2002) 1451–1453

[22] Husselmann, A.V., Hawick, K.A.: Particle swarm-based meta-
optimising on graphical processing units. In: Proc. Int. Conf. on Mod-

elling, Identification and Control (AsiaMIC 2013), Phuket, Thailand,
IASTED (10-12 April 2013)

[23] Kennedy, Eberhart: Particle swarm optimization. Proc. IEEE Int.
Conf. on Neural Networks 4 (1995) 1942–1948

[24] Shi, Y., Eberhart, R.: A modified particle swarm optimizer. In:
Evolutionary Computation Proceedings. (1998)

[25] Reynolds, C.: Flocks, herds and schools: A distributed behavioral
model. In Maureen C. Stone, ed.: SIGRAPH ’87: Proc. 14th Annual
Conf. on Computer Graphics and Interactive Techniques, ACM (1987)
25–34 ISBN 0-89791-227-6.

[26] Privošnik, M.: Evolutionary optimization of emergent phenomena in
multi-agent systems using heuristic approach for fitness evaluation.
In: Evolutionary Computation, 2009. CEC ’09. IEEE Congress on.
(May 2009) 1829–1834

[27] Perumalla, K.S., Aaby, B.G.: Data parallel execution challenges and
runtime performance of agent simulations on GPUs. In: SpringSim
’08: Proceedings of the 2008 Spring simulation multiconference, New
York, NY, USA, ACM (2008) 116–123

[28] Husselmann, A.V., Hawick, K.A.: Multi-stage high performance, self-
optimising domain-specific language for spatial agent-based models.
In: The 13th IASTED International Conference on Artificial Intelli-
gence and Applications, Innsbruck, Austria, IASTED (February 2014)

[29] Husselmann, A.V., Hawick, K.A.: Towards high performance multi-
stage programming for generative agent-based modelling. In: INMS
Postgraduate Conference, Massey University. (October 2013)

[30] Husselmann, A.V., Hawick, K., Scogings, C.: Model structure
optimisation in lattice-oriented agent-based models. Technical Report
CSTN-222, Computer Science, Massey University (2014) Submitted
to the International Journal of Modelling and Simulation (ACTA
Press).

[31] Taha, W.: Domain-specific languages. In: Pro. Int. Conf. Computer
Engineering and Systems (ICCES). (25-27 November 2008) xxiii –
xxviii

[32] Ferreira, C.: Gene expression programming: A new adaptive algorithm
for solving problems. Complex Systems 13(2) (2001) 87–129

[33] Koza, J.R.: Genetic programming as a means for programming
computers by natural selection. Statistics and Computing 4(2) (June
1994) 87–112

[34] NVIDIA: CUDA C Programming Guide. 5.0 edn. (July 2013)
[35] DeVito, Z., Hegarty, J., Aiken, A., Hanrahan, P., Vitek, J.: Terra:

a multi-stage language for high-performance computing. In: PLDI.
(2013) 105–116

[36] Taha, W.: A gentle introduction to multi-stage programming. In:
Domain-Specific Program Generation. Springer (2004) 30–50

[37] Lattner, C., Adve, V.: Llvm: A compilation framework for lifelong
program analysis & transformation. In: Code Generation and Opti-
mization, 2004. CGO 2004. International Symposium on, IEEE (2004)
75–86

[38] LLVM: User guide for NVPTX back-end.
http://llvm.org/docs/NVPTXUsage.html accessed 12 March, 2014.

[39] Leist, A.: Experiences in Data-Parallel Simulation and Analysis
of Complex Systems with Irregular Graph Structures. PhD thesis,
Massey University, Auckland, New Zealand (November 2011)

[40] Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Nu-
merical Recipes. Cambridge University Press (2007)

[41] Koza, J.R.: Genetic Programming: On the programming of computers
by means of natural selection. Massachusetts Institute of Technology
(1992)

[42] Hawick, K.A., Scogings, C.J., James, H.A.: Defensive spiral emer-
gence in a predator-prey model. Complexity International 12(msid37)
(October 2008) 1–10 ISSN 1320-0682.

[43] Scogings, C.J., Hawick, K.A.: Altruism amongst spatial predator-prey
animats. In Bullock, S., Noble, J., Watson, R., Bedau, M., eds.: Proc.
11th Int. Conf. on the Simulation and Synthesis of Living Systems
(ALife XI), Winchester, UK, MIT Press (5-8 August 2008) 537–544

[44] Cupertino, L., Silva, C., Dias, D., Pacheco, M.A., Bentes, C.: Evolving
CUDA PTX programs by quantum inspired linear genetic program-
ming. In: Proceedings of GECCO’11. (2011)

[45] Chitty, D.M.: Fast parallel genetic programming: multi-core cpu
versus many-core GPU. Soft. Comput. 16 (2012) 1795–1814

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

352 Int'l Conf. Software Eng. Research and Practice | SERP'14 |

Source Code Control Workflows
for Open Source Software

Kevin Gary
Department of Engineering
Arizona State University

Mesa, AZ 85212)
kgary@asu.edu

Ziv Yaniv, Ozgur Guler, and Kevin Cleary
The Sheik Zayed Intitute for Pediatric Surgical Innovation

Children’s National Medical Center
Washington, D.C. 20001

zyaniv,oguler,kcleary@childrensnational.org

Andinet Enquobahrie
Kitware, Inc.

Carrboro, NC, 27510
andinet.enqu@kitware.com

Abstract—Many open source projects rely
on the dedicated and highly skilled
members of distributed development
teams. These teams often employ agile
methods, as the focus is on concurrent
development and fast production over
requirements management and quality
assurance. The image-guided surgical
toolkit is an open source project that
relies on the collaboration of a skilled
distributed development team, yet
addresses a safety-critical domain. Due to
this rare intersection of agile and open
source development processes and a
safety-critical domain, the IGSTK team
has had to enhance the process with key
elements and a set of best practices to
augment commonly applied agile
methods. This paper presents our
experiences and lays out some research
questions for the future.

Index Terms—agile, open source, safety-
critical software.

I. INTRODUCTION
As agile methods have matured, so has the

realization that these methods are not
dogmatic in their approach. Agile methods
encourage the right amount of ceremony;
therefore if a safety-critical system requires a
greater emphasis on non-coding process
activities like documented design and
requirements management, then an agile
approach will include these as necessary
activities and not ceremony. Furthermore,
we argue that agile and open source
approaches focus more on code-level quality
that most classic software engineering
process models, which often talk about
quality in every phase of the lifecycle except
implementation.

We present our experiences on the image-
guided surgical toolkit (IGSTK) project as a
backdrop for this discussion. IGSTK is an
open source software project that has
employed agile best practices for the past
nine years. In that time we started with the

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

Int'l Conf. Software Eng. Research and Practice | SERP'14 | 353

assumption that a lighter process is better,
focusing on evolving code, and only adding
in process elements where the need has
arisen. The IGSTK team just released
version 5.2 to the community, and in the past
year has adopted modifications to its
software processes.

II. RELATED PERSPECTIVES
Boehm [2] articulated the widespread

belief that agile methods, due in part to their
lack of emphasis on documentation,
requirements stabilization, planning, and
other large-scale synchronization points in
the software process. But recently, literature
has started to appear suggesting this may not
always be the case, particularly in healthcare
applications. Dwight and Barnes [5] describe
a “lean-to-adaptive (L2APP)” variant on
agile methods in a clinical research setting to
streamline value delivery by utilizing a
parallel flow side-by-side with laboratory
validation. The three-phase L2APP model
(speculation, collaboration, learning) strikes
us as an agile way to manage requirements in
an innovation-driven domain, though it does
not say much about downstream processes
related to design review and in-construction
change management. The authors
acknowledge the process is leveraged in the
clinical lab to develop innovations for later
large-scale production by shops prepared to
take a technology to market. To us this
represents a reasonable tradeoff in upstream
efficiency but may punt too much
responsibility downstream – how early does
evidence of traceability and design rigor
have to be accumulated?

Ge, Paige, and McDermid [8] present a
detailed discussion of Agile versus plan-
driven methods using Boehm’s central
premise as the framework for discussion.
The authors then go on to suggest a semi-
agile process that incorporates aspects of
traditional plan-driven processes such as up-
front design and hazard analysis with
iterative development and iterative

development of a safety argument. The
presentation admits there is a lot of devil-in-
the-details, with no current general principles
for deciding how much agility is too much or
too little. The key seems to be in calibrating
the process to do just enough at each point in
the process, a complex process goal.

Despite the complexity, we
philosophically agree with [8] in our own
recent paper [7]. Agile methods do embrace
activities like planning, design, and
validation as long as they are without
ceremony, meaning they are not performed
for performance sake; they are performed at
the right times and to the extent needed (and
no more) to achieve product requirements
(for example, certification). Exploration of
general principles, reference process
frameworks, or evaluation criteria to guide
practitioners in adopting “just enough agile”
is a worthy pursuit. Finally we note that none
of this discussion contradicts Boehm’s
original assertions; Boehm noted that
knowing the right places to apply the right
process is critical, and we view these
explorations as an investigation into where
agile can fit as a means of harnessing its
benefits in the healthcare domain.

III. IGSTK
IGSTK is an open source framework for

creating surgical applications. IGSTK is
distributed under a BSD-like license that
allows for dual-use between academic
research labs and commercial
entities. Image-guided surgery involves the
use of preoperative medical images to
provide image overlay and instrument
guidance during procedures. The toolkit
contains the basic software components
to construct an image-guided system,
including a tracker and a four-quadrant view,
incorporating image overlay. IGSTK also
leverages other open source projects,
specifically ITK for segmentation and
registration, VTK for visualization, and
FLTK and Qt for the user interface.

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

354 Int'l Conf. Software Eng. Research and Practice | SERP'14 |

IGSTK has geographically
distributed developers, complex application
requirements, and framework constraints for
extensible and reusable architecture
components. This is obviously a tremendous
challenge compounded by the safety
critical nature of the domain. The IGSTK
team has created its software processes to
balance an agile development philosophy
with an integrated requirements elicitation
and management approach, and
consequently has arrived at a methodology
that is fast and flexible, yet meets the
stringent needs of this application domain.

IGSTK development presents
interesting challenges from a methodology
perspective. These complexities derive from
the nature of the requirements, the makeup
of the team, the dependence on pre-existing
software packages, and the need for high
quality standards within this domain.

The first challenge to IGSTK
development derives from the nature of the
framework-level requirements, which are
difficult to completely understand before
applications are constructed upon it.
Waterfall-style methodologies [11] that
attempt to define requirements completely
before development begins are not
considered suitable. Rational Unified
Process (RUP) use-case driven modeling
[10] is selectively applied through a
customized process C-PLAD [1], as
we cannot assume non-functional
requirements derived from a set of
applications known today represent a
complete set of requirements for the future.

The second challenge to IGSTK
development is the makeup of the team,
comprised of academic and commercial
partners collaborating in a distributed setting.
Most if not all of the team members
have other demands on their time. These
factors create challenges for setting project
deliverables and expectations over medium-
and long-term horizons. Fortunately, most

developers are deeply familiar with the
domain and with a common set of tools
and libraries from which to begin
development. The requirements, team
composition, and use of pre-existing
software suggest that agile methods
[4] should be applied to IGSTK. All team
members have significant exposure to agile
methods; some have even developed agile-
ready tools that are employed on IGSTK
[12].

Another challenge to IGSTK
development – the high quality standards
demanded the application domain – suggests
that some agile practices need to
be reinforced. For example, FDA guidelines
for approval of medical devices require
traceability of requirements through
implementation and testing. To address these
complexities, IGSTK adopted an agile
approach augmented by a set of best
practices we have previously described in
detail [6] so we merely list here:

Best Practice #1: Recognize people as

the most important mechanism for
ensuring high quality software. This agrees
with the philosophy espoused by the agile
community [3].

Best Practice #2: Promote constant
communication.

Best Practice #3: Produce iterative
releases.

Best Practice #4: Manage source code
carefully. A paradox of open source
development in this space is that on the one
hand you want to encourage community
contributions and innovation, but on the
other you need to manage change to software
artifacts carefully. We expand on our recent
process modifications to address this issue
(in part).

Best Practice #5: Validate the
architecture. This best practice is a nod to the
specialty of the domain, and is discussed in
more detail in the next section.

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

Int'l Conf. Software Eng. Research and Practice | SERP'14 | 355

Best Practice #6. Emphasize continuous
builds and testing.

Best Practice #7. Support the process
with robust tools.

Best Practice #8. Emphasize requirements
management in lockstep with code
management.

Best Practice #9. Focus on meeting
exactly the current set of requirements; it
makes traceability easier, not harder.

Best Practice #10. Allow the process to
evolve.

IV. BEST PRACTICES FOR COMMUNITY
SOURCE CONTROL

These best practices are not foreign to
agile practitioners, or even to non-agile
practitioners. In the safety critical domain,
following only these practices is unusual and
not sufficient. Key process elements need
augmentation to ensure safety. In a previous
paper [7] we explored architecture validation
(best practice #5) and requirements
management (best practice #8). In this
section we describe our past and new
activities to support best practice #4, manage
source code carefully.

Agile methods are certainly highly
iterative; the predominant agile process
models, Scrum and XP, use short time-boxed
iterations as a mechanism for managing
change. But beyond short iterations, agile
methods have other practices facilitating an
almost continuous checkpointing of the
process – the daily scrum, pair programming,
scrumboards, and continuous integration and
testing dashboards. However these practices
are typically best implemented when the
team is physically co-located and dedicated
to the project. Hurdles, ideas, and other
communications are addressed in real-time.
Even with powerful online tools,
geographically distributed teams can only
rarely achieve this real-time interaction.
Time boundaries, language barriers, network
infrastructure issues, and local distractions

and responsibilities at multiple sites are
common causes for this degradation. It is
exacerbated in open source communities,
where participants are often dispersed
individuals working for different
organizations and only part-time in that
community. Further, the community has to
have either formal or informal rules
regarding who can do what with which
source code modules. IGSTK operates under
such constraints, with global participation
from researchers in hospital labs and
universities, industry partners, and
practitioners who made partial contributions
over time. IGSTK has employed some
traditional mechanisms for managing this
collaboration, including developer meetings,
user group meetings, online wikis and
support forums, two mailing lists (adopters
and core developers), and restrictions on core
component development to only the core
team.

Source code control is a critical practice
in managing change in an agile and open
source environment. At any point in time a
community developer may be working on a
defect fix, a new core feature, a new non-
core feature, a refactoring, or an application-
specific behavior or integration. That
developer may be working in isolation, with
little visibility in the rest of the community
until the time arrives that s/he desires
submission of the changed code. Should the
code be accepted? Does it adhere to defined
quality policies? Has it been code reviewed?
It is an experimental or application-feature or
a feature identified as desired by the
community? These and more questions arise
in this situation, and all pose risks when
developing in a safety critical domain.

Over the past decade IGSTK has used a
traditional, centralized approach to source
code control common in many software
projects. This approach supports a “branch-
and-merge” centralized workflow. IGSTK
further adopted a multiple codeline practice

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

356 Int'l Conf. Software Eng. Research and Practice | SERP'14 |

known as sandboxing to allow for
experimental features to be developed under
lower quality conditions. But problems arose
over time. The sandbox codeline grew larger,
much larger, than the main product codeline,
to the extent that less rigorous traceability on
the sandbox led to inevitable technical debt.
In other words, the sandbox repository
became filled with incomplete features
whose owners may have gone inactive and
whose documentation and issue management
in other tools was outdated. Even if a
community member identified a desire to
complete a sandboxed feature, they were
often forced into significant rework or to
scrap the sandbox module and start over in
order to meet the quality policies on the
mainline.

In the past year IGSTK has moved to the
popular distributed version control system,
Git. Git enjoys significant popularity now,
though many projects use it in the same
manner as traditional centralized delta
repositories. Git’s distributed repository
model encourages many practices that go
against low-level practices taught in the
traditional model – for example, instead of
“check-in early and check-in often” (to
minimize merge conflicts in optimistic
centralized tools), the distributed model
encourages local branches with infrequent
merges, preferring to merge only when a
feature is complete and up to quality policy.
The need for a sandbox is gone. Further, it
encourages self-sustaining communities;
community practitioners may maintain their
own forked versions of repositories without
burdening the core team with constant
review of their features. Gone are the days of
“contrib. modules” one may “use at their
own risk” from the centralized repository;
now one may publish their own forked
repository and leave it to the market of
adopters to decide what to use. A concern in
this model is with the overall safety
properties of the forked repositories – who

has the overall ability to validate the safety
properties of these forks with the core? A
good research question! For the time being,
this model saves the IGSTK core team
valuable time in reviewing non-critical
development.

Because of the peer distributed repository
model used by Git and like-minded tools, a
large variety of workflows may be employed
on a project [3]. The IGSTK team reviewed
the Git workflow literature and practices
from related communities like ITK to adopt
a variation of a branchy workflow. In this
workflow two branch types are defined, a
topic branch and an integration branch. The
topic branch commits represent work on a
single new feature or fix. The local
developer(s) who work(s) on it name it
locally but the branch is not public on the
blessed IGSTK repository, so no other
developers can branch from it. The
integration branch is where merges of two or
more topics happen. These branches have
quality policy constraints enforced, and are
publicly named on the blessed repository
(one may pull from it).

Figure 1 depicts the relationship between
topic and integration branches.

Figure 1. Topic and Integration branch

commit patterns

Neither topic nor integration branches

represent the main codeline, this is
maintained separately in Git as the default
branch (master). In other words, merges are
not done directly into master, but into new
integration branches, which are then merged
into master after the integration is deemed
stable and up to quality policies. Figure 2
shows what a sequence of commits may look

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

Int'l Conf. Software Eng. Research and Practice | SERP'14 | 357

like in IGSTK between the master, a topic
branch, and an integration branch named
next. Further details on the IGSTK Git
workflow may be found on the IGSTK Wiki
at
http://www.igstk.org/Wiki/Git/Workflow/To
pic.

Figure 2. A possible sequence of commits

on all branch types

This was a detailed presentation of a

particular best practice in the agile IGSTK
open source community. The level of rigor in
daily collaborative practices of community
developers is significant, and suggests if the
trail of data of these practices can be
harnessed and analyzed, it could provide a
basis for safety case evidence for software in
healthcare.

V. DISCUSSION
IGSTK’s agile approach is neither as

rigorous nor as complete as it could be for a
safety-critical domain. IGSTK is principally
used in academic research centers and some
small commercial endeavors outside the
USA, which can afford to be more forgiving.
Yet, the tale of IGSTK’s agile evolution, we
think, offers lessons and hope for applying
agile methods to safety-critical domains. The
work is laborious; to create and faithfully
execute agile practices in a distributed open
source community, every detail of the daily
practices must be examined for the right
amount of ceremony. We presented our
revised approach to source code control as an
example.

As we indicated at the end of section II,
we believe there is an opportunity to create
guidelines, models, and/or quality process

criteria for the introduction of agile methods
in the healthcare domain. Foremost, we
believe it is a necessity – the explosion of
personal medical devices and information
management platforms such as the fitbit
(fitbit.com) or smartphone-based sensor apps
has serious implications for future patterns of
individual-to-clinician healthcare. It will
eventually become a necessity in systems
development in healthcare (for example,
tele-robotic surgery). Changes in medical
device regulatory evaluation to a more
evidentiary case-based approach [9] opens
the door for agility. If agile methods can be
instrumented to collect and aggregate daily
practices into such evidence, then the
possibility exists for expanded opportunities
in healthcare development. Certainly the
economic drivers are there. In our view
research is needed on how to instrument
agility to collect the evidence required for
safety cases. Agile’s benefits include the
lightweight but constant management of
detailed activity, and making this visible and
transparent to all stakeholders. The
increasing adoption of tools within the agile
process focuses on communication between
stakeholders (chickens) and developers
(pigs). The identification and instrumentation
of daily safety-related activities needs to be
included in such toolsets to make this
evidence collection continuous, feasible, and
complete. Safety-based micro-evidence may
then be aggregated to uncover macro-trends
and introduce process improvements. This is
a current focus of our research in this area.

ACKNOWLEDGMENT
This work was funded by NIBIB/NIH

grant R01 EB007195. This paper does not
necessarily reflect the position or policy of
the U.S. Government.

REFERENCES
[1] Blake, M.B., Cleary, K., Ibanez, L.,

Ranjan, S.R., and Gary, K., "Use Case-
Driven Component Specification: A

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

358 Int'l Conf. Software Eng. Research and Practice | SERP'14 |

Medical Applications Perspective to
Product Line Development," ACM
Symposium on Applied Computing,
Santa Fe, NM (2005).

[2] Boehm, B. Get ready for agile methods,
with care. IEEE Computer 2002;
35(1):64–69.

[3] Chacon, S. Pro Git. APress, 2009.
[4] Cockburn, A.: “Characterizing People as

Non-linear, First-order Components in
Software Development.” 4th
International Multi-Conference on
Systems, Cybernetics and Informatics,
Orlando, Florida, (2000).

[5] Dwight, Z. and Barnes, A. Laboratory
Driven, Lean-to-Adaptive Prototyping in
Parallel for Web Software Project
Identification and Application
Development in Health Science and
Research. Software Engineering and
Applications, 2012; 5:62-68.

[6] Gary, K., Ibanez, L., Aylward, S. Gobbi,
D., Blake, M.B., and Cleary, K. IGSTK:
An Open Source Software Toolkit for
Image-Guided Surgery. IEEE Computer,
vol. 39, no. 4, pp.46-53, April 2006.

[7] Gary, K., Kokoori, S., Muffih, B.,
Enquobahrie, A., Cheng, P., Yaniv, Z.,
& Cleary, K. “Agile Methods for Safety-

Critical Open Source Software”,
Software: Practice and Experience,
41:945-962, April 2011.

[8] Ge, X., Paige, F., and McDermid, J.A.
An Itaretive Approach for the
Development of Safety-Critical Software
and Safety Arguments. AGILE
Conference (2010).

[9] Geisler, J. “Software for Medical
Devices”, in Mission-Critical and
Safety-Critical Systems Handbook
Design and Development for Embedded
Applications (Fowler, K. ed.) 2010
Elsevier Inc.

[10] Kruchten, P. The Rational Unified
Process—An Introduction, 2nd Edition,
Addison-Wesley (2000).

[11] Royce, W.W.: “Managing the
development of large software systems:
concepts and techniques.”
IEEE WestCon, Los Angeles, 1970.

[12] Schroeder, W.J., Ibanez, L. Martin,
K.M.: “Software Process: The Key to
Developing Robust, Reusable
and Maintainable Open-Source
Software.” Proceedings of the IEEE
International Symposium on Biomedical
Imaging. Arlington, VA 2004.

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

Int'l Conf. Software Eng. Research and Practice | SERP'14 | 359

DIRCE - Design of Interaction and elicitation of

Requirements focusing on the Communication and

Exploration of ideas - Experiences of use in content creation

systems for digital television

Marilia S. Mendes
1

1
Estácio University of Ceará (FIC)

Fortaleza, CE – Brazil

mariliamendes@gmail.com

Elizabeth Furtado
2

2
University of Fortaleza (Unifor)

Fortaleza, CE - Brazil

elizabet@unifor.br

Abstract—This paper aims to present an approach to help

professionals focus on interaction aspects since the early

stages of the process of development of an innovative system.

This approach guides the application of techniques addressing

the integration between the processes of requirements

elicitation and interaction design by considering both the

experiences of users and other factors which influence the

context of use of a system under development. Such approach

was applied to a system which creates content for DTV,

resulting as major contributions the description of pre-

patterns for the context of content creation for DTV, as well as

an analysis of the implications of the use of techniques of user

experience for the activities of software engineering and

interaction design.

Keywords:User experience, Experience Prototyping, Human

Computer Interaction, pre-patterns, innovative systems, Digital

Television.

1. Introduction

This paper presents an approach to help Human Computer
Interaction (HCI) professionals (such as developers, designers
and usability engineers) understand the experiences of target
users in a project of innovative computing systems. An
innovative system is characterized by the fact that target users
— and in many cases developers too — are not yet familiar
with the technology being studied. The team that will develop
the system must go through a process of understanding the
experiences of target users in order to assure the usability of
such system. The usability notion of [14] was adopted, which
decomposes usability into technical quality (the system should
work) and user quality, and then decomposes user quality into
functionality (the system should provide users with the right
functionality that most users need or strongly want), ease of
use (it should be easy to learn and easy to operate) and user
experience (most users should have positive experiences when
using such system). From this understanding, they could
define usability goals and system requirements. Developers
(including designers) have difficulties in creating such
definitions. Features and system constraints involving the
usability as a whole refer to a series of doubts concerning

possible combinations among HCI concepts (such as: why will
some users probably not accept using a specific modality for a
task in a use environment?). To answer this question, a lot of
approaches have focused on the interaction study exclusively
with users, disregarding the team who will develop the system.
As it was previously mentioned, target users are not familiar
with an innovative system under development. This is the
main reason why users have difficulties when talking about
their expectations during experiences with a specific system.
Our assumption is that the most relevant professionals
developing the system should also have such experiences for
better describing the system.

The methodology developed by this work is based on the
user experience techniques. When applied to relevant
stakeholders of the project (such as target users and HCI
professionals), those should be able to:

Improve the understanding of relevant stakeholders
about the interactive possibilities of the system under
development. Throughout the design process, there are
situations in which the designer is forced to be creative: be
able to see people, things and situations in a new perspective
[7]. This situation is reinforced when the system is innovative.
In this case, the designers have to "imagine" both the
operation of the system — which does not yet exist— and the
use of the system by users. Dow et. al [5] argue that designers
do not have enough information on new technologies to
understand the limitations of feasibility, physical properties
and the vectors of change. The designers find it difficult to
design innovative applications due to the level of
complication, the lack of technological support and the
unstable nature of new technologies [5]. From this came the
need to support them to facilitate their understanding of the
system under development.

Promote an awareness process among stakeholders of
the project regarding the contextual factors that influence
the use of a system in an environment since the beginning
of the interaction design. In innovative projects, specific
techniques have to be used to place the context of use as the
principal concept to observe the experiences of use by the
target users. Ethical factors (what people like or do not like
and how the privacy of information is handled in the context

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

360 Int'l Conf. Software Eng. Research and Practice | SERP'14 |

of interaction), social factors (how users are able to overcome
the risks of ownership of technology) and environmental
factors (such as weight and portability of the equipment as for
the weather, amount of people in streets, etc..) influence the
use of the system and are difficult to identify without a
detailed understanding of the system. The development team
of a system should be able to handle the unexpected, knowing
the reaction of users and the return of their interaction. Users
can report their concerns, problems that have come from
similar systems, etc. By that, the team can improve the
interaction design by analyzing contextual factors, checking
whether the scenarios presented are consistent with the reality
of users, and whether the system will be well received by
them.

Provide better communication between stakeholders
enabling a consensus on interactive alternatives of the
system. Preece; Rogers and Sharp [10] emphasize the
importance of multidisciplinary teams in interaction projects.
Gathering a group of people with different backgrounds and
training promotes the combination of skills with an
understanding of the different areas of application needed as to
design the new generation of interactive systems. However,
the authors also emphasize the difficulty of communication
within the team: the more people with different backgrounds
in a design team, the harder it can be to make them
communicate and advance the projects developed [10].

In software engineering, there is a globally accepted
principle: good communication between members of a
development team is needed in order to have a better use of
their skills as for the system. The developer needs to have
good communication with the designer so that the result of the
development will be that which they have designed for it and,
finally, also the designers have to communicate with the users
and usability engineers so that the system will have a good
design guide.

This article is organized into seven sections: the second
emphasizes the reasoning of the methodology; the third
describes the proposed approach; the fourth section explains
the application of the methodology in the case study; the fifth
presents the results obtained; and the sixth brings a discussion.
As for conclusion, some final considerations and future work
are presented.

2. Rationale of the methodology

This work focuses on the requirements elicitation and the
design of the interaction of innovative systems considering the
experiences of users as well as the experiences of the team
developing the system. The activity of requirements elicitation
is responsible for the specification of requirements for the
operation and development of software systems. The design of
interaction goes beyond the interface, and its study involves
dealing with issues that often arise during the use in a process
of participatory design. The participatory design is
characterized by the active participation of end users of the
software throughout the design cycle and development. There
are several techniques of participatory design. The following
ones are cited as important for this work:

 User experience: encompasses all aspects of user
interaction during their use of the system [14];

 Experience prototyping: this is a technique that
combines user experience with prototyping and
proposes to provide developers / designers, users and
customers of a system with the possibility of
"experiencing it by themselves" before the system is
developed [1];

 Space-time representation: allows stakeholders of the
project to report their experiences of interaction in
terms of space and time, and such representation can be
made by use of post-it, notes, drawings, photographs,
etc. [5];

 Pre-patterns: are emerging patterns that are not yet in
common use by the design community and end users.
They are used in the exploratory stages of the project
of innovative systems, in which the problem to be
solved is not yet known with a certain pattern [3].

These techniques are associated in the approach proposed
in this work, which is described in the next item.

3. Approach DIRCE

The approach proposed in this paper is called DIRCE –
Design of Interaction and Elicitation of Requirements focusing
on the Communication and Exploration of ideas. Such
approach is suggested to be applied before or simultaneously
with the phases of requirements engineering and design of
interaction. As a reference point for integrating the approach,
the process of engineering requirements of Sommerville [13]
and the activities of interaction design of Preece; Rogers e
Sharp [10] were taken. The process engineering requirements
of Sommerville is composed of four phases, which are: (1)
Feasibility Study, (2) Elicitation and analysis of requirements,
(3) Specification of requirements and (4) Validation of
requirements [13]. Preece; Rogers and Sharp define four basic
activities for the interaction design: (1) Identifying needs and
establishing requirements, (2) Developing alternative designs,
(3) Building interactive versions of designs and (4) Evaluating
designs [10].

The proposed approach considers these activities involving
the techniques cited by the following steps (Figure 1): (1)
Study of similar applications, (2) User experience, (3)
Identification of system requirements, (4) Definition and
implementation of pre-patterns; and (5) Definition of
Interaction Design. In the first step of the methodology, the
applicators of the experience do a study of applications which
are similar to the system to be developed. The technique used
for this is the analysis of competitors, which focuses on the
identification of the strengths and weaknesses of competing
products before they start working on the design of the system
to be developed. Also in this step, the applications studied
with the team and participants are presented so that they could
acquire some knowledge about the innovative system.

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

Int'l Conf. Software Eng. Research and Practice | SERP'14 | 361

Fig. 1. Methodology DIRCE

In the next step of user experience, the techniques
experience prototyping and space-time representation are
applied. This phase is divided into four steps: (a) Participants'
knowledge, (b) Experience preparation, (c) Experience
application; and (d) After-experience meeting. In order to
evaluate the participants' knowledge, a questionnaire is
provided, aiming to assess how well those participants
understand the system to be developed and their experiences as
for similar systems. In (2) the applicators should prepare
simple low fidelity prototypes, which will serve as
communication tools to demonstrate how participants can use
the system. Scenarios of use can also be defined and thus used
as a guide for the experience activity.

In (c) the experience should be applied to the participants
with the presence of facilitators / observers. In (d) the
participants should report their experience and answer a
questionnaire in order to provide more details about the user
experience.

The last step is the identification of system requirements. In
this step, the results of the previous steps are analyzed
(interviews, questionnaires, prototypes, sketches, images, etc.)
in order to integrate and organize the results.

From the results of this analysis, the pre-patterns for the
system are defined. These pre-patterns are then applied,
validating scenarios and ethical, social and environmental
factors of the system under study and having a relationship
with the interaction design for the construction of the final
prototypes.

By suggesting techniques to be applied in the phases of
Requirements Engineering (RE) and Interaction Design (ID),
the approach of this work enabled the definition of a
conceptual framework (Figure 2). A conceptual framework
consists of a set of concepts used for solving a problem of a
specific domain [12].

The framework proposed is a generalization of the
methodology, relating the techniques applied in the
methodology to the processes of RE and ID. The process of the
methodology provides results for all phases of the requirements
engineering step, since the feasibility study until the
requirements validation. For the interaction design, the needs
and requirements are important for the preparation of the user
experience and, as a result, alternative designs, interactive
versions of the design and evaluation of resulting designs are
obtained.

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

362 Int'l Conf. Software Eng. Research and Practice | SERP'14 |

Fig. 2. Framework process integration of RE and ID using techniques suggested in Dirce

4. Case study

DIRCE approach was applied to a project whose objective
was developing a system for creating web content for DTV
(DTV). It was applied to 12 participants of the project team: 7
researchers teachers (who will be the end users of the system)
and 5 professionals from the development team (3 developers,
1 designer and 1 usability expert). The team consisted of 7
women and 5 men, aged between 20 and 35 (8) and above 35
(4). It was noticed that 7 of those have experience in preparing
lessons, from whom 6 had experience in distance learning, but
none of those had experience in DTV. The participants
answered a questionnaire which enabled the identification of
the characteristics described above, besides some other
important information as for the system, such as: all of them
have a television at home, use a computer and the Internet,
normally create content such as blogs, news, warnings to
people or websites.

1) Study of similar applications. Two applications were
presented to stakeholders aiming to improve their
understanding of the interactive possibilities of this new
system. The applications presented are meant to create content
on the web for viewing in the DTV, such as the system being
designed. However, neither has educational context to create
classes for DTV.

The sample of similar applications facilitated and clarified
a lot of questions, and the following points of interest for
research arose: how to have teachers (who are accustomed to
preparing classroom lessons) create lessons for a web system
to be viewed on DTV? How would teachers prepare such
lessons? How would they use what they have already done?
Which would their difficulties be?

In this sense, this work focused on a way for providing
user experience for teachers to verbalize how they would like
the system to be. The starting point was the need for
supporting the development of courses in an easy way and
which does not disrupt their productivity.

2) Preparation of the experience. In order to provide
users with closer scenarios, the experience was contextualized
in terms of time and space. Time was chosen based on the
assumption that teachers would organize their classes based on
a time sequence and that they would like to use these classes
later. Space was chosen for defining experienced scenarios of
use. The prototype was built by using low cost materials such
as paperboard, icons, colored cards, pen and paper.

The paperboard was prepared on a table and was divided
into 3 parts grouped into 2 regions (Figure 3). The time
representation (Region A of Figure 3) was treated by means of
a time line, and the space representation (Region B of Figure

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

Int'l Conf. Software Eng. Research and Practice | SERP'14 | 363

3) was treated by defining three scenarios whose results were
freely arranged in the spaces of region B in Figure 3: (1) the
1st horizontal line set the space for the classroom scenario; (2)
the 2nd horizontal line defined the space for the scenario in
which the system would be used for the classes on DTV; and
(3) the last line defined the space that would correspond to the
student's vision on DTV. The participants were instructed to
use the time line for presenting their experiences in teaching
classes (years could be freely written on papers) and to
develop scenarios in the context of spaces.

(a)

(b)

Fig. 3. Low-fidelity prototype (a) and Application of the experience (b)

Classes would be prepared by using content cards (Figure
3-a), a pen for the participants to make notes and a set of icons
representing the following objects of content creation for a
class: text, images, audios, videos, presentations and
questionnaires (here called as media, which are represented in
Figure 4-a). In order to represent factors that could influence
the use of the system, some icons were previously created,
with the following concepts: privacy, safety, accessibility,
collaboration and copyright (represented in Figure 4-b). In
case the participant would not choose any of these media or
concepts, they could use white papers for expressing such
concepts.

(a) (b)

Fig. 4. Icons

The scenarios of the experience prototyping which were

set to be presented to participants were:

 Scenario 1 – Preparation of classroom lessons.
Reflection: Do you currently prepare your classroom
lessons?

 Scenario 2 – Preparation of lessons for DTV.
Reflections: How could this new system help you
prepare your lesson for DTV? What difficulties would
you have in using such a system?

 Scenario 3 – Creation of the students' vision on DTV.
Reflections: How would students attend such lessons
on DTV? What factors would influence their use for
content creation or the student's use for the interaction
with the content?

3) Application of the experience. The application of the
experience in this case study had the following characteristics:
individual session; duration: from 30 minutes to 1 hour and;
monitoring: 1 or 2 observers. During the application of the
technique, the participants were provided with a short
explanation, ensuring that they would not be tested, but
actually participate in an experiment to help the final product
which will be developed. The scenarios are explained to the
participant before they start using the system; some contextual
interviews are applied while they use it. These contextual
interviews involve talking to the user while they perform their
tasks, by combining the techniques of interview and
observation.

The first scenario, focusing on classroom lessons, aimed to
motivate the participant in the context that was previously
known. This scenario intended to rescue the participant's
teaching practices for creation of classroom lessons. The
participants were asked to start this experience by explaining
how they prepared the class content by using the resources
available for improving communication.

The second scenario aimed to introduce the participant in
the application context - a system for creating content for
DTV. As they have explained their classroom lessons in the
first scenario, in this scenario they are encouraged to think
about the following: ―You have just explained how your
classroom lessons work. Now imagine that the institution
where you work has provided teachers with a system for
creating distance classes for DTV. Therefore, you should
adapt your previously created class by using the system for
DTV‖. In this scenario, the participant should imagine the
system and explain what the difference would be between the
classroom lessons and the DTV lessons.

Still in the second scenario, the next step consisted in
describing what features the system would have. The
applicator asked the participants what features they believed
such a system would have. The participant makes a
comparison between the way they usually teach (classroom
lessons) and the way they think it would be in DTV, by
thinking of which features would be important for the
preparation of their classes, for example whether they would
use videos or apply group activities, and what they would like

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

364 Int'l Conf. Software Eng. Research and Practice | SERP'14 |

to use in the system. They were supposed to imagine how that
content would be handled on DTV.

In the third scenario (student's vision) the user is asked:
―How do you think the student will see this class you have
created on DTV?‖ The participant would think as a student,
reflecting about how the student would attend that class on
DTV. During the course of user experience, the participant
takes the position of both a teacher and a student. Then, there
is a reflection on contextual factors which may influence the
use of the system. The participant is asked whether they have
thought of any factor which could influence the use, such as:
accessibility, copyright, security, sharing, collaboration or
privacy. The images of Figure 3-b represent the application of
the technique. In this case study, participants were supported
as for the use of the system. They were also monitored as for
their experience with the system, both through observation and
through questions.

4) After-experience meeting. In this meeting, the process
and the experience description were explained, and some
questions about the experience were raised. Each participant
detailed how their user experience with the future system had
been. The participants were then encouraged to point out the
possible features of the system previously imagined
throughout the three scenarios of use. They talked about their
ideas and expectations regarding the system. Afterwards, they
filled out a post-experience questionnaire. A week later, the
applicator of this methodology together with the participants
explored the data resulted from this phase of the methodology
and created a requirements document and a prototype of the
interfaces considering the data collected. Such prototype was
presented to participants and thus validated.

5. Analysis of results

The analysis of results was based on two moments: (1)
during the explanation of the experiment, through observation,
contextual interviews and use of prototypes and; (2) after the
experience, through brainstorming and questionnaires.

The results obtained from the application of these
techniques are described below, which are basically the
analysis of the information obtained and of the participants'
behavior, noticed through their speech and behavior.

Observation of the experience: This experience brought a
lot of ideas and suggestions. By imagining how the system
should be, the teachers described important features it should
have. They said: ―I would like the system to provide us with
media such as pictures, audios and videos‖, ―I would like to
know the student's level‖. They made comparisons between
their classroom lessons and how these lessons would be
applied in the system: ―When I teach in the classroom, it's
possible to know whether the student is or isn't interested in
my class, so how will I realize it through the DTV system?‖.
They also talked about what they did not wish the system to
have: ―I don't want to have much work to search for content‖.
Therefore, they would list what was and what was not
necessary for the system, which would then be transformed
into requirements and constraints for the system.

Contextual interview: The contextual interview facilitated
the conduction of the experiment during its use. The questions
were supposed to have the participant reflect about the system.
The participants were asked: ―How would this system help you
prepare your lesson?‖ and some of the answers were: ―The
system should be simple and easy to use‖; ―The system should
give me feedback so that I know whether my class was good‖;
―The system could send me questions from students‖, and then
the applicator asked the following question: ―What features do
you think this system should have?‖, to which the following
responses were obtained: ―Teaching tips on how to prepare a
lesson and technology tips on how a good class on DTV would
be, for instance: not using long texts‖; ―Possibility of the
teacher to determine a logical sequence for the student to view
the content, for example: the advanced subject would be seen
only after the basic subject has been studied‖.

Another question proposed to participants was: What are
the main difficulties for the teacher whose habit was to
prepare classroom lessons, when they face such a digital
system? Some of the answers were: ―When I prepare my
lesson and go to classroom, the lesson totally depends on the
interaction with the class; I can change it and add something
more. When using the digital system, how can I do this?‖, ―In
DTV, more people have access to this content, so that will
demand me more care when I prepare my content!‖, ―I'll have
to quote all the references‖, ―I won't have direct interaction
with the students and thus I won't be able to see their interest
or their possible questions as to the content of the lesson‖.

In the third scenario, the following question was asked:
―How do you think the student will see this class on DTV?‖, to
which some participants answered: ―First of all, they should
have access to a menu, from which they would choose what to
display.‖, but all the participants explained visually by using
drawings and screen assembly of the prototype.

The participants were asked to freely think of factors that
could influence the use of the system. The following factors
were suggested: communication, location, sharing, privacy,
trust, collaboration, reuse, and usability requirements. For
each of those factors, they would say whether they had
thought of it or not. Some users stated to have thought of it,
whereas others had not. Sometimes they did not think of it
during the process, but at the time they were asked about it,
they began to think of it. One participant has confidentially
said: ―I did not think of it because the DTV is open‖, yet
another participant has affirmed not to have thought of
copyright for they thought the system would automatically
deal with this subject later.

Prototypes: Participants began the experiment by planning
their classroom lessons as a function of time. They would put
the years when they began to teach and would explain the
content and its evolution. The main phrases that show how the
technique was used are: ―In that year I would use only texts,
but in the following year I began to use videos...‖, ―In that
year I would prepare the lectures by using slides and
questionnaires, and in the following year I took advantage of
such content but added group activities‖.

More than one participant would divide their lessons into
periods. They explained their classes as follows: ―The class

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

Int'l Conf. Software Eng. Research and Practice | SERP'14 | 365

usually starts as a lecture, then a debate is raised, and at the
end I suggest some more literature on the subject‖; ―Firstly I
expose the contents, then I assign an exercise for evaluating
student's understanding...‖

Some participants (2 out of 7 teachers) focused on teaching
methods of planning the educational concepts in the
application. One participant used free cards to describe aspects
of Didactic Engineering (preliminary analysis, a priori,
posteriori experimentation and analysis [4]). The system
would support the a priori analysis when the teacher would
use existing material to generate a new one. The
experimentation refers to the use of content by the student,
which is followed by a posteriori analysis of learning by the
teacher.

In the second scenario, system for classes in DTV, users
continued to explain step by step how their classes would be in
this context, considering issues such as the reuse of content
and media for the preparation of the digital lessons. They said:
―Firstly, I would provide the students with a text on the
subject, then I would have them answer a questionnaire, then I
would show a video...‖. And this way they were actually
making the lesson for DTV. The same also happened when the
participants were asked about how they thought the students
would see the class on DTV. Also for this, the participants
numbered a sequence of steps: ―The student would first see a
video, and then they would see a text on the subject...‖.Some
participants also represented the vision of the student with
representative television frames.

Brainstorming: Throughout this step, each participant has
listened to the others' thoughts regarding the system and have
argued about the ideas that emerged. Due to the diversified
profile of those involved, different expectations as for the
system were detected. Whenever a participant would tell their
experience, and their expectation about the system, it was
common to hear from other participants: ―I have already
thought otherwise‖ or ―I think it could be that way‖,
encouraging them to have a healthy discussion in order to
reach a consensus. The applicators of the experience were also
mediators during the brainstorming.

It was also noticed that the user experience provided them
with more security so that they could discuss reporting their
opinions about the system, making their contribution more
active compared to meetings happening before the application
of the methodology.

In the next paragraphs, the results were grouped into 4
items: (1) Results for the requirements elicitation, (2)
Alternative design of interaction, (3) Pre-patterns for the
system and, (4) Definition of project interaction.

(1) Results for the requirements elicitation. At the end
of the experiment, ideas and issues were raised by participants.
The technique of space-time representation associated to the
experience prototyping have encouraged the participants to
think of factors such as reuse and logical organization of
content versus time (see Table 1). An amount of 32 valid ideas
for the scenario 2 and 12 valid ideas for scenario 3 were
raised. These ideas were transformed into requirements, and

factors into pre-patterns explained in the following item. The
full analysis is described in [8].

TABLE I. IDEAS AND FACTORS ARISING FROM THE PROTOTYPING

EXPERIENCE

Results Experience prototyping (associated with the space-time
representation, contextual interview and prototypes)

Title

(centered)

Scenario 1

(Classroom

lessons)

Scenario 2

(Teacher vision: web

application for the

construction of content)

Scenario 3

(Student vision:

for application in

DTV)

valid ideas - 32 12

Factors Reuse
Reuse, Collaboration,
Sharing, Copyrights,

Usability, Pedagogical

Collaboration,
Accessibility,

Usability

(2) Alternative design of interaction. An important
contribution of this technique was the emergence of
alternatives for interaction design suggested by the
participants. For instance, the alternative considering a table
for the organization of contents. The main screen of the web
application would be like a table, and the builder objects of the
content would be freely moved, enabling the content to be
created on a virtual table, in terms of space and time, like the
experience application. In Figure 5-a, the table where the
experience was applied is shown, and Figure 5-b shows the
alternative proposed (in a paper prototype) by the
development team who participated in the experiment. The
alternative suggests the User to be able to drag the media in
order to build content on the main screen. The Figure 5-c
shows the final version of the system. The creativity of the
participants involved is originated mainly by the list of
alternative solutions to a specific problem. Presenting and
exploring multiple prototypes helps to better understand the
capabilities of each alternative to meet the needs of users and
the requirements of the system under development [2].

(a)

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

366 Int'l Conf. Software Eng. Research and Practice | SERP'14 |

(b)

(c)

Fig. 5. Alternative of table

(3) Pre-patterns for the system. As a result of the

experience and the requirements generated by it, new pre-

patterns for the system were found out. The categories in

which the pre-patterns were identified are:

A. Accessibility. Refers to the inclusion and extent of use
by people with disabilities or limited mobility so that
they can participate in activities that include the use of
products, services and information;

B. Collaboration. Refers to the action developed jointly
by two or more people who understand each other, by
sharing values, services or products;

C. Copyright. Refers to names used in reference to the list
of rights for authors of their intellectual works that can
be literary, artistic or scientific;

D. Security. Refers to protecting the system from possible
contingencies;

E. Usability. Refers to how easily the system or
component can be operated by the User;

F. Reuse. Refers to using a product or file more than
once;

G. Pedagogical. Refers to the educational context
addressed in the system.

An example of a collaboration pattern created for the
viewing on DTV is shown below:

B2: Collaborative participation of users of DTV content

Synopsis: Students can collaborate on the content by sending
questions.

Context: Students may have questions or interesting ideas to

contribute to the enrichment of the content. Therefore, when
accessing the content on DTV, they can send their questions or

suggestions for the system.

Problem: The student (User of DTV) wishes to send their questions

and suggestions on the content published.

Solution: Enable the students to participate by sending questions

and suggestions.
References: The system will provide users with an option for
sending the questions about the content. These questions will be sent
to the teacher responsible for the publication of that content.

Some pre-patterns have come from the first study [9] and
others have arisen throughout the experiment, as discussed
after the experience through brainstorming and raised through
the questionnaire. Some were considered in the design of the
interface and as non-functional requirements of the system.

After the definition of pre-patterns, it was made an
association from which it can be contextualized in the web
interface and in the DTV interface of the system.

(4) Definition of Interaction Design. The pre-patterns for
DTV have helped to define interface patterns for the system.
The accessibility pre-pattern enabled the legend design and the
cooperation pre-pattern made it possible to send questions and
suggestions from student to teacher.

6. Discussion

The purpose of the application of this methodology was to
apply a more effective requirements elicitation and develop
the interaction design in innovative systems. In this study,
effectiveness refers to how useful the application of associated
techniques was while applying the methodology in order to
achieve the following objectives which will be discussed
below.

Supporting the project stakeholders as for improving
their understanding about the interactive possibilities of
the system under development. Such objective was
developed in the methodology by means of the following
decisions: (a) the participants were both users and the system
development team. The HCI area has directed its studies in
order to increasingly include the user in the software
development process. The importance of including also the
team who will develop the system is highlighted. The
involvement of both components is important for the project,
once it not only provides a mutual learning, but also promotes
interaction and understanding of both on the use of the system;
(b) there was a competitor analysis and a presentation of

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

Int'l Conf. Software Eng. Research and Practice | SERP'14 | 367

results to stakeholders so that they could have an initial
knowledge of the future system. This step was important for it
provided the participants with an idea about the purpose of the
future system and; (c) when moments of user experience were
provided for those involved. At the time in which the
participants reflect on the system within a context of an user
experience, they understand the system better and facilitate
their exploration of ideas.

An important point proving that this goal was achieved is
the collection of alternatives for the interaction design
generated by participants. When users or even the
development team do not have enough understanding of the
system, they do not even formulate alternatives.

The rich data collection from this experiment would have
been insufficient if only techniques such as questionnaire,
interview and brainstorming had been applied. Therefore, the
application of the experience techniques provided all
stakeholders with the opportunity to disclose their ideas and
possible alternatives to the system.

Promoting an awareness process among stakeholders
of the project regarding the contextual factors that
influence the use of the system since the beginning of the
interaction design. This objective was addressed in the
methodology in the following moments: (a) During the
application of the experience prototyping, when those
involved were led to think of possible factors that would
influence its use; (b) at the moment when these factors are
considered for the development of requirements and pre-
patterns for the system and; (c) at the time when the pre-
patterns are applied in the interaction design of the system.
When the participants of the experience were asked whether
they had thought of any factor which could influence its use,
only 3 of them answered yes and described factors such as
reuse, collaboration and copyright. However, when some
factors were suggested, the participants who had not thought
of those so far would start to think of such factors. All of them
(12) gave explanations about the factors, by analyzing them
according to the system.

Still during the experience to prepare a lesson, the
participants would use the media icons, asking whenever they
did not understand any icon. When they had no representation
of the media they wanted, they would write it on paper. They
would look at the icons for the context of use, but only one
participant used them in their experience. After a background
alignment and sample of contextual factors that could
influence the use of the system, other participants would begin
to use them.

The contextual factors that influence the use were
considered during the elaboration of requirements and pre-
patterns for the system. From the 14 pre-patterns designed, 11
were applied in the interaction design of the system.

The pre-patterns were used for educating users as for the
importance of contextual factors for the interaction of the
system. The contextual factors have been raised and
considered in the definition of requirements and pre-patterns
and also considered in the system interface.

Providing better communication between stakeholders
enabling a consensus as for the interactive alternatives of
the system. At the beginning of the project, there were issues
as for the communication and interaction between
stakeholders, mainly referring to the vocabulary used.
Education professionals would often express themselves by
using unfamiliar terms for technology professionals, such as:
―preliminary analysis‖, ―a priori analysis‖, ―posteriori
analysis‖, ―Fedathi sequence‖, ―didactic engineering‖,
―epistemology‖, among others. The development team would
also use technical terms, often not understood by the
educational team, such as: "storyboard", "prototyping",
"personas" and other technical terms of the domain. The
difficulty with communication would generate other
interaction difficulties. Professionals from different
backgrounds would feel intimidated when trying to consider
topics unknown to them during the project meetings. Usually,
the meetings did not allow a concrete result due to the number
of factors to be considered and the difficulty in expressing
them.

In this study, it was observed that the application of the
methodology enabled a consensus of ideas between those
involved and a clear definition of the system scope. The
clearest example of improvement in the communication
referred to the moment when participants explained their user
experience, ideas and suggestions, which led to the perception
that people would work in distinct ways. For instance, in the
courses structure, teachers from the educational domain had
concepts such as lessons- units-content, whereas teachers from
the technological domain had the structure of courses as
lessons-files. From these suggestions, alternatives were
designed, and with improved communication it was possible
to reach a consensus for the final choice. For this factor, a
flexible structure for courses was desired, in a more free
setting called label. The user would create a label and name it
the way they want.

In order to sum up and give a final figure on how effective
the result of applying a set of techniques for requirements
elicitation and for interaction design, it is worth saying that
these three techniques have helped on requirements elicitation
and design interaction. The application of the brainstorming
technique by itself would not have brought the intended results
if an user experience had not been applied afterwards, for
instance. The proposed methodology had the objective of
organizing these techniques so that the benefit of each
technique could be extracted from another one.

As a result of the application of the methodology,
documents of requirements were obtained for both modules,
definition of 13 pre-patterns and sketches of alternatives of
design interaction

7. Conclusion and future works

In this paper, was presented the DIRCE methodology and
its application in a case study of development of a system for
creating educational content for digital TV from the web, as
well as the results of applying the methodology and analysis
of results.

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

368 Int'l Conf. Software Eng. Research and Practice | SERP'14 |

The DIRCE approach focuses on the user experience, with
a combination of the experience prototyping and space-time
representation techniques, which together could provide an
experience whose focus was on communication and
exploration of ideas from those involved. The user experience,
applied together with the techniques experience prototyping
and space-time representation, was effective in providing
experience of use for those involved. The use of a set of
techniques for collecting requirements was important for
capturing data from the user experience.

The focus of this work was not to research the users' needs,
but the requirements elicitation from experiences of use. When
preparing a design project, most designers in our study are
based on qualitative methods such as ethnography, focus
groups and informal interviews, as well as observations of
everyday life. This research mainly focuses on the design and
prototyping for interaction design and not on the depth
investigation of user which often occurs long before design
ideas emerge.

The contributions of this research are divided into
methodological and products generated:

(1) methodological: (i) Exploration of the prototyping
experience for identifying alternatives of interaction
design; (ii) Demonstration of how contextual factors
that influence the quality of use of systems can be
used for the interaction design and for requirements
elicitation; (iii) Step-by-step description of application
of techniques of experience through a real example
and with significant results; (iv) Presentation of
various relations of the results with the techniques
applied. These can be useful for providing an analysis
of return on investment, for instance: pre-patterns vs.
functional and non-functional requirements; pre-
patterns vs. interface; factors vs. requirements; factors
vs. pre-patterns; ideas considering different points of
view vs. system functions; ideas vs. alternatives for
interaction design; and

(2) Products generated: (i) Pre-patterns; (ii) Methodology;
(iii) Generic Framework.

This work is concluded with the following question: How
is it possible to achieve more efficient requirements? A
possible response resulting from the application of this
methodology would be: all stakeholders should participate, be
reflective, creative and involved with experiences of use,
through good communication.

As future work, more contextual factors that influence the
use shall be analyzed, by continuing working with all potential
stakeholders of the project (users and development team) and

apply again the pre-patterns defined in other projects related to
the creation of content for DTV.

In this work, the application of the technique experience
prototyping was carried out individually, and data collection
(brainstorming) occurred in a collective way, so that one
participant would not influence the other participants
throughout the process of experience of use, but still allowing
them to interact and discuss during the process of experience
of use, in which each participant would tell their experience to
others. However, [6], in his work Prototyping Social Action,
argues that the prototype is composed of human action rather
than the technology that supports it. He believes it is important
to understand how people interact with others while using a
prototype, and how these interactions affect the manner in
which individuals use the prototype.

Based on this context, it is intended to apply the DIRCE
approach once more for studying factors of social interaction
and on how they influence the quality of use. Indeed,
television is a social technology and, therefore, it could be
interesting to analyze the interaction of people together.

8. References

[1] Buchenau, M., Suri, J. F., ―Experience Prototyping‖, Proceedings of
DIS00: Designing Interactive Systems: Processes, Practices, Methods, &
Techniques, Brooklyn, New York, 2000. pp. 424-433.

[2] Blind Review.

[3] Chung, E. S., Hong, J. I., Lin, J., Prabaker, M. K., Landay, J. A., Liu, A.
L.. ―Development and Evaluation of Emerging Design Patterns for
Ubiquitous Computing‖, Proceedings of Designing Interactive Systems,
Cambridge, Massachusetts, USA, 2004, pp. 233-242.

[4] Damore, B. Epistemologia, Didática da Matemática e Práticas de
Ensino. In: Bolema, v. 20, n. 28, 2013. Available
<www.dm.unibo.it/rsddm/it/articoli/damore>.

[5] Dow, S., Saponas, T. S., Landay, Li, Y., Landay, J. A., ―External
representations in ubiquitous computing design and the implications for
design tools‖, Proceedings of DIS06, 2006. pp. 241-250.

[6] Kurvinen, E. Prototyping Social Action. Gummerus Printing. Printed in
Vaajakoski, Finland 2007

[7] Löwgren, J., Stolterman, E., ―Thoughtful interaction design: A design
perspective on information technology‖, MIT Press, Cambridge,
Massachusetts, USA, 2004.

[8] Blind Review.

[9] Blind Review.

[10] Preece, J., Rogers, Y., Sharp, H. ―Interaction design: Beyond human-
computer interaction‖, John Wiley & Sons, New York, NY, 2002.

[11] Saponas, T. S., Prabaker, M. K., Abowd, G. D., Landay, J. A., ―The
impact of pre-patterns on the design of digital home applications‖,
Proceedings of the 6th ACM conference on Designing Interactive
systems, University Park, Pennsylvania, USA, 2006, pp. 189- 198.

[12] Blind Review.

[13] Sommerville, I., ―Software engineering‖, Addison Wesley Longman
Publishing Co., Redwood City, CA, USA, 2003.

[14] Ole N., Dybkjaer. Multimodal Usability. Springer.2009.

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

Int'l Conf. Software Eng. Research and Practice | SERP'14 | 369

Probabilistic Alias Analysis for Parallel Programming in SSA
Forms

Mohamed A. El-Zawawy1 and Mohammad N. Alanazi2
1,2College of Computer and Information Sciences,

Al Imam Mohammad Ibn Saud Islamic University (IMSIU)
Riyadh, Kingdom of Saudi Arabia

1Department of Mathematics, Faculty of Science
Cairo University

Giza 12613, Egypt
Email1: maelzawawy@cu.edu.eg

Email2: alanazi@ccis.imamu.edu.sa

Abstract— Static alias analysis of different type of pro-
gramming languages has been drawing researcher attention.
However most of the results of existing techniques for alias
analysis are not precise enough compared to needs of
modern compilers. Probabilistic versions of these results,
in which result elements are associated with occurrence
probabilities, are required in optimizations techniques of
modern compilers.

This paper presents a new probabilistic approach for alias
analysis of parallel programs. The treated parallelism model
is that of SPMD where in SPMD, a program is executed
using a fixed number of program threads running on dis-
tributed machines on different data. The analyzed programs
are assumed to be in the static single assignment (SSA)
form which is a program representation form facilitating
program analysis. The proposed technique has the form
of simply-strictured system of inference rules. This enables
using the system in applications like Proof-Carrying Code
(PPC) which is a general technique for proving the safety
characteristics of modern programs.

Keywords: Probabilistic Analysis, Alias Analysis, Parallel Pro-
gramming, SSA Forms.

1. Introduction
Considerable efforts of research have been devoted to

achieve the static alias analysis of different type of pro-
gramming languages. Algorithms for calculating alias rela-
tionships for all program points exist for basic programming
techniques. Classically, alias relationships fall in two groups:
definitely-alias relationships and possibly-alias relationships.
The former is typically true for all possible execution paths
and the later might typically be true for some of the possible
execution paths. However the information calculated by most
existing algorithms for alias analysis is not precise enough
compared to the needs of modern compilers. This is so as
modern compilers need finer alias-information to be able

to achieve tasks like code specialization and data specula-
tion. In other words information calculated by most alias
analysis techniques do not help compilers to do aggressive
optimizations. More specifically, possibly-alias relationships
is not rich enough to inform the comfier about the possibility
that constraints for the executions. Hence compilers are
somehow forced to follow a conservative way and assume
the conditions validity for all execution paths [1], [2], [3].

A dominant programming technique of parallelism for
large-scale machines equipped with distributed-memories
is the single program, multiple data (SPMD) model. In
SPMD, a program is executed using a fixed number of
program threads running on distributed machines on differ-
ent data [4]. SPMD can be executed on low-overhead and
simple dynamic systems and is convenient for expressing
parallelism concepts. This parallelism model is used by
message-sending architectures such as MPI. SPMD is also
adapted by languages whose address spaces are globally
partitioned (PGAS) such as UPC, Co-Array Fortran, and
Titanium. Specific deadlocks can be prevented using the
SPDM model which can also be used to achieve probabilistic
data races and specific program optimizations [5], [6].

Static single assignment (SSA) [7], [8] is a program repre-
sentation form facilitating program analysis. SSA forms are
important for software re-engineering and compiler construc-
tion. Program analysis needs data-flow information about
points of the program being analyzed. Such information is
necessary for program compilation and re-engineering and
is conveniently collected by SSA. For program variables,
some analyses need to know assignment statements that
could have assigned the used variable content. In Static
single assignment (SSA) form exactly one variable definition
corresponds to a variable use. This is only possible if
the algorithm building the SSA form is allowed to insert
auxiliary definitions if it is possible for different definitions
to get into a specific program point.

A general technique for proving the safety characteristics

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

370 Int'l Conf. Software Eng. Research and Practice | SERP'14 |

of modern programs is Proof-Carrying Code (PCC) [9],
[10]. PCC proofs are needed and typically constructed using
logics annotated with inference rules that are language-
specific. The proofs ensures safety in case there are no bugs
in the inference rules. One type of Proof-Carrying Code
is Foundational Proof-Carrying Code (FPCC) which uses
theories of mathematical logic. The small trusted base of
FPCCs and the fact that they are not tied to any specific
systems make them more secure and robust.

This paper presents a new technique for probabilistic
alias analysis of parallel programs. The technique has the
form of simply-strictured system of inference rules. The
information calculated by the proposed technique are precise
enough compared to information needed by modern compil-
ers for compilations, re-engineering, aggressive-optimization
processes. The proposed technique is designed to work
on the common and robust data-flow representation; SSA
forms of parallel programs. The use of inference systems
in the proposed technique makes it straightforward for our
technique to produce justifications needed by Foundational
Proof-Carrying Code (FPCCs). The proofs have the form of
inference rules derivations that are efficiently transferable.
The parallelism model treated in this paper is that of single
program, multiple data (SPMD) in which the same program
is executed on different machines on different sets of data.

Motivation
The paper is motivated by need for a precise probabilistic

alias analysis for SPMD programs running on a hierarchy
of distributed machines. The required technique is supposed
to associate each analysis result with a correctness proof (in
the form of type derivations) to be used in proof-carrying
code applications.

Contributions
The contribution of the paper is a new approach for

probabilistic alias analysis of SPMD programs running on
SSA forms of programs and producing justifications with
analysis results.

Paper Outline
The outline of this paper is as follows. Section 2 presents

the langauge model, SSA-DisLang, of the paper. This section
also presents an informal semantics to the langauge con-
structs. The main content of Section 2 is the new technique
of the probabilistic alias analysis of SPMD programs. Sec-
tion 4 concludes the paper and suggests directions for future
work.

2. Probabilistic Alias analysis for SPMD
This section presents a new technique for probabilistic

alias analysis of parallel programs. The parallelism model
used here is that of SPMD where the same program is
executed on distrusted machines havering different data.

However communications between the distributed machines
is allowed in a predefined contexts. For example a command
running on machine 1 may request machine 3 to evaluate a
specific expression using data of machine 3 and to return
the result to machine 1.

The syntax of the langauge used to present the new prob-
abilistic alias analysis technique is shown in Figure 1. We
call the langauge mode SSA-DisLang for ease of reference.
A program in SSA-DisLang consists of a sequence of state-
ments where statements are of wide diversity. Statements use
(distributed) expressions, DExpr. The machines to run SSA-
DisLang programs are typically organized in a hierarchy.
The distributed expressions include the following:

• malloc() : allocates a dynamic array in memory and
return its base address.

• run (e,m) : evaluates the distributed expression e on
machine m and return the result.

• reform(alis m, int m) e : casts the location denoted by
the distributed expression e as an integer rather than a
pointer to a memory location on machine m.

• reform (int mj , int mi)) e : casts the location denoted
by the distributed expression e as a pointer a memory
location on machine mi rather than as a pointer to a
memory location on machine mj .

Our proposed technique assumes that the given program,
that is to be be analyzed for its probabilistic alias competent,
has the static single assignments form. Therefore the input
program would contain annotations (added by any efficient
SSA such as algorithm [11]). The program annotations will
have the form of new statements added to the original
program. Therefore statements of SSA-DisLang include the
following:

• l := e : this is a classical assignment command. How-
ever the design of the langauge allows using this
command to assign a value evaluated at a machine
to a location on a different machine of the machines
hierarchy.

• run (S,m) : allows evaluates a specific command S
on a specific machine m regardless of the executing
machine. This command is necessary when some com-
mands are convenient only to run on data of certain
machine of the hierarchy. The command is also used
when security is a concern as S would not have access
to all machines.

• xi := f(xj , xk) : this command is to be added by the
supposed SSA algorithm and it semantics is that vari-
able xi were created specifically for avoiding multiple
assignments to variable x. The range of this definition
if form definition of variable xj to that of variable xk.

• xi := md(xj) : this is the second sort of annotations
SSA-DisLang programs. The semantics of this statement
is that it is highly likely that variable xi is used to
define variable xj . Recall that our main technique of the
paper cares about possibility of assignments to occur in

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

Int'l Conf. Software Eng. Research and Practice | SERP'14 | 371

x ∈ lVar, iop ∈ Iop, bop ∈ Bop, and m ∈ M ⊆ M
l ∈ Loc ::= x | l → y | [l].

e ∈ DExpr ::= l | e1 iop e2 | &l | malloc() | run (e,m) |
reform(alis m, int m) e | reform (int mj , int mi)) e.

S ∈ Stmts ::= l := e | run (S,m) | S1;S2 | xi := f(xj , xk) | xi := md(xj) |
mu(xj) | if e then St else Sf | while e do St.

Fig. 1: Programming Language Model; SSA-DisLang

P (x) = {(a1, p1), . . . , (an, pn)} i = max(p1, . . . , pn)
(xp)

x : P →l ai

P (l) = {(a1, p1), . . . , (an, pn)} P (y) = {(b1, q1), . . . , (bm, qm)}
i = max{pj × qj | aj ∈ P (y)⌉1} (→p)

(l → y) : P →l bi

P (l) = {(a1, p1), . . . , (an, pn)} foralli.P (ai) = {(bi1, qi1), . . . , (bim, qim)}
i = max{pi × qij | 1 ≤ i ≤ n&1 ≤ j ≤ m}

([l]p)
[l] : P →l bi

Fig. 2: Probabilistic Alias Analysis (PAA): Locations.

e : P → ae probability of arriving at this memory point ≥ pt
(reformp

1)
reform(alis m → int m) e : P →l ae

probability of arriving at this memory point < pt
(reformp

2)
reform(alis m → int m) e : P →l ⊥

e : P → ae probability of arriving at this memory point ≥ pt
(reformp

3)
reform (int mj → int mi)) e : P →l ae

probability of arriving at this memory point < pt
(reformp

4)
reform (int mj → int mi)) e : P →l ⊥

e : P → ae b = reform(_, int m)ae
(runpe)

run (e,m) : P →l b

ai is a fresh memory location on machine mi

(malloc)p
malloc() : P →l ai

e1 : P → ae1 e2 : P → ae2
(+p)

e1 iop e2 : P →l ae1 + ae2

Fig. 3: Probabilistic Alias Analysis (PAA): Distributed Expressions.

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

372 Int'l Conf. Software Eng. Research and Practice | SERP'14 |

percentages; it is not a 0/1 technique.
• mu(xj): this is the third and last sort of annotations

SSA-DisLang programs. The semantics of this com-
mand is that variable xj is highly likely to be used in
the following de-reference command of the program.

Figures 2, 3, and 4 present elements of our proposed
technique for probabilistic alias analysis of SSA-DisLang
programs. The proposed technique has the form of a type
system which consists of set of alias types denoted by P
and set of inference rules presented in the technique figures.
An alias type is a partial map. The domain of this partial
map is a subset of the set of all variables (denoting registers)
allowed to be used on different machines of the distributed
hierarchy plus the set of all addresses of memories of
machines on hierarchy. The codomain of the alias type is the
power set of the set of all probabilistic pairs. A probabilistic
pair is a pair of variable (register) or a memory location and
a number p such hat 0 ≤ p ≤ 1.

Judgment produced by the system have the forms e : P →
a and S : P → P ′. The judgement e : P → a means
that evaluating the expression e in a memory state of the
type P results in the memory address a. The semantics of
the judgement e : P → a is that running S in a memory
state of the type P results (if ends) in a memory state of
the type P ′. The proposed technique is meant to be used
as follows. given a distributed program S, one constructs
(using inference rules of the system) an alias type P ′ such
that S : ⊥ → P ′. The base type is the partial map with an
empty domain is denoted by ⊥. The construction of P ′ is
a type derivation process and results in annotating program
with the required probabilistic alias information.

Inference rules for distributed expressions are shown in
figure 3. Some comments on the rules are in order. The rules
for reform expressions only considers the address evaluated
from e if there is a considerable probability (probability
threshold > pth) of arriving at the concerned program point.

Inference rules for statements are shown in figure 4. Some
comments on the rules are in order. The rule ([]p3) uses
the base address of the array denoted by l and the address
returned for e by the inference rules of expressions. The
image of these addresses under the pre-type also contribute
to calculating the post type of the de-reference statement.

The soundness of our proposed technique is guarantied by
the following theorem. The theorem requests the existence of
robust operational semantics for the langauge SSA-DisLang.
Many semantics candidates exist. Due to lack of space we
only reference to the semantics in this paper. From the
authors’s experience and based on some experiments, the
simplicity of the theorem proof deeply relies on the choice
of the langauge semantics.

Theorem 1: Suppose that S is a SSA-DisLang program
and S : ⊥ → P ′. Suppose also that using a convenient
operational semantics for SSA-DisLang, the execution of S
is captured as S : M → M ′. Then the final memory state

M ′ is of the the probabilistic alias type P ′.

3. Related Work
The changing associations characteristics property of

pointers makes the points-to analysis a complicated prob-
lem [3]. Much research [12], [13], [14], [15] have been
developed to solve the pointer analysis problem. Each of
these techniques evaluates either points-to or aliases rela-
tionships at program points. Points-to and aliases relation-
ships are classified into two classes: definitely-aliases (or
must-points-to) relationships and may-points-to (or possibly-
aliases relationships). While the later relationships are true
on some executions, the former relationships are true on all
executions. Wether possibly-aliases or may-points-to rela-
tionships are true on most executions or on few executions
is not measurable by most of these techniques. For specific
transformations and optimizations these missed information
are beneficial. Few attempts were made to fill this gap.

Using traditional data-flow analysis, in [16], [17] a the-
oretical formulation is presented to compute measurable
information. More specifically, this work evaluates, for each
program point, the predicted count that specific conditions
may hold. Aiming at evaluating, among array references,
the probabilities of aliases, [18], [19], [20] presents a prob-
abilistic technique for memory disambiguation. A proba-
bilistic, interprocedural, contextsensitive, and flow-sensitive
techniques for alias analysis were proposed in [3], [11], [21].
On alias relationships, these technique evaluate measurable
information. MachSUIF and SUIF compiler infrastructures
provided the bases for the implementation of these tech-
niques. The probabilities of pointer induced, loop carried,
and data dependence relationships were evaluated in [22],
[23]. Using sparse matrices, as efficient linear transfer func-
tions, [24], [25] modeled probabilistic alias analysis. The
results of this research were proved accurate. [26] presents
an algorithm to evaluate measurable alias information. A
technique for memory disambiguation, evolution of prob-
abilities that pairs of memory pointers point at the same
memory location, is presented in [26].

For array optimizations and analysis, probabilistic tech-
niques for memory disambiguation were proposed [18].
These techniques typically present data speculations [27]
necessary for modern architectures of computers.

For distributed parallel machines with shared-memory,
an important problem is that of compiler optimizations for
programs that are pointer-based. This is so as the host pro-
cessor of an object can be determined using data distribution
analysis [28] and affinity analysis [29].

In, pointer-based programs, a reference is referencing a
group of objects with may-points-to. For such cases, tradi-
tional affinity analysis [30] can be integrated with traditional
pointer analysis. The result of this integration is a technique
that evaluates the parts of objects on a processor’s list

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

Int'l Conf. Software Eng. Research and Practice | SERP'14 | 373

P (xj) = (xi, a) P (xi) = (xk, _)
(mdp)

xi := md(xj) : P →s P [xi 7→ {(xk, a), (xj , 1− a)}]

pj(pk) is the probability of executing the path from definition of xj(xk) to that of xi

(fip)
xi := fi(xj , xk) : P →s P [xi 7→ {(xj , pj), (xk, pk)}]

a is the base address of array l
(&1)

x := &l : P →s P [x 7→ {(a, 1)}]
(mup)

mu(xj) : P →s P

a1, a2 are the base addresses of arrays l1 and l2
i is the index of y in l2 (&p

2)
l1 → y := &l2 : P →s P [a1 7→ {(a2 + i, 1)}]

a1, a2 are the base addresses of arrays l1 and l2
P (a1) = {(b1, p1), . . . , (bn, pn)} (&p

3)
[l1] := &l2 : P →s P [b1 7→ {(a2, p1)}, . . . , bn 7→ {(a2, pn)}]

l ̸= [. . .]
al is the base addresses of array l

e : P → ae
P (ae) = {(b1, p1), . . . , (bn, pn)} ([]p1)

l := [e] : P →s P [al 7→ {(b1, p1), . . . , (bn, pn)}]

e ̸= [. . .]
al is the base addresses of array l
e : P → ae

P (ae) = {(b1, p1), . . . , (bn, pn)}
P (al) = {(c1, q1), . . . , (cm, qm)}

([]p2)
[l] := e : P →s P [ci 7→ {(b1,min(p1, q1)), . . . , (bn,min(pn, qn))} | 1 ≤ i ≤ m]

al is the base addresses of array l
e : P → ae

P (ae) = {(b1, p1), . . . , (bn, pn)}
∀i.p(bi) = {(di1, ti1), . . . , (qik, t

i
k)}

P (al) = {(c1, q1), . . . , (cm, qm)}
([]p3)

[l] := [e] : P →s P [ci 7→ {(di1,min(p1, q1 × ti1)), . . . , (q
i
k,min(pn, qn × tik))} | 1 ≤ i ≤ m]

e ̸= [. . .] l ̸= [. . .] e ̸= & . . .
al is the base addresses of array l

e : P → ae
P (ae) = {(b1, p1), . . . , (bn, pn)} (:=p)

l := e : P →s P [al 7→ {(b1, p1), . . . , (bn, pn)}]

S1 : P →s P ′′

S2 : P ′′ →s P ′
(;p)

S1;S2 : P →s P ′

S : P →s P ′

(runps)
run (S,m) : P →s P ′

St : P →s Pt Sf : Pf →s P ′

(ifp)
if e then St else Sf : P →s Pt

⊎
Pf

n is the exepcted execution time of St St : P →s Pt

(whlp)
while e do St : P →s

⊎
n

Pt

Fig. 4: Probabilistic Alias Analysis (PAA): Statements.

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

374 Int'l Conf. Software Eng. Research and Practice | SERP'14 |

of task executions. This is necessary for many program
optimizations.

There are many examples of aggressive optimizations
such as data speculations, speculative multithreading (thread
partitioning), and code specialization [31], [32]. To boost
performance of modern architectures, these optimizations are
typically achieved by compilers. Compilers can only do such
tasks if they are able to measure the possibility of dynamic
pointer associations. Using interval analysis, irreducible flow
graphs, and the elimination technique, intraprocedural anal-
ysis can be used to handle pointer analysis of programs [33].
Extensions to such techniques to cover context-sensitive
analysis that is interprocedural is achievable as well.

Examples of analysis for speculative multithreading model
include thread partitioning [34], [35], [36]. Such analy-
sis boosts compilers performance via running speculative
threads in case of low possibilities for conflicts. In this sce-
nario for threads with high possibilities are turned off [22].

4. Conclusion and Future Work
This paper presented a new technique for probabilistic

alias analysis of SPMD programs. The new approach has
the form of system of inference rules. This has direct
applications in proof-carrying code area of research. The
proposed technique also has the advantage of assuming SSA
forms of analyzed programs.

Directions for future work include the following. Pro-
ducing probabilistic techniques for important analyses (such
as dead-code elimination) for SPMD programs that uses
the results of the analysis proposed in this paper would
be an important contribution. Producing other analyses for
the langauge model of this paper in the spirit of [37],
[38], [39] is another direction for future work. There is
also a need for precise probabilistic operational semantics
for SPMD programs. This semantics would be important
to accurately measure probabilities of statements executions
and probabilities of executions order.

5. Acknowledgment
The authors acknowledge the support (grants numbers

340918 & 330911) of the deanship of scientific research of
Al Imam Mohammad Ibn Saud Islamic University (IMSIU).

References
[1] U. P. Khedker, A. Mycroft, and P. S. Rawat, “Liveness-based pointer

analysis,” in SAS, ser. Lecture Notes in Computer Science, A. Miné
and D. Schmidt, Eds., vol. 7460. Springer, 2012, pp. 265–282.

[2] M. A. El-Zawawy, “Flow sensitive-insensitive pointer analysis based
memory safety for multithreaded programs,” in ICCSA (5), ser. Lec-
ture Notes in Computer Science, B. Murgante, O. Gervasi, A. Iglesias,
D. Taniar, and B. O. Apduhan, Eds., vol. 6786. Springer, 2011, pp.
355–369.

[3] P.-S. Chen, Y.-S. Hwang, R. D.-C. Ju, and J. K. Lee, “Interprocedural
probabilistic pointer analysis,” IEEE Trans. Parallel Distrib. Syst.,
vol. 15, no. 10, pp. 893–907, 2004.

[4] P. Pacheco, An Introduction to Parallel Programming. Elsevier, 2011,
1 edition (2011).

[5] H. Li, G. Fox, G. von Laszewski, and A. Chauhan, “Co-processing
spmd computation on cpus and gpus cluster,” in CLUSTER. IEEE,
2013, pp. 1–10.

[6] M. Tsuji, M. Sato, M. R. Hugues, and S. G. Petiton, “Multiple-spmd
programming environment based on pgas and workflow toward post-
petascale computing,” in ICPP. IEEE, 2013, pp. 480–485.

[7] W. Amme, T. S. Heinze, and J. von Ronne, “Intermediate represen-
tations of mobile code,” Informatica (Slovenia), vol. 32, no. 1, pp.
1–25, 2008.

[8] W. Amme, N. Dalton, M. Franz, and J. von Ronne, “Safetsa: A
type safe and referentially secure mobile-code representation based
on static single assignment form,” in PLDI, M. Burke and M. L.
Soffa, Eds. ACM, 2001, pp. 137–147.

[9] F. Pfenning, L. Caires, and B. Toninho, “Proof-carrying code in
a session-typed process calculus,” in CPP, ser. Lecture Notes in
Computer Science, J.-P. Jouannaud and Z. Shao, Eds., vol. 7086.
Springer, 2011, pp. 21–36.

[10] R. Jobredeaux, H. Herencia-Zapana, N. A. Neogi, and E. Feron,
“Developing proof carrying code to formally assure termination in
fault tolerant distributed controls systems,” in CDC. IEEE, 2012,
pp. 1816–1821.

[11] M.-Y. Hung, P.-S. Chen, Y.-S. Hwang, R. D.-C. Ju, and J. K. Lee,
“Support of probabilistic pointer analysis in the ssa form,” IEEE
Trans. Parallel Distrib. Syst., vol. 23, no. 12, pp. 2366–2379, 2012.

[12] Y. Ben-Asher and N. Rotem, “Using memory profile analysis for
automatic synthesis of pointers code,” ACM Trans. Embedded Comput.
Syst., vol. 12, no. 3, p. 68, 2013.

[13] S. Staiger-Stöhr, “Practical integrated analysis of pointers, dataflow
and control flow,” ACM Trans. Program. Lang. Syst., vol. 35, no. 1,
p. 5, 2013.

[14] L. Li, C. Cifuentes, and N. Keynes, “Precise and scalable context-
sensitive pointer analysis via value flow graph,” in ISMM, P. Cheng
and E. Petrank, Eds. ACM, 2013, pp. 85–96.

[15] B. Huang, X. Ling, and G. Wu, “Field-sensitive function pointer
analysis using field propagation for state graph extraction,” JSW,
vol. 8, no. 7, pp. 1592–1603, 2013.

[16] Q. Shao, Y. D. Chen, and L. Zhang, “An extension of three-parameter
burr iii distribution for low-flow frequency analysis,” Computational
Statistics & Data Analysis, vol. 52, no. 3, pp. 1304–1314, 2008.

[17] F. Miwakeichi, P. A. Valdes-Sosa, E. Aubert-Vazquez, J. B. Bayard,
J. Watanabe, H. Mizuhara, and Y. Yamaguchi, “Decomposing eeg data
into space-time-frequency components using parallel factor analysis
and its relation with cerebral blood flow,” in ICONIP (1), ser. Lecture
Notes in Computer Science, M. Ishikawa, K. Doya, H. Miyamoto,
and T. Yamakawa, Eds., vol. 4984. Springer, 2007, pp. 802–810.

[18] R. D.-C. Ju, J.-F. Collard, and K. Oukbir, “Probabilistic memory
disambiguation and its application to data speculation,” SIGARCH
Computer Architecture News, vol. 27, no. 1, pp. 27–30, 1999.

[19] B. Guo, Y. Wu, C. Wang, M. J. Bridges, G. Ottoni, N. Vach-
harajani, J. Chang, and D. I. August, “Selective runtime memory
disambiguation in a dynamic binary translator,” in CC, ser. Lecture
Notes in Computer Science, A. Mycroft and A. Zeller, Eds., vol. 3923.
Springer, 2006, pp. 65–79.

[20] C. Fang, S. Carr, S. Önder, and Z. Wang, “Feedback-directed memory
disambiguation through store distance analysis,” in ICS, G. K. Egan
and Y. Muraoka, Eds. ACM, 2006, pp. 278–287.

[21] A. D. Pierro, C. Hankin, and H. Wiklicky, “A systematic approach
to probabilistic pointer analysis,” in APLAS, ser. Lecture Notes in
Computer Science, Z. Shao, Ed., vol. 4807. Springer, 2007, pp.
335–350.

[22] P.-S. Chen, M.-Y. Hung, Y.-S. Hwang, R. D.-C. Ju, and J. K. Lee,
“Compiler support for speculative multithreading architecture with
probabilistic points-to analysis,” in PPOPP, R. Eigenmann and M. C.
Rinard, Eds. ACM, 2003, pp. 25–36.

[23] A. Zhai, J. G. Steffan, C. B. Colohan, and T. C. Mowry, “Compiler
and hardware support for reducing the synchronization of speculative
threads,” TACO, vol. 5, no. 1, 2008.

[24] J. D. Silva and J. G. Steffan, “A probabilistic pointer analysis for

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

Int'l Conf. Software Eng. Research and Practice | SERP'14 | 375

speculative optimizations,” in ASPLOS, J. P. Shen and M. Martonosi,
Eds. ACM, 2006, pp. 416–425.

[25] S. Roy and Y. N. Srikant, “The hot path ssa form: Extending the
static single assignment form for speculative optimizations,” in CC,
ser. Lecture Notes in Computer Science, R. Gupta, Ed., vol. 6011.
Springer, 2010, pp. 304–323.

[26] Y.-M. Lu and P.-S. Chen, “Probabilistic alias analysis of executable
code,” International Journal of Parallel Programming, vol. 39, no. 6,
pp. 663–693, 2011.

[27] L. Xiang and M. L. Scott, “Compiler aided manual speculation for
high performance concurrent data structures,” in PPOPP, A. Nicolau,
X. Shen, S. P. Amarasinghe, and R. Vuduc, Eds. ACM, 2013, pp.
47–56.

[28] J. K. Lee, D. Ho, and Y. C. Chuang, “Data distribution analysis and
optimization for pointer-based distributed programs,” in ICPP. IEEE
Computer Society, 1997, pp. 56–63.

[29] M. C. Carlisle and A. Rogers, “Software caching and computation
migration in olden,” J. Parallel Distrib. Comput., vol. 38, no. 2, pp.
248–255, 1996.

[30] T. Pitkäranta, “Affinity analysis of coded data sets,” in EDBT/ICDT
Workshops, ser. ACM International Conference Proceeding Series,
M. Mesiti, T. M. Truta, L. Xiong, S. Müller, H. Naacke, B. Novikov,
G. Raschia, I. Sanz, P. Sens, D. Shaporenkov, and N. Travers, Eds.,
vol. 360. ACM, 2009, pp. 177–184.

[31] R. Zhang, S. Debray, and R. T. Snodgrass, “Micro-specialization:
dynamic code specialization of database management systems,” in
CGO, C. Eidt, A. M. Holler, U. Srinivasan, and S. P. Amarasinghe,
Eds. ACM, 2012, pp. 63–73.

[32] M. A. Khan, “Feedback-directed specialization of code,” Computer
Languages, Systems & Structures, vol. 36, no. 1, pp. 2–15, 2010.

[33] Q. Sun, J. Zhao, and Y. Chen, “Probabilistic points-to analysis for
java,” in CC, ser. Lecture Notes in Computer Science, J. Knoop, Ed.,
vol. 6601. Springer, 2011, pp. 62–81.

[34] B. Liu, Y. Zhao, Y. Li, Y. Sun, and B. Feng, “A thread partitioning
approach for speculative multithreading,” The Journal of Supercom-
puting, vol. 67, no. 3, pp. 778–805, 2014.

[35] Y. Li, Y. Zhao, P. Yin, and Y. Du, “Speculative thread partitioning
using fuzzy c-means clustering,” in CSE, W. Qu, K. Lin, Y. Shen,
W. Shi, D. F. Hsu, X. Jin, F. C. M. Lau, and J. Xu, Eds. IEEE,
2011, pp. 199–206.

[36] W.-J. Kim, K. Cho, and K.-S. Chung, “Multi-threaded syntax element
partitioning for parallel entropy decoding,” IEEE Trans. Consumer
Electronics, vol. 57, no. 2, pp. 897–905, 2011.

[37] M. A. El-Zawawy and H. A. Nayel, “Type systems based data race
detector,” IJCSNS International Journal of Computer Science and
Network Security, vol. 5, no. 4, pp. 53–60, July 2012.

[38] M. A. El-Zawawy and N. M. Daoud, “New error-recovery techniques
for faulty-calls of functions,” Computer and Information Science,
vol. 5, no. 3, pp. 67–75, May 2012.

[39] M. A. El-Zawawy and H. A. Nayel, “Partial redundancy elimination
for multi-threaded programs,” IJCSNS International Journal of Com-
puter Science and Network Security, vol. 11, no. 10, pp. 127–133,
October 2011.

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

376 Int'l Conf. Software Eng. Research and Practice | SERP'14 |

ExpTool: a Tool to Conduct, Package and Replicate
Controlled Experiments in Software Engineering

Joao Pucci Neto, Lilian Passos Scatalon,
Rogerio Eduardo Garcia, Ronaldo Celso Messias Correia, Celso Olivete Junior

Department of Mathematics and Computer Science
Faculty of Science and Technology

University State Paulista “Julio de Mesquita Filho”
Street Roberto Simonsen, 305 - CEP 19060-900 Presidente Prudente - SP, Brazil
E-mail: puccineto,lilian.scatalon@gmail.com, rogerio,ronaldo,olivete@fct.unesp.br

Abstract—Running multiples experiments in Software En-
gineering introduces the need of recording data as well as
transferring knowledge across them, especially considering that
several researchers are involved on replicating experiments. For
that, experimental evaluations generate knowledge that must be
registered into a so-called lab package. Researches have reported
difficulties on sharing lab packages due to lack of standardization.
In this paper we present a tool to support experimenters to
conduct controlled experiments, packaging experimental data.
In this first version, experimental data are kept into XML
file organized based on an ontology proposed to controlled
experiment. The tool support aims at organizing lab packages
focusing on facilitating creating and sharing lab packages.

Keywords: Controlled Experiment, Lab Package, Experimen-
tal Software Engineering.

I. INTRODUCTION

Controlled experiments can be used to test and validate new
methods, techniques, languages and tools. Only the results of
isolated experiments are not sufficient - they are no enough
to be considered trustworthy. The results of experimental
studies can only be considered if they are consolidated into a
significant body of knowledge for the community that operates
in the area. Therefore, it is needed to replicate experimental
studies to generate data and compose the body of knowledge
[1]. According to [2], the execution of experiment in different
contexts allows verifying if conclusions are valid for a wider
population. And if a replication present different result, it
is possible to analyze the reasons why such difference was
obtained [3].

A replication by other experimenters requires reviewing
the information from the original experiment in order to
understand how it was designed, conducted and analyzed [4].
So, the information about original study must be available
for that. All information (process, artifacts, procedures, results
and conclusions) are stored into a so-called lab package [5].
Shull cites that researchers have faced some problems on
interpreting and understanding lab packages, and consequently,
transferring of knowledge between research groups. In addi-
tion, Mendonca [6] proposed a framework (FIRE - Framework
for Improving the Replication of Experiments) that suggests
the sharing of knowledge generated intra and inter groups, but
they do not suggest how to organize lab packages. In a previous
paper, Garcia [7] proposed an ontology to organized data from
controlled experiments. In this context, the aim of this paper

is to present a computational tool called ExpTool to assist
the researcher in conducting a controlled experiment based on
experimental process proposed by Wohlin [2] as well as the
creation of a lab package using the ExperOntology. Using the
ExpTool the lab package is created: a XML file containing all
data from the study is generated according to ExperOntology.
The tool maps a sequence of activities in a workflow that
allows the experimenter to define their experiment and artifacts
used.

In order to present the proposed tool, the paper is organized
in the following: in Section 2 is discussed the importance
of using controlled experiments, the packaging of data and
the importance of knowledge transfer through replication of
experiments; in Section 3 is presented the use of ExpTool
on creating a lab package (for that, we use a case study
for conducting the experiment showing the creation of lab
package); in Section 4 we presented related works selected
from literature; in Section 5 we presented our final remarks
and future works.

II. CONTROLLED EXPERIMENTS

To study a technique (method, language or tool) in a
controlled experiment, participants are selected from a popula-
tion, which apply such technique under controlled conditions,
according to what was defined by the responsible researchers
in the experimental design. From the analysis, conclusions are
drawn about the population from which the participants are
considered representative.

There are sources of variation in several parts of this pro-
cess that influence in the results [5], [8]. The study participants
can be from diverse cultural environments or can be under a
different set of conditions during execution [9], [6]. Thereby,
conclusions keep limited by these factors.

In order to generalize conclusions in a more comprehensive
way, these variations should be explored and dealt in repli-
cations. So the results can be confirmed or the influence of
these variations can be identified and produce more relevant
conclusions on the topic. Through replications based in a
experiment that investigates some technique, the knowledge
about it is consolidated. A body of knowledge in Software
Engineering with the goal of support decision making related
to software development require the accomplishment of fami-
lies of experiments in different environments [10].

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

Int'l Conf. Software Eng. Research and Practice | SERP'14 | 377

Undertaking a replication requires the access to information
about all the study procedures. Such information are stored into
the lab package, which registers the experiment documentation.
However, Shull et al. [5] pointed out that the lab packages
review present difficulties, since a static lab package can
not accommodate relevant aspects of the experiment to the
researcher that intends to replicate it.

Noticing knowledge transfer problems as barriers to the
realization of replications, Mendonça et al. [6] proposed the
FIRE (Framework for Improving the Replication of Experi-
ments), which is composed by the two activities cycles illus-
trated in Figure 1. The internal cycle represents the execution
of an isolated study. In the external cycle are the activities
responsible for integrate the knowledge generated by the study
in a common body, in order that its lab package can be
effectively reviewed by eventual replicators.

Create/evolve package affect the external activity share
knowledge. As in the other point that the circles intercept them-
selves, understand lab packages is crucial to set experiment
goals for the replication.

Thus, the lab package represents the output of the internal
cycle carrying the information about a study and also the
input of the internal cycle of a possible replication, since
researchers must review and understand the lab package of the
original experiment. So, to share knowledge and aid a better
understanding of lab packages (in the external cycle), the way
that its information must be represented is very important, what
is confirmed also by the activity standardize packages.

Fig. 1: Cycles of FIRE [6]

A. Experiments in Software Engineering: Main Concepts and
ExperOntology

Any experimentation field comprises two types of in-
vestigation: Primary and Secondary Studies [11]. Primary
studies use specific designs addressed to evaluate the hypoth-
esis formulated by the researcher, to be tested under well-
established conditions. Secondary studies intend to produce
comparisons between individual investigations selected from a
set of primary studies in order to allow generalizing of results.

Wohlin et al. [2] have pointed out different sorts of primary
studies: Survey, Case Study and Controlled Experiment. The
the ExperOntology [7] focuses on Controlled Experiment. Its
main concepts are highlighted throughout Experimentation
Process, described next.

The Experimentation Process follows a sequence of phases
[2]: Definition, Planning, Operation, Analysis and Packaging.
In the Definition phase, hypotheses are clearly stated and the
experiment goals are established. Based on the definition,
in the Planning phase, an execution plan must be detailed,
defining the execution environment, the subjects involved
and their profile, the dependent and independent variables
and their scales. At this stage it is important to discuss the
validity of the expected results. These two initial phases are
iterative, since it is possible to return to a previous phase or
redo the current one.

The Operation phase is divided into three steps: Prepara-
tion, Execution and Data Validation. Preparation concerns to
preparing the required material to run the experiment, such as
data collection forms and training materials. The Execution
must ensure that the experiment is conducted as planned. Fi-
nally, during Data Validation, replicators try to check the data
collected for correctness. These three steps are also iterative.
After Operation, the data collected is analyzed (Analysis).
The Packaging phase is concerned to documentation, including
experimental artifacts, procedures and results into a so-called
lab package for future replications. Amaral et al. [12] suggest
that such phase should be conducted in parallel throughout
the experimentation process. These concepts highlighted in
this section are mapped by Garcia et al. [7] into the con-
ceptualization of the ontology in two refinement levels and
axioms to formalize it. The first level comprises concepts like
controlled experiment, replication, experiment validity and lab
package. In the second level, the main aspect is the lab package
ontology, which models the concepts that should be considered
in the experiment packaging. Scatalon, Garcia and Correia [13]
pointed out an approach to package controlled experiments
using an evolutionary approach based on ontology based on
Garcia et al. [7], but focusing only on creating lab packages –
the proposed tool do not support conducting an experiment.

B. The Lab Package

In this section, we present the lab package elements in
terms of concepts. The concepts that compose a lab package
are presented throughout the experimentation process, high-
lighted in the following. At first, the initial hypothesis of a
controlled experiment is established. It is composed by the
object of study, in agreement with a purpose, under a quality
focus, and in a specific context.

The Definition phase is the basis for the Planning phase and
the initial hypothesis generates the hypotheses formalized.
These hypotheses have null hypothesis and the alternative
hypothesis, as attributes. From the hypothesis formalized,
the experimenter defines the experiment variables – dependent
and independent variables. During the planning phase s/he
also defines the experiment objects: technologies to be stud-
ied (techniques, methods or tools) and artifacts (documents,
tools or forms) to be used.

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

378 Int'l Conf. Software Eng. Research and Practice | SERP'14 |

Each subject has his/her profile recorded to characterize
his/her background. Capturing the subject background aims at
identifying possible influence on results. For instance, previous
knowledge about experiment objects or domain application
might influence the results obtained. The subjects’ profile must
be considered to create the experimental design, which is
built combining experiment objects, independent variables and
subjects, in agreement with the hypothesis under investigation.
In addition, the subjects’ profile must be considered in analysis.

Based on the experimental design, an execution plan must
be elaborated in order to describe the entire controlled environ-
ment to conduct the experiment. Such plan must consider the
training activity, which comprises both theoretical and practical
approaches for teaching the involved technology. The plan is
obtained by establishing the tasks to be executed, their se-
quence and their period. During the execution, each task must
have its initial and final time recorded, and differences between
task planned and task performed must be considered as a
threat to validity.

The main objective of Definition and Planning phases is
to establish the experimental design, which must satisfy the
requirements to the Analysis phase. Such phases culminate in
the experimental design and in the execution plan, defining an
environment as controlled as possible to test the hypothesis
and minimize the threats to validity. Both of them are the core
to guide the operation phase.

The data set gathered during the execution represents the
concept results. The analysis of these results is based on
hypotheses formalized and on experimental design focusing
on dependent variables. Confirmatory analysis aims to test
the hypotheses formalized.

From conducting an original experiment a lab package is
generated. A replication uses a lab package from previous
experiments as the basis for its motivation as well as for
generating a new lab package. Both the original experiment
and the replication have to be evaluated regarding to their
validity. An original experiment is created by a designer, who
has his/her profile related to the experiment as a parameter to
define a possible threat to validity. In the same sense, a replica-
tor has also his/her profile associated with the replication. It is
important to highlight that both designer and replicator profiles
might influence, negatively or positively, the conduction of the
experiment/replication. The lack of experience, for instance,
is a negative influence since it can be difficult to isolate
the factors of risk when defining an experiment. Regarding
the replication, the lack of experience can also influence the
execution fidelity of the original experiment. On the other
hand, the high experience is a positive influence since it
minimizes the effort for defining the experiment and helps
to analyze the lab package both to identify opportunities and
combine results of different experimental treatments. So, the
designer and replicator profiles must be taken into account
during the analysis of the results as an influence on the
experiment validity.

The validity evaluation is an issue to be addressed through
all phases of the experimentation process. Wohlin et al. [2]
pointed out that there are four types of threat to validity: (1)
conclusion validity – refers to the relationship between the
treatment and outcome; (2) internal validity – refers to the

points that assure there is a causal relationship between the
factors and the outcome; (3) construct validity – concerns with
the relation between theory and observation; and (4) external
validity – concerns with generalization. Each type of validity
is constrained by threats. A threat to validity constrains the
validity of an original experiment or a replication. However,
when there are threats, they are identified in the lab package.
The influences to any element that integrate a lab package (or
the combination of them) cause a threat to validity.

The concepts presented must be organized into the lab
package. One might find several papers suggesting guidelines
on items to be [14], [15], [2], [16], [17], [18]. Table I
summarizes guidelines for packaging, showing at high level
what should be packaged – all highlighted items previously
presented must be put into the suggested organization of lab
package.

There is a large amount of information handled during the
experimentation process. The lab package must keep data and
decisions during the conception and execution of controlled
studies. The packaging phase of a controlled study might be
facilitated using a tool. Besides, the tool must be able to
support not only the record of data, but also the workflow
of controlled experiments. By integrating data collecting with
workflow make possible to register data long the process.
In the next section we present the proposed tool to support
both conducting an experiment and collecting data from its
execution.

III. EXPTOOL: A TOOL TO SUPPORT CONTROLLED
EXPERIMENTS

ExpTool was developed using Java programming language
as a web application. Servlets and JSP pages (JavaServer Page)
were used for treatment and data presentation, as well as tradi-
tional Java classes as basic application. Assistive technologies
such as jQuery , Ajax and some auxiliary library packages
were also essential for the implementation. Its architecture is
organized in four layers that exchange data among themselves.
They were separated according to their level and function. As
a web application, it was necessary to introduce features about
security. For that, Sessions between the client (browser) and
server are kept while a user is logged.

A. Funcionalities to Experimenters

We present the features following the workflow. First, it is
necessary to register some experimenter data (name, email and
password), what is made by an administrator. The experimenter
registered will receive an email to confirm his/her login and
password. There is a specific interface to experimenter access
their area in ExpTool. The experimenter migh register an
organization to be the experiment context by registering name,
acronym and country. Also, each subject in the experiment
must be registered (name, email, phone and link to a previously
registered institution). Each subject receives an email (login
and password) to access his/her area in ExpTool.

The experimenter can create new experiments and record
data for the initial definition (Definition Phase): name, de-
scription, theme, technical area, type, domain and language.
Also, according the GQM (Goal, Question and Metric) [2], it

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

Int'l Conf. Software Eng. Research and Practice | SERP'14 | 379

TABLE I: Overview of proposed guidelines for packaging, adapted from Jedlitschka [19]

Author
Singer [14] Wohlin et al. [2] Kitchenham et al. [15] Juristo e Moreno [16] Kitchenham [17] Jedlitschka et al. [18]

type of
study

experimental re-
search

experimental research experimental research controlled experiment systematic review controlled experiment

phases of
the study

packaging all all all all packaging

Structure * * * * title title
proposed * * * * authors authors

abstract * * * structured abstract structured abstract
* * * * keywords keywords
introduction introduction * setting goals background introduction

problem statement
experiment planning experimental context

introduction problem statement experimental context setting goals background background
method experiment planning experimental design project review questions experiment planning
procedure operation of the experi-

ment
conduct of the experi-
ment and data collection

experiment execution review of methods in-
cluded and excluded
studies

deviations from
planned

results Data Analysis analysis experimental analysis results analysis
discussion discussion and conclu-

sion
* experimental analysis conclusion conclusions and future

work
- - - - acknowledgments acknowledgments

conflict of interest
references references * * references references
appendices appendix * * appendices appendices

(*) indicates that the elements are implicitly required, although not explicitly mentioned.

is necessary to set goals, registering: object of study; purpose;
focus; perspective; context factors.

The experimenter can create new experiments and record
data for the initial definition (Definition Phase): name, descrip-
tion, theme, technical area, type, domain and language. Also,
according the GQM (Goal, Question and Metric) [2], it is nec-
essary to set goals, registering: object of study; purpose; focus;
perspective; context factors. The Figure 2 shows a screenshot
of ExpTool interface during the GQM items definition.

To create the plan, the experimenter has five steps, orga-
nized in ExpTool as follow:

1) Planning: consists in five items
• context: it is defined whether type is in-vitro

or in-vivo; whether team is made by stu-
dents or professionals; whether the problem is
real (from industry) or fictitious (classroom);
whether domain is specific or general.

• Hypotheses : the formulation of at least one
null hypothesis with a question and the hy-
pothesis itself and the formulation of one or
more alternative hypotheses is necessary.

• Variables: dependent and independent vari-
ables are defined according to the hypotheses
previously registered.

• Threats to Validity: set of threats to validity
(internal, external and construction threats)
are registered.

• Metric: it is defined metrics and their de-
scription shown how data must be collected,
registered and analyzed.

2) Instrumentation: consists in three items:
• Technique: name, description and whether is

a method, a technique or a tool under evalua-
tion. Also, it includes description and files of
the external artifacts (for example, if a tool is
under study, version, files and data about how
to install must be kept).

• Artifact: name, description (questionnaire,
document requirement, source code), as well
as any included files.

• Technique versus Artifact: to establish the
application of techniques with the artifacts
included in the experiment.

3) Participants: there are two items:
• Selection: select subjects to participate of the

study.
• Characterization: a questionnaire about partic-

ipants is created to define their profile.
4) Experimental Design: it is necessary to associate each

participant to a specific task (apply technique, method
or tool) and artifact. For that, it is possible to create
groups of participants, and assign or remove partic-
ipants. So, treatments are associated to groups and
the respective artifacts. A schedule about application
of treatments by participants must be defined (the
experimenter must select the group that will perform
a task using the artifact in order to perform the
treatment).

5) Planning Conclusion: this step consists in close the
planning. After that, it will not be possible to modify
the planning.

During the operation phase is not possible to modify
any parameter defined during previous phases. At this point,
each participant can access his/her area and execute the task
designated and record the data obtained during the execution.
The features for participants are presented in next section.

During Analysis and Interpretation phase the experimenter
evaluates the data obtained from the previous phase, verifying
its validity, and makes the relationship between the results and
the assumptions, as well as registering the results obtained,
with artifacts and conclusions.

Finally, the packaging is done as discussed. The Figure 3
shows the options to generate the lab package: into a XML or
a ZIP file. The Figure 4 shows the lab package created (XML

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

380 Int'l Conf. Software Eng. Research and Practice | SERP'14 |

Fig. 2: Screenshot of GQM interface – Definition Phase

Fig. 3: Screenshot of Creation of lab package

Fig. 4: Screenshot with Lab package generated

and related artifacts). The Figure 5 shows partially the content
of XML file – it is possible to observe the GQM elements
instantiated.

Fig. 5: Screenshot with partial view showing the lab package
generated by the ExpTool into XML file

B. Funcionalities to Subjects

Each subject receive by e-mail a confirmation of registra-
tion and a login and password. S/He can access the system
on access to your login and password by selecting the option
to access as a participant interface. When the subject open
an experiment associated, should answer the questionnaire
to characterize the participant before having access to the
activities of the study. The questions are presented and, when
answered, the access to the list of activities (tasks) is presented.

Regarding the control flow of activities, there are some
important points to consider. According to the schedule defined
and the subject action, a status is associated to activities. The
activity states are:

• Not available: the activity is not approved for im-
plementation, since its start time (defined by exper-
imenter) has not been reached;

• Available and not started: it is possible to start the
activity, but the subject did not do it yet;

• Available and Initiated: it was viewed by the subject,
but s/he has not sent the artifact resulting from treat-
ment yet (task not completed);

• Started and not completed: the subject initiated the ac-
tivity and the deadline for its completion was reached;
Not initiated and out of time: even the activity was

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

Int'l Conf. Software Eng. Research and Practice | SERP'14 | 381

Fig. 6: Screenshot showing the subject interface during a task

visualized by the subject, and the time limit has
expired.

In order to establish and compute the timing, the clock of
the server where the application is hosted is used. The activity
can only be opened when it is available or has already started.
In Figure 6 is presented a screenshot of the interface presented
to a subject during a task associated – it is possible to observe
the time still available to the task at botton region.

The experimenter set a deadline to each task and whether
the treatment (in hours). The time to begins at the point when
participant view the activity for the first time. A regressive
counter to the participant execute a task is presented with the
remaining time. When deadline is reached, the tool prevents
the transmission of results to the server. If for some reason
the subject performed the activity, but was unable to load the
files on time, s/he should contact the experimenter responsible
in charge and the experimenter must assess the situation and
decide whether use or not the data generated by subject.

IV. RELATED WORKS

Some applications have been developed in order to support
the controlled experiments. We presented two similar works,
pointing out their features and contrainst that motivated our
proposed tool. The first one is the eSEE (Experimental Soft-
ware Engineering Enviroment): a computational infrastructure
based on web services that aims to facilitate the instantiation
of environments to support some activities of experimental
studies. According to Santos and Travassos [20], the ins-
fraestructure supports both primary and secondary studies in
Software Engineering. Also, they present a propotype tool
named eSPA (experimental Studies Planning Assistant) that

amins to analyze data repository about experimental studies
and recover decisions about their design. Lopes and Travassos
poited out that eSEE have been used to evolve a glossary of
terms concerned Experimental Software Engineering [21] .

Another tool to supoprt experimental studies is PontoLab
[13]. This tools focuses on instantiate concepts of ExperOntol-
ogy [7]. The interface provides tabs to edit the information re-
lated to the experimental process [2], according to the ontology
concepts. In the tab corresponding to the definition phase, are
inserted the general directions of the experiment, represented
by the concepts object of study, quality focus, purpose and
context. Next, this directions are formalized in hypotheses, that
express the cause-effect relationship to be analyzed through
the experiment execution. From the hypotheses formulation, in
the tab of planning, are defined the dependent and independent
variables, with the respective treatment that can be assumed by
each. Also, are selected the subjects of the experiment. Once
established the independent variables and the participants, it is
possible to define the study schedule, that is, the experimental
project: assign to each subject a set of treatments, each of a
independent variable. These assignments, represented in the
ontology by the predicate Design, generate tasks, inserted in
the execution plan in the next tab, of the operation phase, in
which is also possible to register about the results obtained
with the execution. Finally, in the last tab, of analysis phase,
it is registered about statistical tests of confirmatory analysis
of the hypotheses and observations that emerged from a
exploratory analysis, leading to unforeseen relations in the
experimental project. It is important to note that the PontoLab
tool focuses on packaging an experiment using the ontology,
but do not support the execution of controlled experiments.

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

382 Int'l Conf. Software Eng. Research and Practice | SERP'14 |

V. FINAL REMARKS

Experimental Software Engineering attempts to evaluate
and measure the performance of models and techniques in
practical contexts, in order to establish a body of knowledge
base to support decision-making. Also, results from multiples
experiments can be used in order to support new ideas and
theories. To build a body of knowledge, it is necessary to
conduct controlled experiments and their replications. Also,
it helps to generalize the results packaged and stored into lab
packages. To replicate studies. It is necessary review the lab
package from original study. Difficulties rise from the lack
of standard to organize data stored into lab packages and,
consequently, make difficult to understand its contents.

In this context, we proposed a tool to support the conduc-
tion of controlled experiments, presented in this paper. ExpTool
provides support to the experimenter: each task defined in
workflow to execute an experiment is supported, including the
packaging. During each task, data collected are registered. It is
possible to keep record (and links) to external files used during
the experiment, such as tool and artifacts. After the execution,
data analysis and results are registered using external files, if
necessary – it is allowed to keep spreadsheet and graphics
in separate files. Threats to validity, conclusions and further
works can be registered in text format. As a last step, the lab
package is instantiated into a XML file, organized as suggested
by Jedlitschka [19].

In addition, the ExpTool allows experimenter to use an
XML file previously created as input to another experiment.
In this case, the XML file represents a lab package and
the experimenter would use it to replicate the experiment.
The ExpTool allows both replication (repetition of original
experiment) and replication with variation – the experimenter
is allowed to modify the original plan (different parameters or
artifacts, for example) to execute the experiment in order to
create a family of studies. As main contribution, we point out:
1) the organization of lab package using the workflow steps
and related concepts; 2) facilitate exchanging the lab package
among experimenters (since adopting ExpTool, experimenters
are allowed to exchange their lab package); 3) an lab package
can be used as input to an experiment, facilitating the integra-
tion among experiments (and experimenters).

As further work, we are developing a new feature: to instan-
tiate lab packages using an ontology. For that, the concepts will
be kept according to ExperOntology [7]. Also, we are aware that
exchanging lab package is difficult to validate. So, we intend
to create a repository of controlled experiments and to make
them available to other experimenters, as well as the ExpTool.

REFERENCES

[1] J. C. Carver, “Towards reporting guidelines for experimental repli-
cations: A proposal,” in International Workshop on Replication in
Empirical Software Engineering Research (RESER), 2010.

[2] C. Wohlin, P. Runeson, M. Höst, M. Ohlsson, B. Regnell, and
A. Wesslén, Experimentation in Software Engineering: An introduction.
Boston, USA: Kluwer Academic Publishers, 2012.

[3] F. J. Shull, J. C. Carver, S. Vegas, and N. Juristo, “The role of
replications in empirical software engineering,” Empirical Software
Engineering, vol. 13, no. 2, pp. 211–218, 2008.

[4] B. Kitchenham, “The role of replications in empirical software
engineering–a word of warning,” Empirical Software Engineering,
vol. 13, no. 2, pp. 219–221, 2008.

[5] F. Shull, V. R. Basili, J. Carver, J. C. Maldonado, G. H. Travassos, M. G.
Mendonça, and S. C. P. F. Fabbri, “Replicating software engineering
experiments: Addressing the tacit knowledge problem,” pp. 7–16, 2002.

[6] M. G. Mendonça, J. C. Maldonado, M. C. F. de Oliveira, J. Carver, S. C.
P. F. Fabbri, F. Shull, G. H. Travassos, E. N. Hohn, and V. R. Basili,
“A framework for software engineering experimental replications,” in
ICECCS, 2008, pp. 203–212.

[7] R. E. Garcia, E. N. Höhn, E. F. Barbosa, and J. C. Maldonado,
“An ontology for controlled experiments on software engineering.” in
Proc. (Software Engineering & Knowledge Engineering). Knowledge
Systems Institute Graduate School, 2008, pp. 685–690.

[8] F. Shull, M. G. Mendonça, V. R. Basili, J. Carver, J. C.
Maldonado, S. C. P. F. Fabbri, G. H. Travassos, and M. C.
Ferreira, “Knowledge-sharing issues in experimental software
engineering,” Empirical Software Engineering: An International
Journal, vol. 9, pp. 111–137, March 2004. [Online]. Available:
http://portal.acm.org/citation.cfm?id=966771.966783

[9] J. Miller, “Replicating software engineering experiments: a
poisoned chalice or the holy grail,” Information & Software
Technology, vol. 47, pp. 233–244, March 2005. [Online]. Available:
http://dx.doi.org/10.1016/j.infsof.2004.08.005

[10] V. R. Basili, F. Shull, and F. Lanubile, “Building knowledge through
families of experiments,” IEEE Transactions on Software Engineering,
vol. 25, no. 4, pp. 456–473, 1999.

[11] J. C. de Almeida Biolchini, P. G. Mian, A. C. C. Natali, T. U. Conte,
and G. H. Travassos, “Scientific research ontology to support systematic
review in software engineering,” Adv. Eng. Inform., vol. 21, no. 2, pp.
133–151, 2007.

[12] E. A. G. G. Amaral and G. H. Travassos, “A package model for software
engineering experiments,” in Proceedings of ISESE 2003 - International
Symposium on Empirical Software Engineering, 2003, pp. 21–22.

[13] L. P. Scatalon, R. E. Garcia, and R. C. M. Correia, “Packaging con-
trolled experiments using an evolutionary approach based on ontology,”
in International Conference on Software Engineering and Knowledge
Engineering (SEKE 2011), 2011, pp. 408–413.

[14] J. Singer, “Using the APA style guidelines to report experimental
results,” in Proceedings of Workshop on Empirical Studies in Software
Maintenance, 1999, pp. 71–75.

[15] B. A. Kitchenham, S. L. Pfleeger, L. M. Pickard, P. W. Jones, D. C.
Hoaglin, K. E. Emam, and J. Rosenberg, “Preliminary guidelines for
empirical research in software engineering,” IEEE Transactions on
Software Engineering, vol. 28, no. 8, pp. 721–734, 2002.

[16] N. Juristo and A. M. Moreno, Basics of software engineering experi-
mentation. Kluwer, 2001.

[17] B. Kitchenham, “Procedures for performing systematic reviews,” De-
partament of Computer Science, Keele University, Tech. Rep., 2004.

[18] A. Jedlitschka, M. Ciolkowski, and D. Pfahl, “Reporting guidelines for
controlled experiments in software engineering,” Fraunhofer Institute
for Experimental Software Engineering, Germany, Tech. Rep., 2007.

[19] ——, Guide to Advanced Empirical Software Engineering. London:
Springer-Verlag, 2008, ch. Reporting Experiments in Software Engi-
neering, pp. 201–228.

[20] P. S. M. dos Santos and G. H. Travassos, “esee - ambiente de apoio
a experimentação em larga escala em engenharia de software,” in 1st
Brazilian e-Science Workshop, 2007.

[21] V. P. Lopes and G. H. Travassos, “Experimentação em engenharia
de software: Glossário de termos,” in ESELAW´09 - VI Experimental
Software Engineering Latin American Workshop, 2009.

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

Int'l Conf. Software Eng. Research and Practice | SERP'14 | 383

Minimizing the negative impact of emergent properties in

component based complex systems

Ndabezinhle Soganile
 1
, Benson Moyo

2

1
Department of Computer Science and Information Systems, University of Venda, Limpopo, South Africa

2
Department Department of Computer Science and Information Systems, University of Venda, Limpopo,

South Africa

Abstract The Software Engineering field is faced with many

engineering challenges. Of particular note is the emergent

property phenomenon. The concept of emergent property in

software engineering originates from component based

software development, where in a bid to reduce development

time and costs, developers build their systems from

readymade components. The emergent property is thought of

as an unanticipated system behaviour that is exhibited as a

result of interaction between system components. These

behaviours can either be positive, meaning that they may add

value to the systems original intended functionality or they

can be negative, meaning that they may cause harm and at

times compromise the entire security of the system. To contain

the negative impact and to better understand emergent

properties researchers have and are coming up with ways to

predict these properties afore hand. In this paper we discuss

what emergent properties are, their impact on complex

systems, the different types of emergent properties and we

also look at the existing methods of predicting emergent

properties. Finally we offer suggestions to minimize the

impact of these emergent properties.

Keywords : Emergent property, EEEP, LEEP, Complex

Systems

3 Introduction

 In Software Engineering emergence describes the new

behaviours and patterns of complex systems, arising at the

systems integrative level due to a multiplicity of fairly simpler

components interacting. This interaction is not only

component to component but also it is the interaction of these

components or the whole system with the environment.[1]

points out that it is hard to design and understand complex

systems because of the interaction between different

components. Different authors have diverse interpretations of

the concept of emergent property “There is, however,

considerable disagreement about the nature of „emergent

properties‟” [1], CW. Johnson[1] attempts to give several

alternate views of „emergence‟ so as to reduce confusion

associated with the use of the word. In this paper we will

concentrate on the impact of the emergent property from a

software engineering perspective and then try to suggest ways

of reducing negative impacts associated with these emergent

properties. Emergent properties arise more often when the

system is in its deployment phase, though they can be

observed in a phase during development. The diagram below

shows the emergent property assessiment cycle

Figure 1 : Emergent property assessment cycle

Adopted from Manyphay Viengkham, IEC 2012 Young

Professional Leader

2 Emergent Properties

Unforeseen behaviours and patterns of a system that are

observed as a result of an application component interacting

with the environment define what is referred to as „emergent

properties‟.Johnson[1] highlights that such emergent

properties are used to differentiate complex systems from

complicated applications. Emergent properties are not always

negative, at times users benefit from them. Robust applications

are delivered to users; they end up adopting products with

more functionality than originally planned by designers.The

biggest challenges come when these emergent properties

exhibit negative behaviours in the system. The more complex

the systems become the higher the potential for unpredictable

emergent properties[2].

Emergent properties may arise as a good feature of a system

hence adding a functionality that was not originally intended

for by the developer, but at a larger scale they are usually

problematic since they undermine important safety

requirements.

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

384 Int'l Conf. Software Eng. Research and Practice | SERP'14 |

Some engineers try to take advantage of emergent features by

trying to model the emergent feature of the real world hoping

that they might achieve new functionality. As an example

Steve Forest said “interesting systems can be developed by

taking advantage of interaction among components.

Generally emergence is a higher level property which cannot

be deduced from or explained by properties of low level

entities.

Economist Jeffrey Goldstein identifies the following

characteristics of emergent properties:

 Features not previously observed in systems

 Integrated wholes that maintain themselves over

some period of time.

 A global or macro level (wholeness)

 Emergence evolves

 It can be perceived.

 He defines emergence as “the rising of novel and

coherent structures, patterns and properties during

the process of self-organization” in complex

systems.

Complex systems are built from completely autonomous

components adhering to a particular standard. John Synas [3]

points out that some systems exhibits behaviours that are not

embedded on the source code but rather emergent out of the

interaction of the system component with the environment.

This phenomenon is referred to as computational emergence.

3 Computational Emergence

Computational emergence is a feature in which software

behaves or exhibits behavior that the developer did not

instruct it to do. Thus they may be described as features that

were not hard coded into the source code of an executable

object [3].

Emergent properties are properties of a system as a whole e.g.

a car, it is made of separate parts from different manufacturers

such as the body, engine, wheels, steering, axel etc. These

individual components have their specific functionality that do

not emerge until they are all combined into a whole, i.e. these

components are useless on their own; their purposed only

becomes apparent if they have been combined to form a

vehicle. Thus we deduce yet again that they are properties that

only emerge when the system is combined

Emergent properties may be a good feature of a system that is

if users discover a new advantageous functionality that the

developer dint intend to do , but to a larger extent they are

usually problematic for example if they undermine important

safety requirements.

Some engineers try to take advantage of emergent features by

trying to model the emergent feature of the real world hoping

that they might achieve new functionality. As an example

Steve Forest said “interesting systems can be developed by

taking advantage of interaction among components.

Thus in a nut shell I can say Emergence is a higher level

property which cannot be deduced from or explained by

properties of low level entities.

4 Types of Emergent Properties

4.1 Functional Emergent Properties

This is when parts of a system interact to achieve a particular

task [4]. Components are combined to give a particular

functionality of the system. An example of a car can give us a

clear picture of what functional emergent properties are. A car

can only be considered as a transformational vehicle only if

it‟s a whole. Car parts are useless as individual components

but can only function when combined with other parts to form

a whole which is a vehicle. The main aim of systems

development is to create a system with the desired functional

emergent properties.

4.2 Non Functional Emergent properties.

These are properties that represent behaviours of a system in

its operational environment. They are critical because failure

to meet their minimal requirements might render the system

unusable [4]. Non-functional emergent properties are defined

by its reliability, its security strength as well as its

performance. Reliability, security and performance are

dependent on the operational environment. A system can only

be declared reliable when all its components are reliable that

is the hardware, software and operators. Ian Somerville in his

book Software Engineering explains how an error can

propagate from one component to another until it brings the

whole system down. Therefore to ensure reliability of a system

all the components need to be tested as a whole.

The performance of a system cannot be predicted based on

individual components but rather it can only be measured after

all components have been integrated.

Emergent properties types can further be divided into weak

properties and strong properties. Weak properties are those at

a low level and can be predicted using observation. These do

not need priori analysis. On the other hand Strong emergent

properties are at a high level, making them difficult to predict.

These are the properties that emerge to the system as a whole.

In this paper we identify and categorise these emergent

properties into two, the Early Exposed Emergent Properties

(EEEP) and the Late Exposed Emergent Properties (LEEP).

We define EEEP as those emergent properties that are

detected during the component integration stage and are

mostly code related. On the other hand the LEEP are those

that are detected during system rollout, when the system

components begin to interact with the environment. It is

relatively easy to deal with the EEEP than the Handle LEEP,

the challenge for many engineers is on how to predict and

handle the LEEP.

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

Int'l Conf. Software Eng. Research and Practice | SERP'14 | 385

5 The impact of Emergent Properties on

Complex Systems

An object like a car is made of separate parts from different

manufacturers, suchparts as the body, engine, wheels, steering,

axel etc.These individual components have their specific

functionality which doesn‟t emerge up until they are all

combined into a whole, i.e. these components are useless on

their own, and their purpose only becomes apparent if they

have been combined to form a vehicle. Thus we deduce yet

again that they are properties that only emerge when the

system is combined. In an equal analogy, a system or

application is the sum of its simpler standalone components.

Ian Somerville [4] defines a component as an independent

executable entity that can be made up of one or more

executable objects. These components exhibit lesser

functionality as individuals than when they are combined into

a system. Once built into a more complex system, new

behaviours begin to surface as a result of component

interaction with the environment. New advantageous

functionalities begin to be seen, adding robustness to the

whole system. John C. Hsu[5] highlights that these emergent

properties also provide abundant potential for applications not

only to overcomethe problems of interoperability but also to

achieve high levels of adaptability, scalability, and cost

effectiveness not possible in traditional systems. Systems

exhibit new behaviours as a way of adapting to the

environment. Thanks to the emergent properties systems

continue to operate in the ever changing environments and that

factor increases cost effectiveness since these systems are self-

organising, there is no need for costly upgrades that are

motivated by environmental changes. Taking advantage of

these new behaviours, engineers are able to trace, test and

validate the requirements to the good of the development

process.

On the contrary, emergent properties can be harmful or

undesirable.Their occurrence might have a serious negative

impact to the entire system. They may compromise the

important security features of the system, thereby escalating

the total costs of developing the system. Additional budgets

focussed on fixing the problem must then be put in place. The

problem is compounded by the fact that in complex systems, it

is difficult to identify the origins of the error. More time

therefore is wasted on fixing errors. The challenge facing the

software engineering world is how to minimize these negative

behaviours

5 Existing Strategies

Proper prediction and handling of the emergent properties

helps to reduce the risk of negative impact brought by these

emergent properties. Engineers and researchers are coming up

with useful tools and strategies for dealing with negative

emergent properties. The common methods used in predicting

the emergent properties are discussed below.

5.1 Simulation models

Before the system is rolled out in the real world simulation

models that mimic the actual world are developed and the

system is tested on that virtual environment. It is a method

implemented at lower level with weak emergence. It involves

creating a model that simulates the actual system. The model

is studied to derive the behavior of the combined parts. The

engineers‟ first work on a model to see if what they want to

achieve is feasible.

5.2 Observation

This prediction mechanism is also applicable at a lower level.

This involves closely watching how the individual components

work then try and figure out how they would perform when

combined.

5.3 Priori Analysis

This method simply means deriving some conclusion without

any physical experiment. It involves trying to figure out how

the whole system will perform without actually putting it into

use. The only major weakness of this strategy is that crucial

emergent properties are always left out since the analysis is

dependent on the expertise of the engineer doing the analysis

6 Suggested Solution

Considering the gravity on the system and the risk on business

should the negative emergent properties be exhibited during

the run of business, it is therefore important to find ways of

eliminating these negative properties as early as possible

before the system is deployed. In the following section we

give our suggestion on how best the negative properties can be

reduced

6.1 Piloting

Piloting is a strategy that categorises emergent properties into

two views, the Early Exposed Emergent Properties (EEEP)

and the Late Exposed Emergent Properties (LEEP). The first

category, the EEEP is mostly associated with the code and can

be detected and dealt with during the component integration

phase. We recommend the use of any available strategy as

define in section 5 above. The second category, the LEEP are

those behaviours that the system exhibits during the

deployment phase, they come as consequence of the system

interaction with the real environment. They are often risky and

harmful if they happen to be negative. We suggest dealing

with the LEEP category in two ways, Firstly, the system must

be tested on a simulation platform, this will provide an

opportunity to identify and eliminate a number of these mal

emergent properties. Secondly, the system must be tested on a

pilot real world platform before deploying or delivering to the

client. This will give engineers an opportunity to further

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

386 Int'l Conf. Software Eng. Research and Practice | SERP'14 |

identify and deal with these properties before the final

deployment of the system.

7 Conclusion

It is practically impossible to fully predict all the behaviours

of a complex system since the environment is not a constant. It

is ever changing, therefore complex systems are bound to

exhibit some strange behaviours that are dependent on the

environmental changes. However the impact can be minimized

by adequately testing the systems before putting them to work.

In this paper we recommended piloting as one strategy that

engineers can use to minimize the impact of the emergent

properties. Predicting and eliminating the emergent properties

before the deployment is a good way of ensuring that their

impact is not felt when the system is put to work.

Reference List

1. C.W. Johnson, 2003 A Handbook of Accident and

Incident Reporting, Glasgow University Press,

Glasgow.

2. W.A. Wulf, 2000 Great Achievements and Grand

Challenges, The Bridge, US National Academy of

Engineering

3. David H. Bailey A, 2012, New Kind of Science: Ten

Years Later

4. Ian Somerville, 2011, Software engineering, 9
th

edition,

ISBN-13: 978-0-13-703515-1

5. John C. Hsu, 2009, Emergent Behaviour of Systems-of-

Systems, Marion Butterfield. The Boeing Company

6. Ferreira S. Tejen, J. (2011) „ An evolving understanding

for predicting emergent properties‟, IEEE International

System Conference (SysCon), Texas, pp 479 -483.

7. Forrest, S. (1990). Emergent computation: self-

organizing, collective, and cooperative phenomena in

natural and artificial computing networks. Physical D,

42, 1–11.

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

Int'l Conf. Software Eng. Research and Practice | SERP'14 | 387

Establishing Testbed for Functional Testing of Embedded

System

Jang Yeol Kim
1
, Kwang Seop Son

1
 , Young Jun Lee

1
 , Se Woo Cheon

1
, Kyoung Ho Cha

1
,

Jang Soo Lee
1
, Kee Choon Kwon

1

1
Instrumentation and Control / Human Factors Division, Korea Atomic Energy Research Institute,

989-111 Daedeok-daero, Yuseong-gu, Daejeon, Republic of Korea 305-353

Abstract – Software lifecycle consists of requirement phase,

design phase, implementation phase, testing phase,

integration phase, installation phase, operation and

maintenance phase. In particular, testing phase involves

component test, software integration test, and software-

hardware integration, system test. To qualify as the safety-

critical software, exhaustive testing is necessary. However, it

still remains as a challenge in embedded system verification

and validation due to the time and efforts required for having

to test software manually. In this study, we established

automatic testbed for small digital devices. The testbed can

perform not only on manual mode, but also on automatic

mode. It has extended communication ports such as USB,

Ethernet, and RS232C. Using these ports, input data and test

result values can be easily transferred between testbed and

target device. We performed the functional test on a small

digital device using our testbed. The result from manually

testing the device was same as the result from the automated

testbed we developed.

Keywords: Testbed, Auto mode, Manual Mode, Functional

Testing, Performance Testing, System Test

1 Introduction

The purpose of developing testbed for system test is to save

time and efforts from functionality and performance tests. We

developed the testbed for burning test based on operational

scenario. Hardware, software, and man-machine-interface

(MMI) are fundamental parts to the testbed. Signals generated

from the testbed contain analog input, analog output, digital

input and digital output. Using LabView programming, we

established the testbed that can generate signal sources

consisting of triangle wave, sign wave, and step-wise signal.

The testbed can control not only the real-time condition

parameters, but also weighted signal test. The testbed can

provide a solution for the time discrepancy between input

signal and result value during synchronization process.

The sequence of automatic system testing is in the order as

shown below.

o Target for small digital device

o Test approach

 - The functional and performance based testing

 - Identify the test items, selection of test cases and test

execution

o System configuration and test environment

o Test scenarios, pass/fail criteria

o Test procedures/Test execution and test results

Input/output specification of the test-bed in Automatic Test-

bed Establishing System for Small Digital Devices is as

follows.

o Analog I/O

 - Voltage Source(-10V~10V) : 64 Channels

 - Voltage Source(-0V~10V) : 48 Channels

 - Current Source (-20mA~20mA) : 8 Channels

o Digital I/O

 - Digital Input (30V max) : 64 Channel

o 60V Programmable Power Supply

o RS232C Serial interface

o Dual port Ethernet interface

2 Establishment of Testbed

The general methods for testing are as shown in Figure 1.

After making a test plan, test suite/test case were generated.

All the results from the testing were documented and reported

as the test summary report.

In general, test process is as follows.[1]

 Figure 1. General test process

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

388 Int'l Conf. Software Eng. Research and Practice | SERP'14 |

This study describes the system test environment and system

test configuration.

But, in order to establish of automatic testbed system, five

items are to be considered.

a) System configuration

b) Environment variable setup

c) Labview Programming

d) Making an automatic testing scenario

e) Time synchronization between input value and result

value (i.e. returning output value)

The system configuration is shown in Figure 2.

Figure 2. System Configuration of Automatic Test-bed

Mainly, functional test and performance test were conducted.

A test case data generation and test execution were done by

Automatic Test-bed Establishing System.

NI hardware components in Figure 2 are as followings.

o NI PxI-6511(DIO)

o NI PxI-6512 (DIO)

o NI PxIe-6363 (AIO, DIO)

o NI PxIe-6363 (AIO, DIO)

o NI PxIe-6239 (AIO, DIO)

o NI PxIe-6733 (AO, DIO)

o NI PxIe-6704 (Voltage Out, Current Out)

o NI PXI-8430/4 (4 Port)

o NI PXI-8234

o GPR-6030D

Module-specific software configuration is shown in Table 1.

Table 1 Test Mode on Analog and Digital

Items Mode Procedure

Analog

Value

Auto (1) HW setting for test condition (I/O

channel, measurement range,

measurement unit, Error allowed range)

(2) START

(3)Target(small digital device)

measurement according to volt or current

increment

(4) Save testing result through RS232C

communication

Manual (1)Power supply control by

communication

(2)Power supply output control if output

value changes

(3)Output by I/O card

Digital

Value

Auto (1) Test Mode setup (Direct, Delay,

Trip)

(2) Setup for Input / Output channel

(3) Setting for voltage and current

(4) START

(5) Output with setup mode

Manual (1) Setting for I/O channel

(2)Setting for output, voltage, and

current

(3) Output of voltage and current for

assigning I/O channel

3 Test Case Design

 The following test cases can be written before actual

tests. Test case IDs are unique numbers for test items. Input

range is either 0~10Volt or 4~20mA. For each input data,

several sequence numbers can be assigned. Current value is

mapping to volt value using Ohm formal equation. Input value

is for testing input data. Expected value is calculated by

Engineering Unit Conversion (EUC) Formula in advance.

Result value is an actual output value. Tolerance range is

acceptable values between actual value and expected value

assuming ±0.1%. TRUE or FALSE indicates PASS or FAIL,

respectively. More detailed information is shown in Table 2.

Table 2 Test case generation form for test result

measurements

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

Int'l Conf. Software Eng. Research and Practice | SERP'14 | 389

Test

case

ID

Input

Range

Seq.

NO
Volt Current Input

Value

Expected Value

(MATH Formula)

(%)

Result

Value (%)

Tolerance Range TRUE/

FALSE

Comments

 (Low) (High)

4 Automatic test Results

 The test case of Table 2 executes under the testbed

system in Figure 2. Previous system test had to rely on labor-

intensive work for testing small digital devices. The testbed

we developed is fully automated and covers virtually all the

range of system testing. It was time saving and cost efficient

in comparison to the manual testing. Based on our testbed, we

have a plan to expand the testbed for Field Programming Gate

Array (FPGA)-based controller.

 Figure3. Automatic test results (sample)

Calibration factor for testbed is necessary due to the

unmodifiable parameters involving displayed values and

output data for target digital device.

The testbed was designed for AUTO mode in the generation

of voltage and current according to test mode setup, test case,

parameter name, engineering unit conversion (EUC) formula,

range, unit, expected Pass/Fail criteria, condition value and

timing synchronization method. Also, it was developed for

MANUAL mode for the generation of voltage and current

based on test mode setup and setting the input and output

channel numbers. Test results were analyzed by comparing

the expected values to the actual values.

The integrity of the automatic test-bed was validated by

comparing the Fluke-755 manual test measurements with

AUTO mode test results.

All the results from the testing were documented and reported.

5 Conclusion

Following the test procedures, we performed the test scenario-

based automatic functional testing for safety-grade digital

device as a thirty-party verifier. It was successfully completed.

While automation cannot reproduce everything that a software

engineer can do, it can be extremely useful for the system test.

However, it does require a well-developed test suite of testing

scripts in order to be useful. In this study, we developed the

multipurpose and cost-efficient testbed using LabView

program instead as a testing script.

Future research on safety-critical software engineering will

include the following items.

o Design qualification for Safety features

- Explicitly Initialization

- Memory Check during Initial Booting

- Self-Supervision

- Self-Diagnostic

- Mirroring

o Lesson Learned from a wide range of Experience

o How to setup the Acceptable Verification and Validation

(V&V) Framework (Safety CASE)

6 References

[1] Jang-Yeol Kim, Soon-Gohn Kim, “Software

Qualification Approach for Safety-critical Software of the

Embedded System”, The 2012 International Conference on

Future Generation Communication and Networking (FGCN),

Kangwondo Korea, December 16-19, 2012

[2] IEEE Std-829, “IEEE Standard for Software Test

Documentation,” 1998.

[3] IEEE Std-1016, “IEEE Recommended Practice for

Software Design Descriptions,” 1998.

[4] J. Y. Kim, Kee-Choon Kwon, “The Commercial Off The

Shelf(COTS) Dedication of QNX Real Time Operating

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

390 Int'l Conf. Software Eng. Research and Practice | SERP'14 |

System(RTOS),” International Conference on Reliability,

Safety and Hazard-2010, Mumbai India, December 14-16,

2010.

[5] J.Y. Kim, S.W. Cheon, J.S. Lee, Y.J. Lee, K.H. Cha, and

Kee-Choon Kwon, “Software V&V Methods for a Safety

Grade Programmable Logic Controller,” International

Conference on Reliability, Safety and Hazard-2005, Mumbai

India, December. 1-3, 2005.

[6] 10CFR 50 Appendix A,4/94, “General Design Criteria”

[7] ASME NQA-1-1997 “Quality Assurance Requirements

for Nuclear Facility Applications”

[8] USNRC Reg. Guide 1.152, Rev. 02, 2006, “Criteria for

Programmable Digital Computers System Software in Safety

Related Systems of Nuclear Power Plants”

[9] USNRC Reg. Guide 1.172, Rev. 00, Jul. 1997,

“Software Requirements Specifications for Digital Computer

Software Used in Systems of Nuclear Power Plants”

[10] IEEE Std. 7-4.3.2-2003, “Standard Criteria for Digital

Computers in Safety System of Nuclear Power Generating

Stations”

[11] IEEE Std. 829-1998, “IEEE Standard for Software Test

Documentation”

[12] IEEE Std. 1008-1987, “IEEE Standard for Software

Unit Testing”

[13] IEEE Std. 1012-1998, “IEEE Standard for Software

verification and validation”

ACKNOWLEDGEMENT

This work, described herein, is being performed for

“Development of licensing and Validation Technology” as a

part of the Korea Atomic Energy Research Institute (KAERI)

projects and funded by Ministry of Trade, Industry and

Energy since on November the 1
st
, 2013.

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

Int'l Conf. Software Eng. Research and Practice | SERP'14 | 391

The Case for an Open and Evolving Software Assurance
Framework

Miron Livny1, Barton P. Miller2, and Von Welch3
1Morgridge Institute for Research, Madison, WI, U.S.A

2Department of Computer Science, University of Wisconsin-Madison, Madison, WI, U.S.A.
3Center for Applied Cybersecurity Research, Indiana University, Bloomington, IN, U.S.A.

Abstract – While software is becoming an increasingly
ubiquitous part of our lives, our ability to determine
assurances about the resilience of that software with regards
to malicious actors lags. The DHS-funded Software Assurance
Marketplace (SWAMP) is an instantiation of a framework for
software assurance that seeks to address this gap. The vision
for the framework is not a software assurance tool in itself,
but rather a mechanism to allow for flexible application of
different software assurance tools and technologies into
automated workflows. This paper describes the desired
attributes of such a framework: tools and software packages
can be easily added; analysis results, at all levels, can
interpreted by different tools; and the entire software
assessment process can be readily studied. A key goal of the
framework is to provide the foundation for an increasingly
large and productive community working on software
assurance.

Keywords: Software assurance, software development,
quality assurance.

1 Introduction
 Software has become an essential component of every
element of our life - from the pacemaker to the national
power grid. It has been growing in complexity and size at a
rate that exceeds our ability to keep pace with assuring its
quality. Recent events, such as Heartbleed, have exposed
vulnerabilities in critical and widely used software
components, software assurance (SwA) methodologies and
technologies failed to prevent or detect these critical
weaknesses [1]. The authors are leading a project, the
Software Assurance Marketplace (SWAMP) [2], funded by
DHS, to tackle the growing gap between the role of software
and our ability to provide assurance about software. The
SWAMP is not a SwA technology in itself, but a rather a
materialization of a framework for SwA, bringing together
software packages and SwA tools with the principle of
continuous assurance, and forming the foundation for SwA
research, development and application. In this paper we
describe the framework that governs the design and

implementation of the SWAMP facility, and the rationale
behind it.

2 The Open and Evolving Framework
 Evaluating the assurance of software involves solving a
broad spectrum of problems. Each of these problems
constitutes a stage in an end-to-end workflow, where each
stage is realized by a collection of tools that addresses the
specific tasks of that stage. Extending the impact and
expanding the reach of software assurance technologies
requires a model that captures the different stages in these
workflows and a framework that embodies it. Such a
framework will cover the stages of code development,
analysis, result normalization and labeling, result merging and
integration, visualization, result evaluation and annotation,
and risk assessment. The model and framework cannot be
static, as experience and innovation will evolve them well
past the limits of today’s technologies. Our understanding of
software engineering and assurance challenges as well as
novel methodologies will continue to grow through research
and experience.

One of the key benefits of a flexible and adaptive framework
is the ability to compose a variety of tools to produce a
workflow that is tailored to the specific needs of a software
assurance task. Operating on a chain of well-defined
intermediate results, these “best of breed” tools will join
forces to deliver effective assurance capabilities to the end
user ranging from a student in a class to a software supply
chain specialist. The value and power of such frameworks
have been effectively demonstrated in a variety of research
and engineering areas as they encourage and facilitate sharing
within and across organizations. Easy authoring, exchange
and adaptation of workflows facilitate the development and
adoption of best practices throughout the community.

Another key impact of such a framework is the ease in which
new technologies are adopted. By offering the “glue” needed
to incorporate a new technology in a SwA workflow, the
framework expedites the “the time to impact” of novel
technologies. It minimizes the burden placed on the
technology developers who, in most cases, do not have the
means to develop the required utilities needed to make their
technologies accessible to end users.

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

392 Int'l Conf. Software Eng. Research and Practice | SERP'14 |

An open SwA framework will allow a developer to choose
the tools and technologies that best fit their needs, and
compose them into complete automated workflows.
Developers benefit from the variety of tools available at each
stage and the experiences of other developers, as embodied in
the stored workflows, who have used the framework to solve
similar problems. Developers can also bring their own tools
to the framework to experiment with new technologies and
methodologies. As developers gain more experience with this
global view of the SwA process, they can add more tools to
their workflow, and expand their coverage of the problem
space. SwA Researchers and tool developers can evaluate
capabilities of different methodologies and technologies.

In recent years we have seen several organizations take steps
to support a more flexible and composable approach to the
software assurance process. These groups include Secure
Decisions’s CodeDX and Denim Group’s ThreadFix tools,
which merge and visualize results from multiple code
analysis tools, and KDM Analytic’s TOIF, which serves to
merge analysis tool results and represent it in a common
format. Rather than presenting the end user with one
monolithic software system that covers multiple stages of the
SwA process, the capabilities offered by these groups allow
the integration and manipulation of results from different
analyzers.

3 Framework Attributes
 To meet the diverse and ever changing needs and
expectations of the different groups that compose the SwA
community, the framework will have to offer the following
key elements:

• An environment where new tools can be added easily
and efficiently: Tool developers and researchers should
be able to bring their tools into the framework with no
more difficulty than bringing the tool up on their own
desktop. This means not only having simply uploading
procedures, but also being able to work interactively to
address porting issues. Ease of bringing tools into the
framework also means that once a tool is available, the
operation of running it against a software package
should be fully automated. Such automation requires
that the framework provide the glue to run the tool
against software packages with complex and even non-
standard build procedures.

• An environment where new software packages can be
added easily: As with the case for tools, software
package developers should be able to bring their
software into the framework with no more difficulty
than bringing the package up on their own desktop.
Again, interactive access is critical to keep this process
simple and familiar. Once a package is successfully
built, the effort of the package developer should be
done. The framework must provide the glue that
automates running selected tools against the package,
assessing the package exactly as it would be built, and
handling complex directory structures, separate

compilation, whole program analysis, and builds that
produce multiple executables.

• Support for tools that integrate and interpret the output
of SwA assurance tools: The step of automating
importing tools and software packages, and running the
tools against the packages, are only the first steps in the
workflow. While running against multiple SwA tools
provides a rich source of assessment information, this
information must be unified, labeled and presented to
the user in a way that allows them to understand it. The
SwA framework must provide open access for tools
that fill all or parts of this space.

• Access to software products and results at all levels: An
SwA framework will include analysis products from
each step of the workflow. These products include the
raw results from SwA tools, normalized raw results in
a uniform format, merged and interpreted and labeled
results, annotated results that include feedback from
the programmer or higher level tools. Tool developers
and programmers must have the opportunity to access
any of these results and share these results, while not
being forced to depend on any of them. Common data
representations are key to allow the choice of multiple
tools at any stage of the SwA process, and to allow
independently developed tools to interact with each
other.

A foundation for understanding the process of software
assessment: The body of data that will be created by an active
and productive SwA framework provides a life history of the
software development and assurance process. As such, this
data offers raw materials for study to the researcher in
software engineering, software assurance, risk management,
and software business processes. For example, a researcher
might be studying the productivity of a software assessment
method or the effectiveness of various tools and techniques.
Data can be provided to researchers in both raw and
anonymized forms.

4 Foundation for an SwA Community
 Despite the power a framework may eventually bring, it
is not obvious that any technology in itself will bridge the
growing gap between software and SwA. Hence it must at
least contribute to a growing community of software
developers and SwA researchers working to enable SwA
through education and better software development practices.
Two thrusts underway are the use of the SWAMP facility in
education to teach SwA earlier, alongside software
development, and the development of a body of software
development practices, such as structuring software in such a
way to be assurable. One lesson with the recent experience
with Heartbleed was that software of sufficient complexity
cannot be successfully analyzed to the point it can be assured.
Rather than expecting the SwA tools to bring that gap, we
may need the software to meet assurance half way.

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

Int'l Conf. Software Eng. Research and Practice | SERP'14 | 393

5 Current Status
 The need for an open and flexible SwA framework has
guided the design and development of the Department of
Homeland Security Science and Technology Directorate’s
recent initiative, the Software Assurance Marketplace facility.
As a technology-neutral entity, the SWAMP is uniquely
positioned to define, implement and evolve such a framework
and to make it available to the SwA community. The
SWAMP is currently operational with fundamental portions
of the framework, primarily for software developers
operational. We welcome comments and recommendations on
the framework that will help us reach and extend its impact.

6 Acknowledgments
 We acknowledge the funding of the Department of
Homeland Security, Science and Technology Directorate in
funding the SWAMP.

7 References
[1] Kupsch, James A., and Miller, Barton P. “Why Do
Software Assurance Tools Have Problems Finding Bugs Like
Heartbleed?” Continuous Software Assurance Marketplace,
22 Apr. 2014.
https://continuousassurance.org/swamp/SWAMP-WP003-
Heartbleed.pdf
[2] “SWAMP Capabilities.” Continuous Software
Assurance Marketplace, 12 Dec. 2013.
https://continuousassurance.org/swamp/SWAMP-WP001-
Capabilities.pdf

Copyright © 2014 CSREA Press, ISBN: 1-60132-286-0; Printed in the United States of America

394 Int'l Conf. Software Eng. Research and Practice | SERP'14 |

