
SESSION

NOVEL APPLICATIONS, ALGORITHMS,
SUPPORTING SYSTEMS, AND EMBEDDED

DEVICES

Chair(s)

TBA

Int'l Conf. Embedded Systems and Applications | ESA'12 | 1

2 Int'l Conf. Embedded Systems and Applications | ESA'12 |

Constellation Design of a Lunar Global Positioning System Using
CubeSats and Chip-Scale Atomic Clocks

A. Batista1, E. Gomez1, H. Qiao1, and K. E. Schubert1
armani@r2labs.org, ernesto@csusb.edu, hqiao@csusb.edu, keith@r2labs.org

1School of Computer Science and Engineering, California State University, San Bernardino
5500 University Parkway, San Bernardino, CA, USA

Abstract— Accurate navigation on the moon, Mars, or any
other astronomical body is essential to scientific investi-
gation. The research presented in this paper covers the
constellation design of a Lunar Global Positioning System
(GPS) using the CubeSat platform. Since CubeSats have
significantly smaller dimensions than most current satellites,
their associated cost is much less to place into orbit. This
creates a compelling reason to use them for a Lunar GPS.
However, CubeSats require a much smaller atomic clock,
which has not been available. Fortunately, there have been
recent advancements in chip-scale atomic clocks (CSAC)
which can fit within the CubeSat platform. We propose
a Rider constellations of two orbital planes and eight
satellites per plane for minimum position determination, or
fifteen satellites per plane for redundancy at an altitude of
3.34x104 km. The CSAC considered is estimated to have an
update interval of almost an hour with a ten meter distance
error.

Keywords: CubeSat, Chip-Scale Atomic Clock (CSAC), GPS,
Lunar, Constellation

1. Introduction
Navigation has always been a critical necessity throughout

human history. With, the advent of the Global Positioning
System (GPS), accurate navigation here on Earth is quickly
becoming ubiquitous. As people begin to explore beyond the
Earth, navigation will become all the more crucial. Upon
the return of people to the moon, navigation will be just as
important there as it is here on Earth, not only for exploration
on the moon, but also for the astronauts’ safety. GPS allows
us to determine our position, velocity, and time (PVT) with
a high level of accuracy here on Earth. Therefore, a GPS
system on the moon would be just as essential of a system.
This research was to provide a first look at a CubeSat
constellation for such a lunar GPS.

1.1 The CubeSat Platform
The CubeSat platform was designed by California Poly-

technic State University, San Luis Obispo, and Stanford
University [6]. Their purpose was to develop a pico-satellite
(a satellite ≤ 1kg in weight) platform and delivery system
that was affordable and standardized, yet robust enough for

other colleges and universities to begin satellite and space
research programs [6, 7, 8].

A major constraint and challenge of this research is to
keep the hardware to a volume that will fit within the
CubeSat architecture. CubeSats are currently designed to
dimensions of 10 cm3 and 1 kg payload constraint with the
maximum size being three modules [7, 8]. Therefore, the
largest volume allowed would be 10 cm x 10 cm x 30 cm
and up to 1.33 kg. The compelling reason for considering the
CubeSat platform is that it is substantially less costly than
current GPS satellites and has already been flight tested on
many missions. Currently, a GPS satellite costs roughly on
the order of magnitude of hundreds of millions to billions of
dollars to develop and deploy [12]. This is due to the cost of
the atomic clock, size, and weight of the satellite. CubeSats,
on the other hand, are on the order of tens of thousands to
a few million dollars [13].

1.2 Lunar GPS System Segments
There are three major segments to GPS: space systems,

ground control, and the user [1]. First, the space systems
segment includes the satellites and their systems. Secondly,
the ground control segment includes the ground stations that
control, track, and maintain the satellites. Finally, the user
segment is the actual GPS receiver and its systems. Another
perspective of the segments is that this is the high level
design of the GPS system. In this paper, the space systems
segment is the only one considered, as the ground control
segment and user segment capabilities already exist in many
areas.

2. Lunar Satellite Constellation
In this section the high level design for the lunar GPS

constellation will be shown. Satellite constellations are based
upon several factors including the requirements of the system
and their orbital parameters. The requirements of the system
may include whether constant signal visibility with the satel-
lites are needed. Another could be if worldwide coverage is
needed (which it would almost always be). These constraints
determine the number of satellites in a constellation and the
altitude of their orbits.

Int'l Conf. Embedded Systems and Applications | ESA'12 | 3

2.1 General Constellation Design Theory
The general requirements for a GPS constellation design

are as follows [1].
1) For PVT determination at least four satellites must be

visible at all times anywhere in the world assuming
worldwide access is required.

2) The position offsets of the visible satellites need to be
such that there pseudoranges with the receiver are as
non-singular as possible.

3) The amount of updates from ground based station
needs to be kept to a minimum.

4) There needs to be a balance between orbit altitude and
transmitter power for the signal.

5) There needs to be a certain level of redundancy in the
event of failures.

Considering point 1, one can get away with three satellites if
only position determination is necessary. However, consid-
ering point 5 as well, the number of visible satellites should
be about six [1]. Point 3 is important since if a trajectory
needs to be updated, then this requires power and fuel. The
fourth is imperative, and additional research will need to
be conducted to develop an antenna and transceiver for this
subsystem.

2.2 The Lunar GPS Constellation Design
Originally, two constellation designs were considered.

The first would have been derived from the GPS currently
functioning for Earth, specifically the altitude of the satel-
lites. The second was where the constellation and orbital
parameters would have been at a lunar synchronous orbit.
Although, the orbital altitude of the lunar synchronous orbit
would have been ideal, since relativistic errors and the
number of required satellites would have been to a minimum,
this altitude is too high above the L1 Lagrangian point.
This would have caused the satellites to be pulled back
by the Earth’s gravitational field. Also, even though the
altitude for the Earth-based constellation is below the L1
point, it would be too close to the L1 point, causing the
circular orbit to perturb, which would have greatly increased
the orbital complexity. This phenomena will be discussed
shortly since it affects the orbital altitude of the satellites.
The proposed GPS constellation design in this paper uses the
aforementioned requirements to govern the specific needs for
the lunar system, along with global coverage, and inclined
circular orbits. Next, several major factors were determined
for the constellation’s design.

1) The minimum number of satellites to cover the moon.
2) The minimum number of satellites to determine the

user’s PVT on the moon.
3) The optimized orbital parameters for the constellation.

a) The time it takes for the satellite to orbit around
the moon.

b) The shape of the orbit.

c) The altitude and inclination.
d) The number of orbital planes to be used.

4) The signal transmitter power.
5) The optimal level of redundancy.
First, there is a relation between points one and two where

one can be thought of as a subset of two. This is generally
because the minimum number of satellites to cover the planet
is related to how many are visible at a given time from a
specific position on the planet. Since this number is usually
less than the minimum number of four visible satellites
for GPS, then this is why it is a subset. Next, point three
modifies the first two, since those parameters are used to
determine the minimum number of satellite coverage. Point
four affects 3.3 because the more powerful the transmitter,
the higher the satellite altitude can be. Finally, point five is
important because although to create redundancy one simply
needs to place more satellites or planes in orbit, placing too
many extra satellite is not only costly, but if the number of
satellites is too large, they can cause a singularity to arise in
the pseudorange vectors causing errors to grow in the PVT
measurements. Therefore, an optimal number of redundant
satellites needs to be calculated. For redundancy, usually six
visible satellites is deemed satisfactory [1].

2.3 Satellite Coverage Determination
Since satellites transmit their signals in concentrated bands

of energy, direct line of sight is required for signal acquisi-
tion to and from the satellites and the receiver. It is obvious
that there are a limited number of visible locations where a
receiver can be at a given time with correspondence to the
position of a satellite. For instance, a receiver at the south
pole does not have line of sight with a satellite in position
orbiting above the north pole.

With line of sight being a pivotal requirement, this is used
to determine the minimum number of satellites that need to
be orbiting within a given orbital plane in order to have line
of sight coverage (from here on out referred to simply as
“coverage”). The first step that was employed to calculate
this minimum number uses Rider’s method on determining
inclined circular orbits [3]. Consider the first equation for
the Rider method:

cos(θ + α) =
cosα

1 + h/r
(1)

In this equation, θ is the central angle of the body, α is the
elevation angle, h is the orbital altitude of the satellites, and
r is the radius of the body, in this case the moon. Solving
for θ gives the following equation.

θ = arccos

(
cosα

1 + h/r

)
− α (2)

The next step is to use θ to calculate the minimum number of
satellites for a given plane. Below is the next Rider equation:

cos θ = cos c
(
cos

π

s

)
(3)

4 Int'l Conf. Embedded Systems and Applications | ESA'12 |

In this equation, c is a parameter that is defined by Rider as
a relation between s and θ [1]. Then solving for s gives the
number of satellites.

s =

⌈
π

arccos
(
cos θ
cos c

)⌉ (4)

The reason for taking the ceiling of this equation is to ensure
we get an integer value for the satellites since there cannot
be a fractional value of a satellite.

Next, the number of satellites for GPS purposes can be
determined. First, the orbital altitude of the satellites needs
to be determined. In order to do this, Kepler’s third law was
used [2]:

t2

r3
=

4π2

Gm
(5)

For this equation, t is the orbital period, r is the orbital radius,
G is the gravitational constant, and m is the mass of the
body being orbited. Lastly, solving for r and subtracting the
moon’s radius yields the satellite altitude.

r =
3

√
Gmt2

4π2
(6)

satalt = r − rmoon (7)

3. The Lunar Space Segment
The space segment for this GPS is the only segment

focused on in this paper. It is worth mentioning that the
control segment will be used for sending clock updates
for the satellites. There are two major requirements for the
space segment. The first is to adhere to the aforementioned
constellation design in section 2. The second is to keep the
design within the constraints of the CubeSat platform. The
major components which contribute to the payload of each
satellite would be the electronic and computer hardware, the
atomic frequency standard (AFS) clock, the transmitters, the
battery, and the solar panels.

During the course of this research it was also found that
NASA had discovered that there is an ionosphere in the
moon’s atmosphere [10]. This discovery dates back as far
as the Apollo missions, but had never been qualified until
recently by T.J. Stubbs of NASA [10, 11]. It is postulated
that the explanation for the lunar ionosphere is from ionized
dust particles in the lunar atmosphere [10, 11]. This is impor-
tant since this ionosphere can have adverse affects on signals
sent from orbiting space vehicles down to the lunar surface,
producing errors in PVT determination [1]. Assuming the
ionosphere is the result of ionized dust particles, it should
increase as human exploration expands.

Quite possibly the largest hurdle that needed to be over-
came was determining a suitable AFS that would fit within a
CubeSat. All GPS satellites use an AFS to ensure a reliable
clock frequency to reference. However, these are usually
large, heavy, and expensive. Recently, there has been much
advancement with this technology, and now there has been

developed chip-scale atomic clocks (CSAC) which are about
10 mm3 in volume, and consume only 30 mW [4], making
it suitable for an embedded design. In addition, this CSAC
has a Allan Deviation less than 1x10−11 [4]. Referencing
the Galileo GPS specification, and the Allan Deviation the
clock validity time can be estimated given a desired distance
tolerance [1]:

t =
derror
σy(τ)c

(8)

In this estimation, σy(τ) is the Alan Deviation, c is the
speed of light in a vacuum, derror is the allowable distance
error, and t is the amount of time that can elapse before a
clock update needs to be sent to the satellite from the control
segment before the distance error grows past its tolerance.

4. Results
To determine the minimum number of satellites for the

proposed constellation using the Rider method, a program
was made to test various orbital altitudes. The graph below
shows the results of the minimum number of satellites for
coverage on the moon at these altitudes. These results show

Fig. 1: Minimum Number of Satellites For Moon Coverage
Using Rider’s Method of Inclined Circular Orbits vs Orbital
Altitude

that as the orbital altitude of the satellites is increased, the
minimum number of satellites needed to provide coverage
exponentially decays. Once this was determined, the desired
altitude was calculated to be 3.34x104 km using Kepler’s
third law. This altitude was determined by choosing an
orbital period equal to that of one-fourth of a moon day
which equals 6.8305 Earth days. Again, it was desired to
have the satellites in a lunar synchronous orbit where they
would orbit the moon at the same rate it rotates (27.322
Earth Days), or with an orbital period equal to half of the

Int'l Conf. Embedded Systems and Applications | ESA'12 | 5

moon’s rotation period similar to that of the Earth’s GPS
altitude [9]. However, this would have caused the satellites
to have an orbital altitude of 8.7x104 km which is higher than
the L1 Lagrangian point (6.3x104 km) for the synchronous
orbit which would have caused the satellites to be pulled in
by the Earth’s gravity. As for the half moon period orbit,
with an altitude of 5.4x104 km the satellites would have
been too close to the L1 point causing the orbits to become
unstable. Once the altitude was determined, this was used
to determine the minimum number of satellites per plane.
Referring back to Figure 1, using the calculated altitude the
minimum number of satellites to cover the moon would be
approximately 2.5 satellites per plane. Now if this design
was simply for having coverage by at least one satellite, then
taking the ceiling of this would give us three satellites per
plane totaling six satellites. In the aforementioned section
GPS is shown to require more satellites. Therefore, a min-
imum coverage of at least three visible satellites anywhere
on the moon calculates to 7.5 satellites per plane totaling 15
satellites (Note: One plane would have one less satellite, or
to make it even there could be 16 satellites), and a coverage
of at least six satellites would be 15 satellites per plane, with
30 satellites in total.

Next, using equation (8), the time for update was esti-
mated using the data for the CSAC. Assuming a distance
tolerance of ten meters, the time for an update would be over
55 minutes and 30 seconds. This time is a little short, but
definitely manageable. If the distance tolerance is extended
to 50 and 100 meters, the time for update is a little over
approximately 4 hours and 30 minutes, and approximately
9 hours and 15 minutes respectively.

5. Conclusions and Future Directions

This paper presented a constellation design for a Lunar
GPS using the CubeSat platform incorporating CSACs. This
GPS considers a Rider constellations of two orbital planes
and eight satellites per plane for minimum position deter-
mination, or fifteen satellites per plane for redundancy at an
altitude of 3.34x104 km. The CSAC considered is estimated
to have an update interval of approximately 55 minutes and
30 seconds for a distance accuracy of 10 m, approximately
4 hours and 30 minutes for a distance accuracy of 50 m,
and approximately 9 hours and 15 minutes for a distance
accuracy of 100 m. The system is thus feasible, and design
costs are well within possible ranges.

Future research will include, but not be limited to opti-
mizing the number of satellites in each plane considering
areas of zonal coverage, increasing the time between clock
updates, transceiver and antenna design, the possible effects
of the lunar ionosphere, and improving error measurement.
In addition to this proposed system, differential GPS can be
incorporated to enhance PVT accuracy.

References
[1] E. D. Kaplan, C. Hegarty, Understanding GPS: Principles and Appli-

cations, 2nd ed., Artech House Publishers, 2005.
[2] H. D. Young, R. A. Freedman, Sears and Zemansky’s University

Physics, 12th ed., Pearson Addison-Wesley, 2008.
[3] L. Rider, “Analytical Design of Satellite Constellations for Zonal Earth

Coverage Using Inclined Orbits,” The Journal of the Astronautical
Sciences, vol. 34, pp. 31–64, Mar. 1986.

[4] J. F. DeNatale, R. L. Borwick, et al, “Compact, Low-Power Chip-Scale
Atomic Clock," in Proc. IEEE, 2008, p. 67.

[5] R. E. Sorace, V. S. Reinhardt, and S. A. Vaughn, “High-speed digital-
to-RF converter,” U.S. Patent 5 668 842, Sept. 16, 1997.

[6] (2012) The CubeSat website. [Online]. Available:
http://www.cubesat.org/

[7] (Dec. 2010) AMSAT CubeSat Information. [Online]. Available:
http://www.amsat.org/amsat-new/satellites/cubesats.php/

[8] J. Puig-Suari, C. Turner, W. Ahlgren, “Development of the Standard
CubeSat Deployer and a CubeSat Class PicoSatellite," 2001.

[9] (Jan. 2012) NASA Earth’s Moon: Facts and Figures. [Online]. Avail-
able: http://solarsystem.nasa.gov/planets/profile.cfm?Object=Moon
&Display=Facts/

[10] (Nov. 2011) NASA The Mystery of the Lunar Ionosphere.
[Online]. Available: http://science.nasa.gov/science-news/science-at-
nasa/2011/14nov_lunarionosphere/

[11] T. J. Stubbs, D. A.Glenar, W. M.Farrell, R. R.Vondrak, M. R.Collier,
J. S. Halekas, G. T.Delory, “On the role of dust in the lunar ionosphere,"
Planetary and Space Science, vol. 59, pp. 1659–1664, Oct. 2011.

[12] (2004) The James Madison University website. [Online]. Available:
http://maic.jmu.edu/sic/gps/satellite.htm

[13] (2011) The CubeSat Kit website. Pumpkin Inc. [Online]. Available:
http://www.cubesatkit.com/index.html

6 Int'l Conf. Embedded Systems and Applications | ESA'12 |

Remote Controlled Terrestrial Robotic Module
Alessandro Brawerman, Mauricio Perretto, Felipe Augusto Przysiada

Computer Engineering Department, University of Positivo, Curitiba, Parana, Brazil

Abstract - This paper presents the development of a low-cost
terrestrial robotic module, small dimensions and great
autonomy, which allows the user to control it over long
distance. The module may be used for investigation in critical
environments of difficult access. Communication between the
module and the operator is accomplished through an 802.11g
network. This communication occurs over a secure protocol
that allows encryption of information so that attacks by
malicious people on the communication protocol are
hampered. A camera captures and transmits images to the
operator who can then recognize the surround environment
and remote control the module.

Keywords: Robotic, hazard environment inspection,
terrestrial robotic module

1 Introduction

Several robotic applications aim to provide a way of
solving tasks in environments that are of difficult access or
where there are risks for the human life. Within this scope
various options for robotic equipments have been shown to
perform tasks in terrestrial, aquatic, mountains, air or even in
space.

Mobile robots can be grouped into two distinct groups:
robots controlled by humans and autonomous robots. The
autonomous mobile robots have the ability to move in
dynamic and known environments without human control,
however, this requires the development of algorithms that
allow the definition of their location and movements [1].

Other important set of information about the robotic
modules is the features and elements inherent in the design. In
[2], the authors present the development of synthetic
adhesives for attachment to robots vehicles, allowing them to
climb walls and access remote locations that do not allow
access through the direct movement to the target. The work in
[3] presents the development of robots using an approach to
sensor network and multi-agent systems for movement.

A particular area for robots application is to perform
tasks of preventive or corrective support in critical
environments. As shown in [4], the use of robots with long
distance control enables the human control and the
maintenance process, in the critical environment, without the
human presence.

For the development of robots in the last case, it is
necessary to know the environment in which this will be used

and define a number of factors like: size, length, methods of
communication between robot and operator, robotic actuators
present in the project [5].

The project presented in this paper is to develop a robot
with long distance control for preliminary investigation of
critical environment for humans.

2 Development

This project aims to develop a robotic system with the
following characteristics: low-cost, long range, small sized
and controlled by humans to perform the inspection tasks in
critical environments.

The diagram of Figure 1 shows the block
interconnection of the developed system. Note that a control
block is responsible for receiving information from the
sensors and sending them to the actuators. Besides, a mini
computer type E-box is responsible for ensuring
communication between the control block and the operator
and transmitting the images obtained by the camera to the
operator. Figure 2 depicts the robotic module prototype.

Figure 1 – Block diagram of the robotic system

Following it will be described each of the blocks
developed and communication between them.

2.1 Sensors

As an operator controls the developed robotic module,

the sensing system contains only a few elements to protect the
module from user commands that may provide risk of damage
to the module. Tap sensors where attached to the ends to
prevent movement against a barrier that is impenetrable,
avoiding in this way, the overload of the motors. We also
implemented a lightning sensor systems that gets on and off
automatically according to the environment.

Actuators

Sensors

Control

Main

Oper
ator

Camera

Int'l Conf. Embedded Systems and Applications | ESA'12 | 7

Figure 2 – Terrestrial Robotic Module

2.2 Actuators

The actuators are responsible for handling the module.

Furthermore, two servo motors are used to enable the operator
to control the camera without the need for displacement of the
module. This system provides two degrees of freedom,
allowing a vertical axis above and below the display, and the
other on the horizontal axis allowing viewing of objects on the
side of the module.

The motion control module is composed by four motors
connected at each end. This configuration allows a greater
torque with less power consumption.

2.3 Control

The control system of actuators and sensors was

performed by a small 8-bit microcontroller. The
microcontroller receives the analog and digital signals and
communicates with the minicomputer eBox to send
commands to the actuators. Communication between these
two elements is via RS-232 serial communication. The
command handling protocol is presented in Table 1.

Letter Command
a Camera Right
b Camera Left
c Move Back
d Move Front
e Move Right
f Move Left
n Light On
o Light Off

Table 1 - Protocol for communication between Control and
Central Module

2.4 Central Module

The central module is designed to control the data

transmission between the operator and the robotic module.
Basically, it is a minicomputer with limited size and capacity.
An optimized Linux Kernel was compiled and installed with
only the modules required for the application.

The central module communicates with the control

module via serial communication and the modulus operator
via 802.11g WiFi network. A specific port for communication
was defined and data is transmitted from/to the central
through an encrypted protocol.

Finally, the central module has an attached USB

camera. The camera data is transmitted directly from the
central module to the operator through another port using
UDP protocol and no encryption.

2.5 Operador

The operator module is the interface that displays and
allows the remote control of the robotic module. The modulus
operator is a Java application that connects to the robot and
receives the transmitted images and captures user commands.

3 Results

The tests were conducted to evaluate system
performance in three key features, communication distance
between robot and operator, autonomy of the equipment and
response time.

3.1 Communication distance

To evaluate the communication distance thirty tests
were performed in various open and closed environments. It
was determined that the maximum communication distance
was the one in which the robotic module started to fail to
execute commands or to transmit the captured images, rather
than the point at which the operator completely lost
communication with the robot.

Table 3 presents the results obtained for the internal and
external tests, tabulating the maximum distance, the minimum
distance and the average of the thirty tests.

8 Int'l Conf. Embedded Systems and Applications | ESA'12 |

 Maximum
(meters)

Minimum
(meters)

Average
(meters)

Internal 55 34 50
External 150 100 132
Table 2 - Results distance

3.2 Autonomy

The maximum power consumption was calculated as

2.2A, thus to power the robot, two batteries of 6V / 5.2 Ah
were employed. According to equation 1, the robotic module
autonomy when using maximum consumption is two hours
and twenty-five minutes.

Aut = Load / consumption

In tests conducted in different environments, where the
average use was not requiring maximum power the autonomy
was extended for up to three hours and thirty minutes using it
constantly.

3.3 Response time

The objective of this test was to assess the response time

between the operator module and the robotic module
according to the distance between the two elements. To
evaluate the response time of the robotic module ten
measurements were performed at varying distances always
indoor. Table 4 presents the delay obtained according to the
distance.

Distance
(meters)

Response
time (ms)

5-15 <100
20 112
25 115
30 122
35 129
40 140
45 148
50 162

 Table 3 - Distance x Response

The image transmission has reached up to three frames
per second, but in most indoor cases the refresh rate was in
one frame every three seconds.

4 Conclusion

This work showed the development of a remote tele-
operated robotic module through the 802.11g protocol. The
paper presented the development of the whole system
platform, including control systems, image capture and
transmission protocols defined to ensure a secure
communication between the robot and the remote operator.

In tests considering the communication distance, similar

results to the ones presented in [1,4,5] were obtained. The
autonomy of the platform reached values even higher than
what was expected for the project, being interesting even to
replace the battery pack for only one element of charge.

The delay produced in the response time tests is

insignificant considering that they were performed on a
wireless network in an indoor environment and with a
protocol for encrypted communication. The major problem
was the transmission time of the image between the robot and
the operator, which reached only one image at each trhee-
second interval.

Finally, currently and future work include the

development of a more efficient method of image
compression allowing the capture, display and transmission of
a greater number of frames per second to the remote operator
station.

5 References
[1] Sanchez, A.; Hernandez, X. ; Torres, O. ; Alfredo
Toriz, P.; Mobile Robots Navigation in Industrial
Environments; Mexican International Conference on
Computer Science (ENC), 2009

[2] Menon, C. ;Murphy, M. ; Sitti, M.; Gecko Inspired
Surface Climbing Robots; IEEE International Conference on
Robotics and Biomimetics, 2004. ROBIO 2004.

[3] Rodic, A.; Katie, D. ; Mester, G.; Ambient intelligent
robot-sensor networks for environmental surveillance and
remote sensing; 7th International Symposium on Intelligent
Systems and Informatics, 2009. SISY '09.

[4] Hamel, W.R.; Murray, P.; Observations concerning
Internet-based teleoperations for hazardous environments;
IEEE International Conference on Robotics and Automation,
2001. Proceedings 2001 ICRA.

[5] Hamel, W.R.; e-maintenance robotics in hazardous
environments; IEEE/RSJ International Conference on
Intelligent Robots and Systems, 2000. (IROS 2000).
Proceedings. 2000

Int'l Conf. Embedded Systems and Applications | ESA'12 | 9

Development of an Encryption LSI Resistance Evaluation
Platform for Fault Analysis Attacks against the Key

Generation Section and Its Evaluation

Masaya Yoshikawa, Masato Katsube
Department of Information Engineering, Meijo University, Nagoya, Japan

Abstract – The algorithm of the advanced encryption
standard (AES) has been sufficiently studied to confirm that
its decryption is computationally impossible. However, its
weakness against fault analysis attacks has been pointed out
in recent years. Nonetheless, a method that uses actual large
scale integration (LSI) to evaluate resistance against fault
analysis attacks has been scarcely reported. This study
develops a new resistance evaluation platform for fault
analysis attacks against the key generation section of an
actual device. Using this platform, the resistance of the actual
LSI against fault analysis attacks, which has been uncertain,
can be evaluated.

Keywords: Hardware security, Fault attack, Encryption LSI,
Encryption standard

1 Introduction
 Confidential information in credit and cash cards is
protected against illegal reading through the use of
cryptographic circuits. It has been sufficiently confirmed that
the decryption of the encryption standards used in
cryptographic circuits is computationally impossible.
However, it was recently reported that when a theoretically
safe encryption algorithm was embedded in the hardware,
confidential information could be illegally specified by fault
analysis attacks (fault attacks)[1]-[13]. Here, fault attacks
specify the secret keys by intentionally generating a fault
during the encryption processing and by comparing the fault
and normal cases.

 This study develops an evaluation platform that can
verify resistance against fault attacks (tamper resistance) in an
actual device through the use of encryption LSI. In the
evaluation platform, a fault is generated through a glitch in a
clock, which is supplied to the encryption LSI. Based on the
results of the encryption processing on which a fault is
generated, the fault generation position is specified. This
study also develops a new algorithm that will determine
whether secret keys can be derived from the fault. The
validity of the proposed platform is verified through
evaluation experiments performed on an actual device.

2 Fault Attack
2.1 Principle of Fault Generation
 A fault can be generated using three methods: (1) laser
irradiation, (2) lowering the power supply voltage, and (3)
inserting a glitch in a clock. The method of using laser
irradiation is ineffective since it needs circuit information in
LSI. Moreover, a laser irradiation apparatus is expensive. The
method of lowering the power supply voltage induces an
abnormal circuit operation by applying a voltage that is lower
than the reference voltage. This method may destroy the
circuit since it manipulates the power supply voltage. The
method of inserting a glitch in a clock induces data errors by
mixing a short clock pulse (glitch) in a clock signal during a
specific round of the processing operation. In this process, no
possibility of destroying a circuit exists. Therefore, this study
adopts the method of inserting a glitch in a clock to generate
a fault. In fault attacks using a glitch, a malfunction (fault) is
generated by inserting a glitch in a clock signal since the
setup time constraint of a flip-flop cannot be satisfied.

2.2 Key Specification in Fault Attack
 In fault attacks, secret keys are specified using a fault,
which has been intentionally generated during the operation
of a cryptographic circuit. A pair of cryptograms that contain
data errors (cryptogram with the fault) and a correct
cryptogram is also used. Previous studies on fault attacks can
be roughly classified into (1) attacks against the key
generation section (key attacks) and (2) attacks against the
cryptographic operation section (intermediate-value attacks).

 This study investigates the key attacks. During key
attacks, when a fault is generated in the key generation
section, an intermediate key at the 9th round (9 R) can be
obtained using a pair of cryptograms with the fault and a
correct cryptogram. In this study, the case where a fault
mixed in an intermediate key at 9 R is propagated to an
intermediate key at 10 R is examined. Subsequently, the
difference between a cryptogram with the fault and a correct
cryptogram is obtained. By using the obtained difference and
inverse operation of the cryptographic operation section
before the AddRoundKey process at 9 R, the key is specified.

10 Int'l Conf. Embedded Systems and Applications | ESA'12 |

The procedure of the key attacks is shown as follows:

Step1: The position where a fault has been generated is
already known (9 R), and two pairs of a cryptogram
with the fault mixed in the position of an intermediate
key at 9 R and a correct cryptogram are prepared. The
values of the mixed-in faults ("e": 0x01-0xFF) are
assumed to be different between the two pairs.

Step2: Based on the already known position in the
intermediate key at 9 R where the fault has been
generated, the position of the fault, which is to be
propagated to an intermediate key at 10 R, is examined.
The examined position is classified into types A to F
according to the fault transmission. Figure 1 shows the
procedure of the classification of the fault type between
9R and 10R.

Fig.1 The classification of the fault type between 9R and 10R

Step3: The property that the intermediate value m (the correct
value) is equivalent to m'(the value with fault) is used.
By applying an intermediate formula that correlates with
the intermediate key at 9 R to the value of the
cryptogram with the fault, the key is specified.

3 Evaluation Platform For Key Attacks
 The proposed evaluation platform is composed of a fault
generation block and a key analysis block. The fault
generation block is for the purpose of generating a fault in the
hardware while the analysis block is for analyzing whether
keys can be derived from an output cryptogram.

3.1 Fault Generation Block

 This study aims to make a change-over on two out-of-
phase clock signals at a specified timing. With this, a glitch
can be inserted in a clock at an arbitrary round. Using digital
clock manager (DCM) embedded in the field programmable
gate array (FPGA), the phase of the basic CLK signal
(CLK_A) is shifted to generate basic CLK and phase-shift
CLK (CLK_B). On the other hand, the round is counted from
the busy signal in a cryptographic circuit to realize the
change-over at an arbitrary round. Figure 2 shows the fault
generation block of the proposed evaluation platform.

3.2 Key Analysis Block

 An analysis algorithm determines whether the keys
specified by the key attacks can be derived. First, the fault
generation position in the key generation section, which is to
be investigated, is examined.

Fig.2 Fault generation block of the proposed evaluation
platform

Int'l Conf. Embedded Systems and Applications | ESA'12 | 11

 Tables 1 and 2 show the number of keys that were
obtained through the application of key attacks to the key
generation section according to the fault diffusion pattern.
Table 1 shows the case where the fault diffuses in columns.
As shown in this table, the number of specified keys increases
as the number of fault generation positions increases. In
contrast, as shown in Table 2, despite the increase of the
number of fault generation positions, the key still could not
be specified. This study investigates the case where the fault
generation position in the key generation section diffuses in
columns.

4 Evaluation Platform For Key Attacks
4.1 Experiment Outline

 In the experiments, an AES cryptographic circuit
(AES_KL) was designed so that the operation part in the key
generation section uses the critical path. In the AES_KL, the
SubBytes operation used the conflation method. Verilog was
used for the circuit description and it was embedded in the
FPGA.

Table 1 Case where the fault diffuses in columns

Fault position on
9R of Key

generation section

The number of
revealed byte

Calculation amount
for attack

0bit [N/A]

16bit 214

24bit 216

40bit 218

Table 2 Case where the fault diffuses in lines

Fault position on
9R of Key

generation section

The number of
revealed byte

Calculation amount
for attack

0bit [N/A]

0bit [N/A]

0bit [N/A]

0bit [N/A]

 For the embedding, the PlanAhead tool was employed.
Logic elements used for the cryptographic operation section
were arranged near the section and those used for the
operation of the key generation section were dispersedly
arranged so that the key generation section uses the critical
path. Figure 3 shows the arrangement of the circuit elements
of the AES_KL.

 In the fault generation experiment, a glitch below the
critical path was generated to specify the glitch width when
data errors occur. The glitch width was either increased or
decreased using the signal phase-shift of the DCM parameters.
Because of signal skew or deterioration, the phase could not
be correctly shifted in the hardware. In the experiment, for a
control circuit in which the glitch width was changed, the
glitch width was measured five times using an oscilloscope
and the average was used.

4.2 Fault Generation Experiment

 In the AES_KL, a path with 0, 8, 16, or 24 bits was
lengthened to correspond to the least significant bit (LSB) of
the state at the third column in the key generation section. An
investigation was then made to determine whether a fault was
generated in the lengthened path. Figure 4 shows the
experimental results obtained when the glitch width was set
to 10.78 [ns].

12 Int'l Conf. Embedded Systems and Applications | ESA'12 |

Fig.3 Result of placement of the circuit elements of the
AES_KL

Fig.4 Relationship between output cryptogram and fault
injection position

 In this figure, the output cryptogram is expressed in 16
1-byte blocks, which are arranged side by side. The byte
position in the cryptogram where a fault has been generated is
highlighted. When the inverse operation from the fault
generation position was performed, a fault was confirmed to
be generated in the lengthened path with 0, 8, 16, or 24 bits.
Thus, when the critical path was used for the key generation
section, a fault was generated in the key generation section
and the generated fault was propagated to the cryptogram.

4.3 Key Derivation Experiment

 In an experiment using the AES_KL, whether a key
could be derived was determined using a cryptogram, where a
fault was generated only in the key generation section. In the
experiment, the key value was assumed to be unknown. It
was also determined whether a key could be derived from the
obtained cryptogram. Figure 5 shows the experimental results
obtained with the use of the AES_KL. Fault generation bytes
were compared using the difference between the output

Int'l Conf. Embedded Systems and Applications | ESA'12 | 13

cryptogram with the fault and the correct cryptogram to
examine the state in which data errors occurred. Since the
fault generation position could not be specified using the
obtained cryptogram, the algorithm against the key attacks
could not be applied and the key could not be derived.

 The above-mentioned results indicate that although key
attacks are logically efficient, their threads against actual
cryptographic circuits are low.

Fig.5 Experimental result of AES_KL on actual LSI

5 Conclusion
 This study developed an evaluation platform that could
verify the tamper resistance property of fault analysis attacks
against an actual device using encryption LSI. Using the
proposed platform, a fault could be generated at an arbitrary
timing in an actual device. A fault could be generated in the
key generation section and it could be determined whether a
key could be derived from the generated fault. In the future,
we will evaluate resistance when a fault is generated in a
cryptographic intermediate value.

6 Acknowledgment
 This research was supported by Japan Science and
Technology Agency (JST), Core Research for Evolutional
Science and Technology (CREST).

7 References
[1] S.S.Ali, D.Mukhopadhyay, "A Differential Fault
Analysis on AES Key Schedule Using Single Fault", Proc. of
2011 Workshop on Fault Diagnosis and Tolerance in
Cryptography (FDTC), pp.35-42, 2011.

[2] Chong Hee Kim, J.J.Quisquater, "Faults, Injection
Methods, and Fault Attacks", IEEE Design & Test of
Computers, Vol.24, No.6, pp.544-545, 2007.

[3] Gaoli Wang, Shaohui Wang, "Differential Fault
Analysis on PRESENT Key Schedule", Proc. of 2010
International Conference on Computational Intelligence and
Security (CIS), pp.362-366, 2010.

[4] Wei Li, Dawu Gu, Yong Wang, Juanru Li, Zhiqiang Liu,
"An Extension of Differential Fault Analysis on AES", Proc.
of Third International Conference on Network and System
Security (NSS), pp.443-446, 2009.

[5] P.Maistri, R.Leveugle,"Double-Data-Rate Computation
as a Countermeasure against Fault Analysis", IEEE
Transactions on Computers, Vol.57, No.11, pp.1528-1539,
2008.

[6] Li Yang, K.Ohta, K.Sakiyama, "New Fault-Based Side-
Channel Attack Using Fault Sensitivity", IEEE Trans. on
Information Forensics and Security, Vol.7, Issue 1, Part 1,
pp.88-97, 2012.

[7] Z.Wang, M.Karpovsky, A.Joshi, "Secure Multipliers
Resilient to Strong Fault-Injection Attacks Using Multilinear
Arithmetic Codes", IEEE Trans. on Very Large Scale
Integration (VLSI) Systems, pp.1-13, 2011.

[8] H.Li, S.Moore, "Security evaluation at design time
against optical fault injection attacks", IEE Proc. on
Information Security, Vol.153 , Issue 1, pp.3-11, 2006.

[9] A.P.Fournaris, "Fault and simple power attack resistant
RSA using Montgomery modular multiplication", Proc. of
IEEE International Symposium on Circuits and Systems,
pp.1875-1878, 2010.

[10] A.Pellegrini, V.Bertacco, T.Austin, "Fault-based attack
of RSA authentication", Proc. of Design, Automation & Test
in Europe Conference & Exhibition (DATE), pp.855-860,
2010.

[11] JeaHoon Park, SangJae Moon, DooHo Choi, YouSung
Kang, JaeCheol Ha, "Fault attack for the iterative operation
of AES S-Box", Proc. of 5th International Conference on
Computer Sciences and Convergence Information
Technology, pp.550-555, 2010.

[12] A.Barenghi, G.M.Bertoni, L.Breveglieri, M.Pellicioli,
G.Pelosi, "Fault attack on AES with single-bit induced faults",
Proc. of Sixth International Conference on Information
Assurance and Security (IAS), pp.167-172, 2010.

[13] K.J.Kulikowski, Wang Zhen, M.G.Karpovsky,
"Comparative Analysis of Robust Fault Attack Resistant
Architectures for Public and Private Cryptosystems", Proc. of
5th Workshop on Fault Diagnosis and Tolerance in
Cryptography, pp.41-50, 2008.

14 Int'l Conf. Embedded Systems and Applications | ESA'12 |

Design and Analysis of Academic Dual Chamber Pacemakers

Mitchell L. Neilsen
Dept. of Computing and Information Sciences

Kansas State University
Manhattan, KS, USA

Abstract

In this paper, we describe a relatively inexpensive
framework for the design of an academic dual
chamber pacemaker that can be used to empirically
analyze different pacemaker designs. The goal of
this framework is to provide a convenient platform
that can be used for research and teaching in real-
time embedded system design. The framework can
also be used for model-driven development of
pacemaker software, and to demonstrate the safety
and liveness property violations that may result
during the design of real-time pacemaker software.

Keywords: Pacemaker, empirical analysis, real-
time, embedded system design, medical devices.

1 Introduction

A challenge, called the Pacemaker Grand Challenge,
was issued by the Software Certification Consortium
(SCC). Boston Scientific released the complete
system requirements for a fully-functional, previous
generation, dual-chamber pacemaker [1]. The goal
of releasing this specification was to provide a
foundation for future formal methods design
challenges, therefore only the basic functions were
required to be implemented in hardware; i.e.,
sensing, pacing and lead impedance measurement.
Thus, we will refer to the resulting system as an
academic pacemaker. A group of students from the
University of Minnesota accepted the challenge to
develop a hardware prototype as their senior design
project. Based on their design, the Software Quality
Research Laboratory, in the Dept. of Computing and
Software, at McMaster University developed new
hardware evaluation boards using the Microchip
18F4520 PIC processor to control the pacing logic.
This hardware prototype, shown as the green board
on the right in Figure 1, is used in our framework as
well. However, the focus of this paper is on the
software framework used for pacing, device control,
and management.

A pacemaker is a medical device that delivers
electrical pulses to the heart muscles to regulate the
beating of the heart. The goal is to maintain a
sufficient heart rate to compensate for irregularity or
blockage in the patient's heart's electrical conduction
system. Current pacemakers can be programmed by
a cardiologist to select optimal pacing modes for
individual patients. In some cases, a cardiologist
may use a complex combination of pacemaker and
defibrillator in a single implantable device and/or
multiple electrodes placed on different positions in
contact with the heart. For this framework, only a
simple pacemaker with up to two electrodes (one for
the ventricle and one for the atrium) are considered.
For permanent pacing, the electrodes are placed in a
chamber or several chambers of the heart. To
simulate the heart, we use software to control a
relatively low-cost (~$150 for academic use) 12-Bit,
10 kS/s multi-function Data AcQuisition (DAQ)
system from National Instruments, the USB-6008, as
shown below in Figure 1. The MicroChip PICkit 2
or PICkit 3 can be used to program and debug the
PIC18F4520 chip on the pacemaker board. Both
devices can be connected via any available USB
ports on any computer. It is very convenient to have
the programmer, debugger, data acquisition and
signal generation software all conveniently located
on a single development system – they are currently
all running on a low-end laptop running Windows 7.

Figure 1. Basic hardware configuration

Int'l Conf. Embedded Systems and Applications | ESA'12 | 15

There are basically three different types of
permanent pacemakers based on the number of
chambers involved and their basic operation [2]. In a
single-chamber pacemaker only one pacing lead is
placed into a chamber of the heart, either atrium or
ventricle. As shown above in Figure 1, only the
ventricle is being paced and sensed in this example
setup. However, the system shown above allows
both chambers to be paced and sensed. With a dual-
chamber pacemaker, electrodes are placed in both
heart chambers. This type of pacemaker more
closely resembles what happens with the natural
pacing of the heart. Finally, a rate-responsive
pacemaker has sensors that detect changes in the
patient's physical activity and automatically adjust
the pacing rate to fulfill the body's metabolic needs.

On board the pacemaker shown in Figure 1 is an
accelerometer that is used to monitor activity, and
enable the development of software that is rate-
responsive. In a real patient, the pacemaker
generator is hermitically sealed with a power source,
usually a lithium battery, a sensing amplifier which
processes the electrical impulses of the patient's
naturally occurring heartbeats as sensed by the heart
electrodes, the pacing logic for the pacemaker and
the output circuitry which delivers the pacing
impulses to the electrodes. These are all embedded
in the system shown in Figure 1. Even though the
pacemaker will operate on a 9 volt battery, it is more
convenient to power it using an external AC adapter.

Modern pacemakers have several functions. The
most basic pacemaker, monitors the heart's native
electrical rhythm. When the pacemaker fails to sense
a heartbeat within a normal beat-to-beat time period,
it will stimulate the ventricle of the heart with a short
low voltage pulse. This sensing and stimulating
activity continues on a beat-by-beat basis. The more
complex pacemakers also have the ability to sense
and/or stimulate both chambers of the heart. The
basic ventricular fail-safe pacing mode is VVI or
with automatic rate adjustment for exercise VVIR.
These are suitable when no synchronization with the
atrial beat is required. The wide range of available
pacemaker modes is shown in Figure 2.

Electronic pacemakers play an important role in
society. Several advancements have been made in
pacemaker technology over the last fifty years,
making current pacemakers highly sophisticated
cardiac rhythm managers with thousands of lines of
code. They are capable of correcting a wide range of
complex heart abnormalities. They can also be easily

reprogrammed to accommodate changes in the state
of the heart as it ages. However, mode changes must
be carefully applied so that they don't interrupt the
current operation of the pacemaker.

Revise NASPE/BPEG generic code for
antibradycardia pacing[3]

I II III IV V

Chamber(s)
paced

Chamber(s)
sensed

Response
to
sensing

Rate
modulation

Multisite
pacing

O = None O = None O = None O = None O =
None

A = Atrium A = Atrium T =
Triggered

R = Rate
modulation

A =
Atrium

V =
Ventricle

V =
Ventricle

I =
Inhibited

 V =
Ventricle

D = Dual
(A+V)

D = Dual
(A+V)

D = Dual
(T+I)

 D = Dual
(A+V)

Figure 2. Pacemaker modes [3]

Figure 3 shows a typical example of a

pacemaker (pulse generator) hermitically sealed and
with leads implanted in the heart.

Figure 3. Pacemaker (Pulse Generator) [6]

16 Int'l Conf. Embedded Systems and Applications | ESA'12 |

The original hardware sensing circuit was
reported to have high noise immunity with the
ability to sense down to 37uV [6]. This was
achieved by providing a variable gain and reference
level for the circuit, under the control of a
microprocessor. The pacing circuit is able to provide
a nearly continuous range of selectable voltage
amplitudes ranging from 1.2 to 7 volts, and the pulse
width is only limited by the maximum frequency of
the clock. The original hardware lead impedance
measurement circuit has the ability to provide an
accurate impedance measurement with less than 1%
error.

The focus of this paper is on developing a
complementary software framework. In particular,
Section 2 describes a simple and extensible software
framework that can be used to design and analyze
academic dual-chamber pacemakers. Section 3
provides a simple analysis, verification, and plans
for future work, and Section 4 concludes the paper.

2 Software Framework

The main functions of an academic pacemaker can
be divided into two categories: pace generation
which must run in disconnected mode on the
pacemaker, and device control and management
which are components used to monitor and program
the pacemaker. The majority of the code for device
control and management, the device controller-
monitor (DCM), runs on the PC and communicates
with the pacemaker DCM agent via a serial link. The
controller passes pacemaker parameters from the PC
to the pacemaker. These parameters are also logged
in a database as they are changed. In this way, the
controller (client) runs on the PC and the agent
(server) runs on the pacemaker. In contract, data on
electrical pulses that are sensed or pulsed on the
pacemaker may need to be monitored. Although an
external monitor, such as an electrocardiogram
(ECG), could be used to monitor the heart, the
monitor here can be used to observe the pacemaker
activity directly. This information can also be logged
by the DCM. To model an electrocardiogram, a data
acquisition (DAQ) card can also be used. In our
framework, signals sensed by the pacemaker are
generated by the DAQ, and on the flip-side, pace
signals generated by the pacemaker, ranging from
1.2 to 7.0 volts, can be sensed and logged by the
DAQ. The DAQ that we are using can sense 10,000

signals per second, but can only generate signals at a
rate of 150 Hz. With our limited testing, this has not
been a problem. It is important to have the capability
to sense a large number of signals per second so that
the paced signals are not lost, even with a very
narrow pulse width.

Figure 4. NI Signal Express 69mV pulse at 1Hz

As shown in Figure 4, National Instrument's Signal
Express software can be used to simulate a heart
beat by generating a square pulse of 69 mV at 1 Hz
(generated in the top graph, sensed in the bottom
graph). Signals can also be generated by an open-
source tool built using Python, called Python Data
Acquisition Tools (pydaqtools, version 0.2.0, 2011):
http://sourceforge.net/projects/pydaqtools/.

More accurate representations of the ventricular
and atrial signals can be generated. It is very easy to
change the amplitude and rate of each signal
generated. Also, the signals can be easily logged for
more careful analysis as shown below in Figure 5.

Figure 5. Output log of signals

Int'l Conf. Embedded Systems and Applications | ESA'12 | 17

http://sourceforge.net/projects/pydaqtools/

In this case, the square wave signal representing a
heart beat has it's amplitude reduced from 69 mV to
59 mV. Then, as the output log shows, some of the
signals are not sensed as heartbeats, and this causes
the pacemaker to generate a pacing signal with an
amplitude of 3.5 volts. However, with an amplitude
of 69 mV, all signals are sensed as shown in the
DCM output shown in Figure 6.
 The data displayed on the DCM in Figure 6 is
sent from the DCM agent running on the pacemaker
board to the DCM client running on the PC via the
serial link. In practice, this serial link would be
replaced with a wireless link. This allows a doctor to
see what the pacemaker is sensing within the patient.

Figure 6. DCM real-time ECG output

The overall system architecture consists of two

major components, the Device Controller-Monitor
and the Pulse Generator. The Device Controller-
Monitor (DCM) has a graphical user interface with
three tabs: Patient Information to specify a patient
and retrieve historical data from a database, the
current pacemaker configuration is automatically
populated in the second tab when a patient's data is
loaded. If the patient is new, then system default
values are loaded. The Pacemaker Configuration tab
allows a cardiologist to select a mode (from those
shown in Figure 2). Depending on the mode, a set of
configuration parameters can be specified and sent
to the pacemaker to reprogram the pacemaker. Once
a user connects to a given pacemaker and optionally
reprograms the parameters, then real-time ECG data
can be transmitted periodically from a DCM agent

running on the pacemaker board back to the DCM.
The pacemaker parameters are also recorded in an
EEPROM on the pacemaker board so that it can
continue to operate in disconnected mode without
intervention from the DCM.

The Pulse Generator (PG) on the pacemaker
board is responsible for sensing and generating
pulsing signals as needed to keep the patient's heart
beating. To facilitate automated generation of PG
code, we have divided the code running on the
pacemaker into two different categories: hardware-
dependent and hardware-independent. The Hardware
Abstraction Layer (HAL) provides the majority of
the code which is not dependent on the particular
hardware with a clean interface to the hardware
dependent code which consists of device drivers,
timers, etc. In this way, we hope to facilitate the
automated generation of hardware-independent code
from models used to verify the correctness of the
pacemaker.

Figure 7. Pulse generation and sensing using PIC [6]

The pulse generator can sense heartbeats,

electrical impedance, and acceleration in two
dimensions, and it can generate pacing pulses for the
ventricle or atrium as shown in Figure 7. The overall
software architecture is shown in Figure 8.
 The Device Controller-Monitor is executed on a
laptop and is used to program the pacemaker.
 On the pacemaker, three real-time tasks are
executed. The Pulse Generator runs at the highest
priority, the DCM Agent (ECG Transmitter) at the
next highest priority, and finally the idle task. These
three tasks are executed on top of the FreeRTOS
real-time operating system: http://www.freertos.org.
 The Pulse Generator is responsible for generating
electrical pulses as needed to keep the heart

18 Int'l Conf. Embedded Systems and Applications | ESA'12 |

http://www.freertos.org/

operating. Thus, it is the most critical task. The
DCM Agent/ECG Transmitter interacts with the
DCM Manager to enable a cardiologist to reprogram
the pacemaker parameters or select a different
pacing mode; e.g., update parameters stored in the
EEPROM and passed to the Pulse Generator. It is
also used to used to pass real-time ECG data to the
DCM Manager. This data is displayed as shown in
Figure 6.

Figure 8. Software architecture

The pacemaker is controlled by a Microchip PIC
18F4520 with a limit of 32KB of program memory
(flash memory) to store the code to be executed, and
even more limiting, only 1536 bytes of data memory
(RAM). Because of this, a very limited amount of
buffering is done on ECG data. This also limits the
number of tasks that can be generated. For example,
it might be logical to separate the DCM Agent and
ECG Transmitter to run on two separate tasks, but
the hardware limits don't allow this many tasks. We
plan to consider other processor options and build
our own pacemaker board in the future.

3 Analysis of Pacemaker Software

A major goal of this new framework is to provide a
convenient mechanism to easily compare different
abstract pacemaker models, verify the correctness of
those models and empirically analyze the designs
using the empirical framework described above.

At the present, the abstract models are manually
converted to C source which is compiled and

executed within the framework. In this section, we
introduce an abstract model for the VVI mode,
which is the fail-safe mode as described in the
pacemaker specification. Different modes can be
selected by the user from the DCM as shown in
Figure 9. To switch to another pacemaker mode, the
user only needs to select the new mode from the
drop-down list. When the user selects another mode,
a new set of parameters are listed for input.

Figure 9. Select mode VVI

Note that the mode VVI supports hysteresis and

rate smoothing, so the corresponding default values
for those parameters are shown, and they may be
changed by the user. To program the pacemaker, the
user simply needs to click on the button to Connect
to the Pacemaker (if they are not already connected),
and then click on the Program Pacemaker button to
download the parameters to the pacemaker, via the
DCM Agent, where they will be stored in EEPROM.
The PIC 18F4520 has 256 bytes of EEPROM. Once
the new parameters are downloaded, a mode change
is initiated, and the new real-time data can be
observed. In this case, pacing rate changes are
displayed using up and down arrows as shown in
Figure 10.
 Note that even though some heart beats are not
sensed, the pace generator may not automatically
pace for up to two regular heart cycles.
 For this example, the signal generated to
represent a heart beat is still a square wave with a
peak of 59 mV, generated at 60 beats per second.
We found that some beats were not detected at 59
mV, but all beats were detected with an amplitude of
69 mV. A variety of different tools can be used to
generate input signals with different shapes and

Int'l Conf. Embedded Systems and Applications | ESA'12 | 19

amplitudes, including National Instruments' Signal
Express, MATLAB, or pydaqtools.

Figure 10. Output for VVI mode

In the future, we plan to incorporate the Virtual
Heart Model (VHM), from Dr. Rahul Mangharam
and colleagues at the University of Pennsylvania, to
generate a variety of different input signals:
www.seas.upenn.edu/~zhihaoj/VHM.html.

Another contribution of the framework is to
provide a convenient method to illustrate violations
of safety and liveness properties discovered using
some form of model checking, and the model-driven
approach to safety-critical software development.
For example, the pacemaker models developed in [7]
can be easily converted into code within the Pulse
Generator. In [7], the authors show how a transition
between VDI and DDD pacing modes can lead to a
safety property violation. These pacing modes can
be incorporated into the framework. Then, the
pacing sequence identified to illustrate the problem
can be specified using a simple Python script in
pydaqtools.

Figure 11. Pacemaker model for VVI mode

Users can also develop their own abstract

models for various pacemaker modes. For example,
we developed the following model for VVI mode, as
shown in Figures 11 and 12. The pacemaker must
wait until the Ventricle Response Period (VRP) has
passed before generating a pulse. Then, a pulse is
only generated if one is not sensed within a given
rate interval (RI). Likewise, the pacemaker's
environment, in this case the heart can be modeled
as an automaton that randomly generates heartbeats
in the range from MinDelay to MaxDelay as shown
below in Figure 12.

Figure 12. Heart model for ventricle

The model can be simulated in UPPAAL as shown
below in Figure 13. In this case, system declarations
are given by P = Pacemaker(500, 1000, 250),
and H = Heart(200, 3000). The pacemaker
lower rate interval (LRI) is 500, upper rate interval
(URI) is 1000, and VRP is 250, all in milliseconds.
The heart MinDelay is 200 and MaxDelay is 3000.

Figure 13. Simulator output

Model checking can be used to verify properties
among a wide range of distributed and real-time
systems. In the past, we have used UPPAAL to

20 Int'l Conf. Embedded Systems and Applications | ESA'12 |

http://www.seas.upenn.edu/%7Ezhihaoj/VHM.html

verify the correctness of distributed algorithms and
real-time schedulers [8,9]. For this model of the VVI
mode, a variety of properties can be verified using
formal verification. All of the following properties
are satisfied for the given model, assuming that the
pacemaker and heart are declared with a reasonable
set of input parameters; e.g., VRP = 320 msec., etc.:

 A[] (not deadlock): check for deadlock freedom,
 A[] ((not P.hysteresis and P.WaitBeat) imply

(P.y <= P.LRI)): the minimum interval between
pacing and sensing events is the lower rate
interval (LRI) with no hysteresis,

 A[] ((P.hysteresis and P.WaitBeat) imply
(P.y <= P.URI)): the minimum interval between
events is the upper rate interval with hysteresis,

 A[] (P.WaitBeat imply (P.y >= P.VRP)) :
while waiting for a heart beat, the pacemaker
must wait for the ventricle refactory period (VRP)
to expire before sensing or pacing, and

 P.WaitBeat --> P.WaitVRP : being in the state
waiting on a heartbeat always leads to being in
the state waiting on the VRP to pass.

4 Conclusions

Biomedical electronic systems are increasing in both
complexity and functionality. It is vital to have an
understanding of both the human body and the
embedded computer software in order to implement
functional and reliable systems. This framework is a
step in this direction, bridging the gap between
biology, electrical and computer engineering and
computer science. In this paper, we described a
relatively inexpensive, extensible framework that
can be used to design new academic pacemakers and
analyze existing designs. The goal of this framework
is to provide a convenient platform that can be used
for research and teaching in real-time embedded
system design and verification. In order to design a
system, no matter what its purpose, the area of
intended use must be researched in order to obtain
adequate knowledge to develop a comprehensive
system-level understanding of the system. The
pacemaker specification includes several advanced
features such as telemetry, digital signal processing,
and power management. Thus, there are many
interesting, well-documented directions to extend
this work. Since the pacemaker is used for academic
purposes, the primary operating environment will be

in an indoor lab setting. The system is relatively
durable, and can be easily transported between labs.
The system can also be used in the classroom to
demonstrate more abstract concepts in a concrete
fashion. In the future, we plan to port the hardware
to a more advanced controller that doesn't suffer
from the limitations imposed by the PIC 18F4520.

Acknowledgements

Boston Scientific released the specifications used
in this design to promote academic interest in
pacemaker technology. Several discussions with
Brian Larson were very helpful in completing this
initial framework.

References

[1] Boston Scientific, Inc., "PACEMAKER system
specification", http://www.cas.mcmaster.ca/sqrl/
SQRLDocuments/PACEMAKER.pdf, 2007.

[2] Heart Rythm Society, "Patient information",
http://www.hrsonline.org/PatientInfo/, 2011.

[3] S. Serge Barold, Roland X. Stroobandt, and Alfons
F. Sinnaeve, "Caridiac Pacemakers and
Resynchronization Step-byStep: An Illustrated
Guide", 2nd Edition, Blackwell Publ., Inc., 2010.

[4] John G. Webster, "Design of cardiac pacemakers",
IEEE Press, 1995.

[5] Richard Barry, "FreeRTOS Reference Manual - API
Functions and Configuration Options", Real-Time
Engineers, Ltd., 2012.

 {http://www.freertos.org}
[6] C. Nixon, J. Smith, T. Ulrich, R. Davis, C. Larson,

and K. Cha, "Academic Dual Chamber Pacemaker",
Univ. of Minnesota, Final Report, May 2007.

[7] Z. Jiang, M. Pajic, S. Moarref, R. Alur, and R.
Mangharam, "Modeling and verification of a dual
chamber implantable pacemaker", In Proceedings of
the 18th International Conference on Tools and
Algorithms for the Construction and Analysis of
Systems (TACAS 2012), 2012.

[8] M.L. Neilsen, "Model checking task sets with
preemption thresholds", in Proceedings of the 17th
International Conference on Parallel and Distributed
Processing Techniques and Apps. .(PDPTA’11),
Paper No. PDP4007, July 2011.

[9] M.L. Neilsen, “Symbolic schedulability analysis of
task sets with arbitrary deadlines”, in Proceedings
of the 16th International Conference on Parallel and
Distributed Processing Techniques and Applications
(PDPTA’10), Paper No. PDP4851, July 12-14,
2010.

Int'l Conf. Embedded Systems and Applications | ESA'12 | 21

2LGC: An Atomic-Unit Garbage Collection Scheme
with a Two-Level List for NAND Flash Storage

Sanghyuk Jung and Yong Ho Song

Department of Electronics Computer Engineering, Hanyang University, Seoul, Korea

Abstract - In NAND flash memory devices, pages marked
“invalid” can remain in blocks and occupy flash space.
Therefore, it is necessary to physically eliminate invalid pages
and collect valid pages from the victim blocks in order to
sustain flash write performance and storage lifespan. Alt-
hough there have been many research studies on efficient
garbage collection techniques, research has focused on victim
selection methodologies and no solutions have been proposed
for the victim selection process cost overhead. Indeed, the
host system quite often suffers unendurable storage-access
delays because garbage collection produces much computa-
tional over-head when doing victim selection. A novel gar-
bage col-lection mechanism, called “Two-Level List-based
Garbage Collection”, is proposed in this paper. The victim
block selection overhead can be efficiently reduced in this
scheme; hence, the responsiveness to host requests is signifi-
cantly improved.

Keywords: flash memory, garbage collection, SSD

1 Introduction
 There has been a revolutionary change in data storage
fields since the development of NAND flash memories.
NAND flash memories have been widely used as the storage
media of embedded systems such as MP3 players, mobile
devices, and digital cameras owing to their non-volatile, high
random access performance, and low power consumption
flash characteristics. The unit price of flash memory is con-
stantly decreasing because the vendors of flash memories are
trying to squeeze more capacity into constantly shrinking
silicon dies and adopting multi-level cell (MLC) technology
[1]. NAND flash storage devices (i.e., solid state drives) are
becoming a viable solution for satisfying the high perfor-
mance and low power consumption demands of notebooks
and desktop-PCs as well as portable embedded systems with
continuing improvements in both capacity and price.
 However, NAND flash memory has several restrictions
resulting from its architectural characteristics. First, pages
(the minimum data access unit of a flash memory) are de-
signed to share an identical word-line and blocks (consisting
of several pages) are designed to share an identical bit-line in
order to provide high density memory devices. The unit sizes
of the erase and read/write operations are asymmetric for this
reason: read/write operations are performed in a page unit

while erase operations should be executed in a block unit.
Second, electrons in the flash memory data cells can only be
removed through an erase operation once the floating gates of
the data cells are charged with electrons; thus, the write oper-
ation may have to be preceded by an erase operation. This
characteristic is sometimes called “erase-before-write”. Third,
NAND flash causes an unpredictable electron-leakage prob-
lem due to the wearing out of the silicon oxide film which is
located between the floating gate and the transistor gate in a
cell. The electron-leakage problem mainly causes uncorrecta-
ble bit errors and, therefore, the lifespan of flash memory
expires after performing a limited number of program/erase
(P/E) cycles.
 In order to hide these constraints of NAND flash memo-
ries, current flash-based storage systems use a special inter-
face called a flash translation layer (FTL) [2-5], which is
supported by the storage firmware. The main role of the FTL
is to make flash storage a virtual in-place updatable storage
device. For example, the FTL redirects each write request to
the physical flash area and marks the previously programmed
page invalid when the host repetitively issues write opera-
tions on the same address space. The flash storage can gener-
ate a relatively small number of page-copy operations and
block-erase operations from this FTL emulation technique, so
it is helpful for improving NAND flash memory durability.
 However, a problem may arise when pages marked
“invalid” remain in blocks and occupy flash space. Therefore,
it is necessary to physically eliminate invalid pages and col-
lect valid pages from the victim blocks in order to sustain
flash write performance and storage lifespan. This sequence
of operation processes is called garbage collection [6-7]. The
performance and durability of the flash storage can be kept
stable if the garbage collection mechanism is efficiently de-
signed.
 There has been much research [8-15] on efficient gar-
bage collection techniques and various victim block selection
methods that cut down on operational overhead have been
proposed. However, these research studies have only focused
on victim block selection methodologies and have not pro-
posed any solutions for the cost overhead of victim selection
processes. Indeed, the host system quite often suffers unen-
durable storage-access delays because garbage collection
produces great computational overhead when performing
victim selection processes. Therefore, the storage-access
performance and responsiveness of flash storage can be im-
proved by reducing the cost overhead of victim selection
processes.

22 Int'l Conf. Embedded Systems and Applications | ESA'12 |

 A novel garbage collection mechanism known as Two
Level list-based Garbage Collection (2LGC) is proposed in
this paper. In the proposed scheme, the FTL stores block
addresses into two-level lists when the numbers of invalid-
marked pages in those blocks pass a threshold. The stacked
block map addresses in two-level lists are used for victim
selection processes. The FTL can efficiently reduce the vic-
tim block selection overhead in this manner; hence, the re-
sponsiveness to host requests is significantly improved.
 Flash storage performance was analyzed using a flash
storage prototype platform [16], which consists of hardware
parts (i.e., NAND flash controllers, memory controllers, and a
CPU) and software parts (i.e., FTL) in order to verify the
effectiveness of the 2LGC scheme. The resulting 2LGC
scheme offered significant benefits, such as a high perfor-
mance storage-access ability and a host command delay drop,
compared to an on-demand victim search technique in our
experiments.
 The rest of this paper is organized as follows. A prelim-
inary overview of garbage collection mechanisms and latency
hiding skills is described in the next section. Related works,
including victim block selection techniques and their laten-
cies are reviewed in Section III. The proposed garbage collec-
tion scheme is explained in Section IV and its feasibility is
discussed. A comparison of the 2LGC scheme to the on-
demand victim selection technique in terms of responsiveness
is analyzed in Section V. Finally, conclusions are drawn from
this study in Section VI.

2 Preliminaries

2.1 Garbage Collection Mechanism

 The FTL address re-mapping technique has a problem
in that invalid-marked pages occupy the flash area without
being erased. If these invalid-marked pages accumulate in the
flash storage, the problem of no more available free blocks
arises, although the capacity of used space is much smaller
than that of the flash storage. Therefore, it is necessary to
physically eliminate invalid-marked pages and make free
blocks available in order to sustain flash write performance
and storage capacity. Garbage collection is thus needed for
reclaiming invalid-marked pages scattered over blocks so that
the invalid-marked pages can again become free pages. The
garbage collection sequence and its operational cost are
summarized as follows.

 The FTL selects some blocks which are expected to

have the lowest garbage collection cost as victim blocks
when garbage collection is triggered. The P/E cycles or
hot/cold identification of each block as well as the num-
ber of invalid pages can be considered when selecting
victim blocks. The FTL targets entire blocks as victim-
candidate blocks of flash storage, which may cause a se-
rious operational cost.

 The FTL implements block erase operations in order to
physically remove the invalid-marked pages from the se-

lected victim blocks. However, the FTL should allocate
a free block and then copy all the valid pages from vic-
tim blocks to the free block because the victim blocks
may have valid pages. Consequently, the valid pages
scattered over victim blocks are copied to one free block.

 The FTL updates the mapping information after generat-
ing a data block full of valid pages and the victim blocks
are then physically erased. The erased blocks are logical-
ly located in the free block pool and reallocated when
necessary.

2.2 Latency Hiding of Garbage Collection

 The storage access frequency of a host system is called
data access intensity and is affected by workload characteris-
tics. Storage I/O performance is directly influenced by the
factor of data access intensity. During the high data access
intensity, the host event queue can be filled with storage-
access requests and hence must be handled immediately. On
the other hand, during the low data access intensity, the stor-
age system becomes largely idle and its bandwidth is greatly
under-utilized [17]. Therefore, a large portion of the run-time
garbage collection cost can be saved if the FTL implements
time-consuming operations during low data access intensity.
 However, the request-pending problem must be consid-
ered when adopting an idle-time garbage collection technique.
The FTL should suspend garbage collection and immediately
back into the request handling process when the host issues
storage-access requests during low data access intensity.
Therefore, the responsiveness to the host storage-access re-
quests can be improved if the garbage collection operations
are preemptively designed.

3 Related Works
 In this section, victim block selection techniques of
garbage collection are analyzed and an explanation is given
for the operational latencies incurred by those techniques.

3.1 Victim Block Selection

 Various cost-based garbage collection techniques [6-15]
have been proposed over the past several years. In the Greedy
algorithm, Wu et al. [8] first suggested that the FTL selects
blocks having the largest number of invalid-marked pages as
victim blocks. In this way, the FTL can reduce the number of
page program operations from victim blocks and improve the
performance and durability of NAND flash storage. However,
the subsequently proposed algorithms, such as the Cost-
benefit scheme [9], indicate a problem in that the Greedy
algorithm is not suitable for prolonging the lifespan of flash
storage because the Greedy algorithm selects victim blocks
without considering their P/E cycles.
 Therefore, many subsequent studies [10-15] have pro-
posed victim block selection techniques considering wear
leveling costs. However, the dynamic wear leveling and static
wear leveling schemes [18-19] have already been adopted
inside flash storages, so there is no need to consider both

Int'l Conf. Embedded Systems and Applications | ESA'12 | 23

wear leveling and garbage collection issues together. Conse-
quently, if the wear leveling cost is not taken into considera-
tion, the Greedy algorithm shows the highest performance in
terms of garbage collection cost compared with other victim
selection techniques.

3.2 Victim Selection Latency

 Measuring computational latencies from garbage collec-
tion is a totally different issue because the previously pub-
lished research on garbage collection schemes did not focus
on victim block management costs such as victim selection
overheads and sorting delays. Thus, victim block manage-
ment costs must be carefully analyzed in order to decrease
garbage collection latencies.
 The garbage collection operational delays, based on
previous research, are as follows. First, the FTL extracts the
number of invalid-marked pages from each block by search-
ing the entire flash memory space. Extracting the number of
invalid-marked pages will take longer for larger capacity
flash storage because flash storage has the same number of
block map entries as the number of data blocks. Second, the
FTL continuously compares the number of invalid-marked
pages from each block until enough victim blocks are select-
ed in order to select victim blocks having the largest number
of invalid-marked pages for each block. Although it is as-
sumed that the FTL uses a quick sort algorithm which has the
best performing speed among the well-known sorting algo-
rithms, the operational delay becomes O(NlogN) in general
case, and O(N2) in the worst case.

4 2LGC

4.1 Victim Block Selection

 The 2LGC scheme is able to isolate victim block selec-
tion from garbage collection. In short, this scheme maintains
the victim priority of target blocks by sorting the blocks by
the number of invalid-marked pages during run-time. The
two-level lists are used to implement the run-time victim
block searching technique, as shown in Figure 4: a candidate
list and a garbage block list (along with other de-tails that are
explained in Section IV (C)). In the 2LGC scheme, the FTL
stores physical block addresses in the two-level lists depend-
ing on the numbers of invalid-marked pages and uses them
when necessary. This allows the flash storage to reduce block
searching overheads and victim block sorting costs during
garbage collection. Figure 1 rep-resents the controller archi-
tecture of a NAND flash storage and the location of the 2L-
list.
 Figure 2 shows the 2LGC map entries. First, the page
map table is an essential data structure of a page mapping
FTL. The main role of this table is to translate logical page
numbers (LPNs) from a host system into physical page num-
bers (PPNs) in NAND flash memories. Second, the aim of
the block map table is to store physical block information
whether the block is available or not when the FTL allocates
free blocks. The block map table is also an essential data

structure for supporting garbage collection or wear leveling
algorithms.

Fig. 1. Flash storage controller architecture.

 Fig. 2. 2LGC map entries: (a) page map entry and (b) block map entry.

 As shown in Figure 2(a), each page map table entry is
composed of a 31-bit PPN and a 1-bit page validation-mark
flag. The number of entries in a page map table is the same as
the number of pages in the flash storage. If the storage access
request from the host is issued to the flash storage, the FTL
searches the 31-bit PPNs of the page map table using the
LPNs (if a physical page size of 8KB is assumed, the 31-bit
page number can represent 244 bytes or 16TB). On the other
hand, the FTL has to check the page validation-mark flag
using the PPNs in order to confirm whether or not the data in
physical page space are valid. The address space can be more
efficiently saved by combining a 31-bit PPN and a 1-bit page
validation-mark flag into a single 32-bit I/O bus width regis-
ter.
 There are six entries in the block map table as shown in
Figure 2(b). The usage of each entry is as follows. First,
2LGC uses three flags for supporting address translation. A
1-bit bad block-mark flag, a 1-bit free-mark flag, and a 1-bit
erase-mark flag represent whether the physical block is bad
or not, free or not, and erased or not, respectively. Second,
2LGC uses two page offset entries for maintaining page in-
formation within a block. An 8-bit invPage offset shows how
many invalid pages are involved within a block and an 8-bit
curPage offset explains which page of the block is available
for programming. Lastly, the 13-bit eCount number stands for
the number of times each block has been erased.

4.2 Single-Block Garbage Collection

 The FTL selects multiple victim blocks, copies valid
pages into one free block, and invalidates the victim blocks in
the on-demand victim selection techniques. For example, the

24 Int'l Conf. Embedded Systems and Applications | ESA'12 |

FTL updates the page map table with a new physical page
number and erases victim blocks whose physical block num-
bers are 2, 4, and 5 when page copy operations are finished,
as shown in Figure 3(a). The FTL needs to copy four pages
and erase three blocks as well as to search victim blocks and
update map tables during this multiple-block garbage collec-
tion process. As seen in this example, the on-demand victim
selection techniques can make relatively more reusable free
blocks, but may cause a large peak delays within only one
garbage collection

Fig. 3. (a) An existing garbage collection and (b) 2LGC mechanism.

 On the other hand, the 2LGC scheme can separate a
garbage collection sequence into several single-block garbage
collection operations, so it is possible to improve
responsiveness and make the flash storage preemptive. Note
that the 2LGC can implement single-block garbage collection
mainly because the FTL can use a page offset for each block
stored in the curPage offset entries, as shown in Figure 2(b).
All the blocks can be reallocated as non-free states through
the use of curPage offsets. For example, as shown in Figure
3(b), the FTL updates the page map table with a new physical
page number and erases the block whose physical block
number is 5 when page copy operations are finished. In this
case, the FTL needs to copy two pages and erase one block
and update the map tables during the single-block garbage
collection process. Compared with on-demand victim
selection mechanisms, 2LGC single-block garbage collection
is quite effective for supporting a preemptive storage system

4.3 Algorithm

 Figure 4 shows the two-level lists used in the 2LGC
algorithm. The operational sequence is as follows. The FTL
continuously checks the number of invalid-marked pages for
the corresponding block whenever the page validation-mark
flag of each page map entry is updated. If the number of
invalid-marked pages in that block is over a threshold value,
the 2LGC stores the block address in the Candidate list. The
entries in Candidate list are not to be sorted in the initial state.
The 2LGC can reconstruct the Candidate list only when the
following two cases occur.

 (1) If the Candidate list is full, a block whose entire
pages are invalid is demoted into the Garbage block list. If
user workloads, such as file copies and internet explorations,
are used, several blocks can be expected to be demoted into
the Garbage block list because they include a large number of
sequential program operations. However, if the Candidate list
does not have such blocks any more, the 2LGC sorts the
blocks of the Candidate list in the order of invalid-marked
page numbers and removes a block address from the tail of
Candidate list. The block address currently being added to the
Candidate list is quickly demoted to the Garbage block list if
pages in the block are sequentially programmed.
 (2) When garbage collection is triggered, the 2LGC
firstly checks the Garbage block list and selects a block from
the head of the Garbage block list as the victim. If the Gar-
bage block list is empty, the 2LGC then checks the Candidate
list and selects a block from the head of the Candidate list.

 Fig. 4. Two-level lists in the 2LGC algorithm

 In 2LGC, the FTL is designed to use a single-block
garbage collection scheme, as mentioned in Section IV (B).
Although the host issues storage-access requests during
garbage collection, the FTL can back into the request
handling process without putting a bookmark in the garbage
collection sequence because the block addresses already exist
in the Candidate list. In the same way, background garbage
collection can be implemented atomically. The 2LGC has
only to add the block address to the Garbage block list when
finishing background single-block garbage collection.

5 Experiments

5.1 Performance Evaluation

 In order to verify the effectiveness of 2LGC scheme, we
conducted real-system based experiments using a flash proto-
type platform board [16] equipped with an INDILINX bare-
foot SSD controller. The SSD controller of the platform board
consists of hardware parts (i.e., NAND flash controllers [20],
memory controllers, and a CPU) and software parts (i.e.,
FTL), so an algorithmic evaluation can be performed by rede-
signing the firmware inside the SSD controller. Moreover, the
most accurate and reliable experiments can be conducted
through this platform because the platform board is connected

Int'l Conf. Embedded Systems and Applications | ESA'12 | 25

by a SATA2 interface using a notebook or desktop as storage
[21]. The platform board and the specification of INDILINX
barefoot SSD controller are shown in Figure 5 and Table 1,
respectively.

Fig. 5. Flash prototype platform board.

Table 1. SSD controller specification of platform board

 The IOMeter benchmark [22] is used for generating
meaningful workloads in the experiments. In order to extract
the accurate experimental data, we exclude data I/Os caused
by operating systems or file systems. The platform board is
connected to the host as flash storage without installing any
operating systems or formatting any file systems because the
IOMeter benchmark can handle direct storage-access opera-
tions to the unformatted data storage. The IOMeter bench-
mark can also organize workloads of various read/write and
random/sequential access intensities; thus, configurable work-
loads with the desired properties can be generated. The work-
load variation is shown in Table 2 (the minimum storage
access unit size is 32KB due to the page clustering technique).
Finally, the flash storage is programmed with a ran-
dom/sequential write ratio (r: 50/ s: 50) for aging entire pages
to enable the measurement of garbage collection operation
latencies. In this experiment, the threshold value is defined as
3/4 of the number of pages in a block, the Candidate list size
is 1/20 of storage capacity, and the Garbage block list size is
1/10 of storage capacity, respectively.

Table 2. Workloads

5.2 IOPS and Execution Time

 Figure 6 shows the flash storage IOPS varied with the
garbage collection scheme during the time intervals. In this
experiment, the IOPS represents the number of page-level
commands generated by the FTL, not the number of request-
level commands issued by the host. The IOPS of the 2LGC
scheme were compared to that of the on-demand victim selec-
tion technique using the IOMeter benchmark workloads
shown in Table 2. As shown in the figure, the average IOPS
of the 2LGC scheme is superior to that of the on-demand
victim selection technique because 2LGC saves garbage col-
lection costs. There is a significant decrease in the IOPS of
the on-demand victim selection technique because it causes
entire block searching and victim selection overhead when
garbage collection is triggered (see Section III (B) for more
details of garbage collection latency). On the other hand, the
2LGC scheme can reduce the system latencies caused by
garbage collection because it maintains victim-candidate
blocks within the two-level lists during system run-time.
Moreover, the peak delays can be minimized and responsive-
ness to the host improved because of the effectiveness of the
single-block garbage collection technique.

6 Conclusion
 In this paper, we have studied the operational mecha-
nisms and the computational overheads of garbage collection.
The garbage collection was found to have too much computa-
tional overhead to find victim blocks, resulting in unendura-
ble host system access latency (very low responsiveness) and
performance degradation.
 However, the proposed 2LGC garbage collection
scheme eliminated the computational overheads due to victim
block selection from the critical path of the garbage collection
operations. The responsiveness to host system requests was
also improved by making the garbage collection operation
preemptive. The 2LGC scheme achieved significant
performance improvement in flash storage bandwidth and
request processing latency in comparison to the on-demand
victim selection technique in our experiments.

7 Acknowledgement
 This work was supported by the National Research
Foundation of Korea (NRF) grant funded by the Korea gov-
ernment (MEST) (No. 2011-0017147).

26 Int'l Conf. Embedded Systems and Applications | ESA'12 |

0

300

600

900

1200

0 50 100 150 200

0

200

400

600

0 50 100 150 200
0

200

400

600

0 50 100 150 200

0

300

600

900

1200

0 50 100 150 200

0

500

1000

1500

2000

2500

0 50 100 150 200
0

500

1000

1500

2000

2500

0 50 100 150 200

0

200

400

600

800

1000

0 50 100 150 200
0

200

400

600

800

1000

0 50 100 150 200

IO
P

S

IO
P

S

IO
PS

IO
PS

IO
P

S

IO
P

S

IO
P

S

IO
P

S

Fig. 6. IOPS comparison between the on-demand victim selection scheme and the 2LGC scheme,
(a) workload 1, (b) workload 2, (c) workload 3, and (d) workload 4.

8 References
[1] Sanghyuk Jung, Sangyong Lee, Hoeseung Jung, and
Yong Ho Song, “In-page error correction code management
for MLC flahs storages,” Proceedings of the IEEE MWSCAS,
2011.

[2] Sang-Won Lee, Dong-Joo Park, Tae-Sun Chung, Dong-
Ho Lee, Sang-Won Park, and Ha-Joo Song, “A log buffer-
based flash translation layer using fully-associative sector
translation,” ACM Transactions on Embedded Computing
Systems, vol. 6, no.3, article 18, July 2007.

[3] Sanghyuk Jung, Jin Hyuk Kim, and Yong Ho Song,
“Hierarchical architecture of flash-based storage systems for

high performance and durability,” Proceedings of the
IEEE/ACM International Conference on DAC, 2009.

[4] Aayush Gupta, Youngjae Kim, and Bhuvan Urgaonkar,
“DFTL: A flash translation layer employing demand-based
se-lective caching of page-level address mappings,” Proceed-
ings of the ACM International Conference on ASPLOS, 2009.

[5] Sanghyuk Jung, Yangsup Lee, and Yong Ho Song, “A
process-aware hot/cold identification scheme for flash
memory storage systems,” IEEE Transactions on Consumer
Electronics, vol. 56, no. 2, pp. 339-347, May 2010.

[6] Li-Pin Chang, Tei-Wei Kuo, and Shi-Wu Lo, “Real-
time garbage collection for flash-memory storage systems of

Int'l Conf. Embedded Systems and Applications | ESA'12 | 27

real-time embedded systems,” ACM Transactions on Embed-
ded Computing Systems, vol. 3, no. 4, November 2004.

[7] Ohhoon Kwon, Kern Koh, Jaewoo Lee, Hyokyung
Hahn, “FeGC: An efficient garbage collection scheme for
flash memory based storage systems,” The Journal of Systems
and Software, pp. 1507-1523, 2011.

[8] Wu, M., Zwaenepoel, W., “eNVy: a non-volatile, main
memory storage system,” Proceedings of the ACM Interna-
tional Conference on ASPLOS, 1994.

[9] Kawaguchi, A., Nishioka, S., Motoda, H., “A flash-
memory based file system,” Proceedings of USENIX Tech-
nical Conference, 1995.

[10] Chiang, M., Lee, P.C.H., Chang, R., “Cleaning algo-
rithms in mobile computers using flash memory,” Journal of
Systems and Software, 1999.

[11] Kim, H., Lee, S., “A new flash memory management for
flash storage system,” Proceedings of the COMPSAC, 1999.

[12] Manning, C., Wookey, “YAFFS Specification,” Aleph
One Limited, 2001.

[13] M-Systems, “TrueFFS Wear-Leveling Mechanism.”

[14] Chang, L., “On efficient wear leveling for large-scale
flash-memory storage systems,” Proceedings of the ACM
SAC, 2007.

[15] Du, Y., Cai, M., Dong, J., “Adaptive garbage collection
mechanism for N-log block flash memory storage systems,”
Proceedings of the ICAT, 2006.

[16] http://www.openssd-
project.org/wiki/The_OpenSSD_Project.

[17] Yangsup Lee, Sanghyuk Jung, and Yong Ho Song,
“FRA: A flash-aware redundancy array of flash storage de-
vices,” Proceedings of the CODES+ISSS, 2009.

[18] Yuan-Hao Chang, Jen-Wei Hsieh, and Tei-Wei Kuo,
“Endurance enhancement of flash-memory storage systems:
An efficient static wear leveling design,” Proceedings of the
IEEE/ACM International Conference on DAC, 2007.

[19] Li-Pin Chang and Chun-Da Du, “Design and implemen-
tation of an efficient wear-leveling algorithm for solid-state-
disk microcontrollers,” ACM Transactions on Design Auto-
mation of Electronic Systems, vol. 15, no. 1, December 2009.

[20] Samsung flash memory Spec, K9LCG08U1A,
Datasheet.

[21] Technical Committee T13 AT Attachment, “Information
Technology – ATA/ATAPI Command Set – 2 (ACS-2),”
T13/2015-D, Revision 2, August 3, 2009.

[22] http://www.iometer.org/

28 Int'l Conf. Embedded Systems and Applications | ESA'12 |

Fast Prototyping of an Image Encoder using FPGA with USB
Interfacing

Airs Lin1, Evan Tsai1, Gabriel Nunez1, Gregory Carter1

Neil Arellano1, Jorge Estrada1, Adrienne Lam1, Sergio Mendoza1, Aleksander Milshteyn1
Dr. Helen Boussalis1, Dr. Charles Liu1

1Structures, Propulsion and Control Engineering University Research Center (SPACE URC)
California State University, Los Angeles

5151 State University Drive, Los Angeles, CA 90032

Abstract — This paper focuses on porting specific
ubiquitous computing applications by providing acceleration
for a Semantic Information System (SIS) [1]. The necessary
connectivity protocol for multimedia data transfer on a Field
Programmable Gate Array (FPGA) chip via USB has been
fully implemented. The SIS network applications that were
designed by the CSULA SPACE Center1 are geared towards
providing education-oriented users with a real-time virtual
environment that allows collaboration in conjunction with
distant communication and interaction. The SIS includes
applications for its network participants, such as the
multicasting Ubiquitous Video Conferencing, the Scraping
Tool for metadata processing, multi-touch user interface, etc.
However, the power consumption and computing resources
of the client system can be in heavy demand by the SIS
participants due to real-time video decompression and
compression, respectively. The proposed approach can help
by conserving the client’s resources, which can lead to an
acceleration of SIS functionalities.

Keywords- Ubiquitous, FPGA, connectivity, Semantic,
Conferencing.

1 Introduction

The Advanced Computation and Communication (ACC)
team of the NASA-CSULA SPACE Center is focused on
design and development of new tools for information
dissemination for collaborative education and research1. The
SPACE Center consists of faculty-led graduate and
undergraduate students, which are formed into specific teams
based on particular areas of research.

The current project objective is to design and implement
an FPGA-based image processor as an embedded system that
is able to run certain SIS applications with minimal client
computer processing. It will initially serve as a modular
device via rapid prototyping, which provides acceleration to a
client machine by offloading specific functions of SIS
applications. Example, such as, real-time compression is done
by utilizing a JPEG encoder to eventually leverage towards
motion JPEG for video streams.

2 Semantic Information System Network and
UVC Overview

 The SIS Network is intended to target communities with
similar interests, whether that collective is in industry,
education facilities, or for recreational purposes. Combined
with Ubiquitous Video Conferencing, the SIS framework is
designed with flexible GUI (Graphical User Interface)
controls for a wide range of uses to accommodate a broader
range of audiences.
 In order to transport video information between UVC
participants, a video codec is required. The UVC application
utilizes the Motion-JPEG algorithm [2] for video encoding
and decoding, where JPEG encoding is the first step. JPEG is
a lossy image compression standard named after its creators,
the Joint Photographic Experts Group [3].

3 Integration to the UVC System / Data

Processing

Certain SIS applications running on the client machine
will send the uncompressed data to the FPGA, which in turn,
will send the compressed data back to the PC for
concatenation and header processing using a high speed
communication link.

A Field Programmable Gate Array (FPGA) is a
reprogrammable logic chip that provides the ability for real-
time parallel processing that increases computational
performance, ease of hardware scalability, fast prototyping,
and reconfigurability of its hardware fabric to change to any
computational algorithms that are desired.

1Acknowledgement to NASA University Research Center Program,
Grant # NNX08BA44A

Int'l Conf. Embedded Systems and Applications | ESA'12 | 29

Figure 1: Software Vs Hardware Processing

 Figure 1 above shows hardware advantages over
software in terms of clock cycles needed to perform certain
calculations. The ability of parallel processing makes FPGAs
the preferred choice for time-sensitive applications that are
computationally intensive. [4].

Figure 2: Overall System State Machine Diagram

Figure 2 above shows an overall project state machine

diagram of the system that drives the Verilog modules within
the FPGA, as well as the software tasks on the computer side.
The application that will run within the computer is
responsible for converting and sending the raw pixel values,
as well as receiving the output bitstreams from the FPGA to
be reassembled into a final compressed JPEG image via the
USB protocol

3.1 Embedded Hardware Specifications

 The FPGA hardware used for this project is a Xilinx
XUPV5-LV110T Development System [5], which has been
prepared by the Xilinx University Programs for educational-
use. The development board offers the following key features
which are necessary for the project:

 Xilinx Virtex-5 XC5VLX110T

 10/100/1000 tri-speed Ethernet

 USB host/peripheral controller (Cypress CY7C67300)

4 FPGA Data Connectivity

There are two ways to connect the FPGA to the SIS
network: Ethernet can be connected to a LAN for ease-of-use
in terms of functionality sharing among clients, or by using
the USB 2.0 protocol, which requires a client PC to connect
to the SIS network.

The USB 2.0 protocol supports three speed ratings [6]:

1) low-speed (USB 1.0) rate of 1.5 Mbit/s (~183 kB/s)

2) full-speed (USB 1.1) rate of 12 Mbit/s (~1.43 MB/s)
3) high-speed (USB 2.0) rate of 480 Mbit/s (~57 MB/s)

The USB 2.0 protocol will initially be used for

multimedia streaming purposes, particularly using one of the
specific USB transfer protocols. In the USB 2.0 protocol,
there are four types of data transfer modes but only one will
be mainly used:

 Bulk Transfer Mode: This transfer mode is used by
mass storage devices for any amount of non-time
sensitive data transfer. This transfer mode guarantees
data delivery only.

5 Project Developments

When implementing a MJPEG codec, it is necessary to
visualize its process as a series of sequential JPEG images
being rendered at high speed.

An open-source JPEG Encoder [7] written in Verilog
will be used since its internal processing does not rely on any
proprietary code or license. This particular encoder does not
perform any sub-sampling of the final image data, which
makes the processed output bitstream larger (4:4:4 color
space) than the preferred 4:2:0 color space. The reduction of
the color space effectively reduces overall size by half with
little discernable visual deficiency.

5.1 Connectivity - USB 2.0 Testing

According to the datasheet of CY7C67300 from
Cypress, the USB chip included on the FPGA board only
meets the USB 2.0 specification requirements for supporting
USB 1.0/1.1 speeds, as USB 2.0 high speed is not actually
supported.

Therefore, the maximum burst throughput of
CY7C67300 on the board is approximately 1 Megabytes per
second (USB 1.1), so an alternative method is to integrate an
external USB development board (Cypress EZ-USB FX2) [8]
to provide the necessary connectivity bridge at full
bandwidth between the client machine and the FPGA board.

30 Int'l Conf. Embedded Systems and Applications | ESA'12 |

Figure 3: Cypress EZ-USB FX2 Development Board

Figure 4: EZ-USB FX2 and XUPV5 Interconnected

Figure 4 above shows the USB Development System
(EZ-USB FX2) connected to the breakout pins of the FPGA
board (XUPV5).

Once the USB development board and the FPGA board
has been set up correctly, a customized benchmark program is
built and run on the client machine to test the throughput of
the new USB 2.0 chip using various packet sizes and clock
rates.

The speed limitations of the USB protocol is dictated by
the clock rate supplied as the upper speed limit: 8MHz
maximum for asynchronous transfers, 48MHz maximum for
synchronous transfers. The max theoretical bandwidth for
asynchronous transfers between the USB chip and the FPGA
chip is 2 bytes (16-bits) per clock cycle: 16Megabyes/sec
constant.

The USB Verilog module uses the 48MHz clock line
from the EZ-USB FX2 board which is divided by 8 to
provide a 6MHz clock for asynchronous USB data transfer.
With a 6MHz clock, the maximum throughput is estimated to
be 12 Megabytes/sec sustained.

The test and benchmark configuration is as follows:

 The FX2 module (FX2_TOP_INTERFACE) will clock
the external USB chip at 6MHz for Asynchronous
transfer

 USB packet size: 512, 1024, 2048, 4096 and 8192
bytes.

Figure 5: EZ-USB FX2 Benchmarking Tool

5.2 Connectivity - USB 2.0 Benchmark Summary

Figure 6: EZ-USB FX2 Benchmarking Results

Int'l Conf. Embedded Systems and Applications | ESA'12 | 31

Figures 5 and 6 shows the throughput tests and results of
the external USB controller using only a 6MHz clock, which
in this case, tops out at approximately 10 Megabytes/sec.

Figure 7: Completed Verilog Modules to be used

 Now that the FPGA has a way to transport data between
itself and the host computer, additional modules are required
(interconnecting modules) to pass data between the USB
module and the JPEG encoder, which are shown in the figure
above.

5.3 Planning and Developing the Interconnecting

Modules

Figure 8: Top-level Module Connection Diagram

Figure 8 above shows the top-level module connection

diagram of the entire project, which includes the ‘beginning’
and ‘ending’ interconnection modules.

In Figure 8, the ‘initial’ interconnecting module (colored
in yellow) has been tested and verified of its output data
towards the JPEG Encoder by reinterpreting the included
testbench from the encoder. The next step is to plan, build
and finalize the ‘ending’ interconnecting module
(‘Combine_final_data’ in red) so that the
‘USB_FX2_Control’ module is able to accept the output data
and send it to the host computer.

Once all Verilog modules are completed, software
development on the PC will commence which is tasked to
send raw pixel data over the USB protocol and onto the
FPGA device itself, as well as re-concatenate the output data
from the device with the necessary header data to finally form
a compliant and readable JPEG image file.

5.4 Developing the ‘’beginning’ interconnecting

module

The initial problem is the differences in the amount of
data per clock between the USB interfacing module
‘USB_FX2_Control’ and the JPEG Encoder module
‘JPEG_ENC’, as well as the formatting of said data. In order
to correctly format the input and output data, interconnecting
modules are built which are internally called ‘JPEG_IF’
(USB-to-JPEG Encoder Interfacing) and
‘Combine_final_data’ (JPEG Encoder Output-to-USB
Interfacing).

The main details of the ‘USB_FX2_Control’ is that the
module inputs and outputs data at 16-bits per clock within a
shared bi-directional bus.

The main details of the inputs/outputs of the ‘JPEG
Encoder’ is the 24-bits of input data per clock (8-bit values
per color per pixel). The output is 32-bits of processed JPEG
bitstream, asynchronous and 7-bits total of end-process
control data.

Figure 9: Planning State Machine for ‘beginning’ Interface

(JPEG_USB_IF)

The reason for an internal buffer within ‘JPEG_IF’
(shown in Figure 9) is to correctly align the incoming 16-bits
of data from the USB module into the 24-bits of data that the
JPEG encoder module requires. For the first 16-bits coming
from the USB module, it holds only 2/3 of the 1st pixel data,
then the second 16-bits of input data contains the last 1/3 of
the 1st pixel data, and the first 1/3 of the 2nd pixel data, so on
and so forth.

The buffer size is appropriately sized in terms of being
the least common denominator (of 16 and 24 bits), so data
going into/from this internal buffer will not have any
skewed/unaligned outputs or inputs, which greatly decreases
code complexity. Therefore, the module uses 3 clocks of 16-
bit data in order to output 2 clocks of 24-bit data into the
JPEG encoder and continue to do so until the end of the raw
pixel input.

32 Int'l Conf. Embedded Systems and Applications | ESA'12 |

5.5 Developing the ‘ending’ interconnecting module

The purpose of the ‘Combine_final_data’ module is to
format the data output of the ‘JPEG_ENC’ into a suitable
format that the ‘USB_IF’ module can use to send it back to
the host computer. The input data to this module is a 32-bit
JPEG_bitstream that is outputted from the ‘jpeg_enc’ module,
as well as 7-bit control bits such as
‘end_of_file_bitstream_count’, ‘data_ready’, and
‘eof_data_partial_ready’. The output data from this module is
in terms of 16-bit data signal to the ‘USB_IF’ module.

Figure 9: Integration of Interconnection Modules and JPEG
Encoder

The figure above shows the integration of both the

interconnecting modules and the JPEG Encoder module.

5.6 USB Application Interfacing to the SIS Network

The development environment that is being used to build
the SIS Network is Nokia’s Qt with the OpenCV library for
image processing. QIODevice is the base Qt interface class of
all I/O devices [9], where it is responsible for instantiating
communication with external devices (e.g. USB). Raw RGB
data that is being captured within the UVC Application will
be transported via USB link to the FPGA device for JPEG
compression. Then, the compressed image data will be

transmitted via QudpSocket class to the user-specified
destination parties [10]. Cypress provides a USB library
(CyAPI) for application interaction with the EZ-USB FX2
USB Development Board.

6 Conclusion

The proposed approach of using FPGA systems for off-
loading specific computationally-intensive processing in real-
time will benefit the SIS clients by streaming video with
minimal bandwidth usage.

The reconfigurability of hardware provided by an FPGA
allows the engineer to be able to update the firmware to re-
accommodate and process different workloads to maximize
the usability, flexibility and lifetime of the embedded system
compared to regular microcontrollers.

The future work is to currently optimize the JPEG encoder
to reduce the color space size, which will further lower
bandwidth and FPGA resource usage. Once that is
completed, MJPEG will be the next step for incorporating the
off-loading of video streams from the client computer.

7 References
[1] J. P. Adigwu, Dr. H. Boussalis. “Semantic Information System :

Applicaitons in K-12 Education,” The Journal of Computing Sciences
in Colleges (Vol . 26, Num. 4) , April 2011.

[2] “RFC 2435 - RTP Payload Format for JPEG-compressed Video”
 URL: http://tools.ietf.org/html/rfc2435

[3] “JPEG Homepage” URL: http://www.jpeg.org/jpeg/index.html

[4] “Connecting Customized IP to the MicroBlaze Soft Processor […]”
URL:http://www.xilinx.com/support/documentation/application_notes/x
app529.pdf

[5] “Xilinx University Program XUPV5-LX110T Development Platform.”
URL:http://www.xilinx.com/products/boards-and-kits/XUPV5-
LX110T.htm , http://www.xilinx.com/univ/xupv5-lx110t.htm

[6] “USB.org – Documents (USB 2.0 Specification)”
 URL:http://www.usb.org/developers/docs/usb_20_101111.zip

[7] “JPEG Encoder Verilog” URL: http://opencores.org/project,jpegencode

[8] “Cypress CY7C67300 Datasheet”
 URL:http://www.cypress.com/?docID=30079

[9] “QIODevice Class Reference” URL: http://qt-project.org/doc/qt-
4.8/qiodevice.html

[10] “QudpSocket Class Reference” URL: http://qt-project.org/doc/qt-
4.8/qudpsocket.html

Int'l Conf. Embedded Systems and Applications | ESA'12 | 33

Motion Recognition-Based Emergency Alarm System

J. Sasi, R. Sundaram, and Y. Jung

Electrical and Computer Engineering, Gannon University, Erie, PA, USA

{ sasi002, sundaram001, jung002}@gannon.edu

Abstract - Elderly people living by themselves or at a senior

living community may not have the infrastructure for

emergency response in case of discomfort while in bed at

night or day. Often, they have to call for help themselves in

case of an emergency situation. This problem is resolved by

using a new Motion Recognition-Based Emergency Alarm

System (MR-BEAS) that alerts emergency responders in case

of an illness or discomfort based on motion recognition under

any ambient lighting conditions. A depth sensor is employed

that can provide a heat map of the subject that will be used to

derive a skeletal frame, which will be analyzed for any gesture

of interest. In addition, a novel predictable matching

algorithm is designed and implemented to identify pre-

determined gesture for triggering an alarm using a low-cost

platform. This system can alert responders within the same

building or remotely over the internet for added flexibility.

Keywords: senior living, motion recognition, predictable

matching algorithm, emergency response, sleep discomfort

1 Introduction

The population above 65 years is a rapidly growing

segment of the United States population. The growth rate of

this population is 15.1% as opposed to 9.7% of the general

population between the year 2000 and 2010 [1]. This demands

a need for more assisted living facilities. Eighteen states

already made statutory, regulatory, or policy changes in 2010

and 2011 impacting assisted living/residential care

communities. The focal points of state assisted living policy

development include life safety, disclosure of information,

Alzheimer’s/dementia standards, medication management,

background checks, and regulatory enforcement. The fast

growing 65 or older population demands more and more

caregivers working at assisted living facilities round the clock.

This demands automated systems to substitute certain

monitoring activities.

Alwan et. al. conducted a study to assess the acceptance

and some psychosocial impacts of monitoring technology in

assisted living [2]. They installed Monitoring systems in 22

assisted living units to track the activities of daily living

(ADLs) and key alert conditions of residents (15 of who were

non-memory care residents). The Activity reports and alert

notifications were sent to professional caregivers who

provided care to residents participating in the study. They

assessed the diagnostic use of the monitoring data. Non-

memory care residents were surveyed and assessed using the

Satisfaction With Life Scale (SWLS) instrument. They

compared the pre- and post-installation SWLS scores. The

older adult participants accepted the monitoring. The results

showed that monitoring technologies provided care

coordination tools that are accepted by residents and

positively impacted their quality of life. The SWLS is very

broad in nature and hence a more directed questionnaire

would unearth privacy concerns while being monitored.

Hou et. al. presented Personal Assistance System (PAS)

open architecture for assisted living, which allowed

independently developed third party components to

collaborate [3]. They also discussed the key technological

issues in assisted living systems, such as tracking, fall

detection, security and privacy. They conducted the pilot

study in a real assisted living facility. In their system they

used a handheld blood oximeter and an IBM Thinkpad T43

(with Windows XP Home Edition, Java Runtime Environment

Standard Edition 1.5.0 06, Bluetooth stack: Avetana) placed in

the resident’s room. The two residents received alert messages

on a flat computer screen twice a day that reminded them to

take an oximeter reading. The alert times were collaboratively

set by the residents and the staff. The resident after taking the

oximeter reading had to tap the computer to acknowledge the

alert message. The oximeter reading was then sent wirelessly

(and transparently to the resident) to an IBM Thinkpad T41

(with WindowsXP Professional, Java Runtime Environment

Standard Edition 1.5.0 09, MySQL Server 5.0, WebServer:

Apache-Tomcat version 5.5.20) in the nurse’s station. The

monitoring interface, installed at the nurse’s station, provided

a history of alert adherences and oximeter readings. Albeit the

PAS was quite well-received by the residents, they suggested

several technical directions for future research. This includes

suggestions for incorporating robustness in the impasse with a

wide range of failure scenarios and enforces reliability in

diverse operating conditions. In addition, they suggested

having a secure communication interface with third party

service providers, respecting the privacy of its users, and

providing Quality of Service (QoS) even in the presence of

wireless interference and other environmental effects.

 Doukas and Maglogiannis presented the implementation

details of a patient status awareness system that has human

activity interpretation capability and emergency detection of

patient collapses [4]. This system utilized video, audio, and

motion data captured from the patient’s body using

appropriate body sensors and the surrounding environment

using overhead cameras and microphone arrays. The

limitation of this system is that all the equipment needs to be

installed within the monitored area, and sensors have to be

34 Int'l Conf. Embedded Systems and Applications | ESA'12 |

worn by the subject. The body sensor network implemented in

this solution is considered as an invasive technology, and

requires special treatment by users with respect to proper body

placements, battery replacement, etc.

Stroiescu, Daly, and Kuris presented the design for

wireless event detection and in building location awareness

system [5]. This system used a body worn sensor to detect

events such as falls when they occur in an assisted living

environment. Event detection algorithms were developed and

used an in-house wireless network to transmit the information

to the assisted living facility and to an off-site monitoring

facility. The project did not provide enough data to validate

the system or associated algorithms. Few of the limitations are

low battery life and the need for frequent charging,

incapability to integrate the sensor into a garment, and not

being water resistant.

Fleck and Staber presented a distributed and automated

smart camera based approach to analyze the real world and

identify only relevant information that could be used for geo-

referenced person tracking and activity recognition in case of

a fall [6]. The performance of the system relied on the

performance of the automated video analysis algorithms.

These would not complement the human operators but replace

them from sensor level all the way up to a level where the

information is not directly privacy-related anymore. Park, et.

al. suggested a method that detects abnormal behavior using

wireless sensor networks in an assisted living environment.

They modeled an episode that is a series of events, which

includes spatial and temporal information about the subject

being monitored. An abnormal behavior that has similar

sequence of events and does not differ from each other for

duration could be identified as a normal event.

In this research, a novel method is proposed to recognize

an emergency situation in an assisted living facility using

motion recognition while the subject is in bed. Senior citizens

may not have the infrastructure for emergency response in

case of discomfort especially while in bed at night. This

research focuses on alerting emergency response in case of an

illness or discomfort based on motion recognition.

2 Motion Recognition based

Emergency Alarm System (MR-

BEAS)

The proposed research on “Motion Recognition-Based

Emergency Alarm System (MR-BEAS)” focuses on detecting

discomfort/illness in real time without invasion of privacy

automatically during sleep for senior citizens. The automatic

detection is done by the system using a pre-defined gesture

performed by the subject in the event of a discomfort or

illness. This system will work irrespective of the ambient

lighting conditions. The staff/care takers will need to respond

only when an alarm signal is generated by this system.

An expandable platform having a software development

kit manufactured by Microsoft called Kinect is used to

identify and detect an emergency condition. Kinect sensor bar

was released by Microsoft for use with their Xbox 360 video

game system [7]. The sensor bar consists of a VGA camera,

two 3D depth sensors, multi-array microphones, and a

motorized tilt mechanism. The sensing range for Kinect is 3.9

– 11 feet. The Software Development Kit (SDK) was released

for the Windows 7 operating system. It enables the

development of applications with C++, C#, or Visual Basic by

using Microsoft Visual Studio 2010. The SDK will let the

programmer have access to low level sensor streams from the

depth sensor, color camera sensor, and four-element

microphone array. The depth sensor that is primarily utilized

for this system consists of an infrared laser projector

combined with a monochrome CMOS sensor, which captures

video data in 3D under any ambient light conditions. The

320x240 depth stream has an 11 bit depth. The Kinect has

received interest from the academic and research world as a

tool for various research areas including security, medical,

archeology (i.e., 3D scanning of digging sites), Natural User

Interface (NUI), etc. Researchers at the University of Missouri

have been using the depth sensor in Kinect to detect early

signs for fall indication for senior citizens [8].

Figure 1. Architecture of the Motion Recognition-Based

Emergency Alarm System (MR-BEAS)

An architecture is presented for the MR-BEAS, and is

shown in Figure 1. The architecture consists of modules for

“Capture Depth Stream”, “Derive Skeleton Object”,

“Predictable Matching Algorithm”, and “Generate Alarm”.

An NUI Application Programming Interface (API) is used for

capturing the raw depth stream from the depth sensors. The

NUI API is part of the SDK for Kinect. This API allows the

retrieval of sensor streams, and also controls the Kinect

device. The depth data stream delivers frames in which each

pixel represents the Cartesian distance, in millimeters, from

the camera plane to the nearest object at that particular x and y

coordinates in the depth sensor's field of view. Applications

can process data from a depth stream to provision various

custom features, such as tracking users' motions or identifying

background objects to ignore during application play. A depth

data value of “0” indicates that no depth data is available at

that position, because all the objects may be too close to the

camera or too far away from it.

Capture Depth

Stream

Derive Skeleton

Object

Predictable Matching

Algorithm
Generate Alarm

Int'l Conf. Embedded Systems and Applications | ESA'12 | 35

Figure 2. Process flow for the MR-BEAS

Application code acquires the latest frame of the image

data using a frame retrieval method, and passes on to a buffer.

If the application requests frames of data before the new

frames are available, then there is an option to choose whether

to wait for the next frame or to return immediately and try

again later. The NUI API never provides the same frame of

data more than once. The NUI Skeleton API provides

information on the location of the subject in front of Kinect

sensor bar with detailed position and orientation information.

This information is provided to application code as a set of

points, called skeleton positions, that composes a skeleton [9].

This skeleton represents a subject’s current position and pose.

This system utilizes this feature by enabling skeletal tracking

technique during the initialization phase of the system. The

process flow of the system is shown in Figure 2.

Once the co-ordinates are retrieved, a predictable

matching algorithm is implemented to see if there is a match

between the gesture performed by the subject and the one that

is stored in the system to indicate a danger situation. The

skeletal data can be retrieved irrespective of the ambient

lighting conditions inside the room that the subject is residing.

The flow of the predictable matching process is shown in

Figure 3. Once the skeletal data is obtained for each frame, it

will be stored in a buffer to perform the predictable matching

algorithm. The algorithm will determine whether the subject is

having a discomfort/illness while in bed. Initially, the joint

co-ordinates are extracted from each frame of interest. The

distance between the joints being analyzed and the angles

between them are used to check each frame against the danger

situation. If successive frames meet the condition for danger

situation, then an alarm is generated by posting a danger

message. If the subject shows the danger gesture by accident,

Figure 3. Process flow in the “Predictable Matching

Algorithm” module

the system will not mistake it as a danger situation since the

gesture has to be performed for a predefined duration. It is

highly unlikely to have this situation emulated by mistake.

3 Evaluation of the MR-BEAS

The Kinect device was connected to a PC. The program

was running in the .NET environment for capturing and

analyzing the image of the subject. For simulation purposes,

the subject was allowed to stand at a distance of 6 feet from

the Kinect sensor bar. This would simulate a person lying on a

bed and the sensor mounted on the ceiling. The first scenario

involves monitoring a person in a well lit room (~800

lumens), the second is a poorly lit room (~10 lumens) and the

third is a dark room (~0 lumens). The simulation windows for

each case are shown in Figures 4a, 4b, and 4c respectively.

The top left corner of the window shows the 3D depth

map and the top right portion shows the skeletal frame. The

color video stream from the RGB camera is displayed on the

right bottom to show the ambient lighting in the room. The

text display shows whether there is a danger condition or not,

and the frame rate of the captured data at the bottom left.

Figure 4a shows the simulation window in a well lit room

(~800 lumens) and Figure 4b shows the simulation window in

a poorly lit room (~10 lumens). In Figure 4c, the simulation is

shown in a dark room (~0 lumens). It can be seen that the

skeleton of the subject is tracked despite the absence of

ambient lighting in the room.

36 Int'l Conf. Embedded Systems and Applications | ESA'12 |

For simulation purposes, the pre-determined gesture that

the system was programmed to recognize was raising both

arms up and holding it perpendicular to the body. This gesture

was chosen as it is a highly unlikely event when someone lies

down in bed. The subject will have to hold that position for a

set amount of time for the gesture to be recognized. The time

required for testing purposes was set to 3 seconds. If the

position is not held for 3 seconds, the predictable matching

algorithm will re-analyze the frames from the following frame

onwards.

Figure 5a shows a danger scenario recognized by the

MR-BEAS. Recognition of the danger condition by this

system in a dark room is shown in Figure 5b. The

performance of the system was same as observed in the well-

lit room with ~800 lumens. Since the “Danger” message is

displayed for both scenarios, it can be concluded that the

performance is not affected by the ambient lighting

conditions. As is evident from Figure 5(b), the color video

stream window is dark showing that the room had no ambient

lighting.

(a)

(b)

(c)

Figure 4. Simulation window for (a) normal lighting (~800

lumens), (b) poorly lit condition (~10 lumens), and (c) dark

condition (~0 lumens)

(a)

(b)

Figure 5. Danger condition in (a) a well-lit room (~800

lumens) and (b) a dark room (~0 lumens)

Int'l Conf. Embedded Systems and Applications | ESA'12 | 37

The experiment was performed while holding both arms

not perfectly perpendicular to the body. The borderline

conditions where the system stops to recognize the gesture is

shown in Figures 6a and 6b respectively.

(a)

(b)

Figure 6. (a) Lower and (b) upper boundary conditions for

gesture recognition

The system was made more robust by incorporating a

tolerance that was determined experimentally. The tracking of

angular positions lies between 27 degrees +/- 90 degrees for

the current experimental setup. This constitutes a 30 percent

tolerance. The simulation results are summarized in Table 1.

The outstretched arm held approximately at 90 degrees from

the body is considered as normal position. The frames were

captured in three different lighting conditions. The first

scenario involved the simulation is a well lit room that has

approximately 800 lumens. The second scenario was a poorly

lit room with about 10 lumens. Finally, the third situation was

a totally dark room (~0 lumens). The MR-BEAS successfully

tracked and identified the “danger” situation irrespective of

the ambient lighting conditions within the tolerance (< 28

degrees angle between arms and body).

Table 1: Evaluation Results of the MR-BEAS

Postures

Lighting

(Lumens)

Angle

between

arms &

body

Detection

Normal

position
0, 10, 800 90 Yes

Normal + 15

degrees
0, 10, 800 105 Yes

Normal - 15

degrees
0, 10, 800 75 Yes

Normal + 30

degrees
0, 10, 800 120 No

Normal - 30

degrees
0, 10, 800 60 No

4 Conclusions and Future Work

The MR-BEAS was designed, implemented, and

analyzed for senior living that alerts emergency responders in

case of an illness or discomfort based on motion recognition

regardless of ambient lighting conditions. This system was

evaluated under different ambient lighting conditions. The

implemented predictable matching algorithm sensed the

subject’s movements and accurately identified emergency

situations automatically. Unlike traditional motion

recognition systems, the MR-BEAS system requires only two

frames of depth data for performing the emergency alert. This

results in significant reduction of hardware complexity and

resources to achieve the low-cost objective. The proposed

predictable matching algorithm accurately analyzes the

skeletal data derived from the depth map. A low end

computer with 2 GB RAM on a 2.66 GHz or faster processor

will be capable of accommodating MR-BEAS without heavy

video processing that required in prior arts. In addition, MR-

BEAS offers a platform for extending this to a more robust

and intelligent system. The predictable matching algorithm is

incapable of monitoring dual subjects simultaneously, but can

be implemented by building upon the present algorithm.

Furthermore, MR-BEAS is expandable to utilize voice

recognition technology by integrating to the microphone array

sensor for confirming an emergency situation if necessary.

This algorithm can incorporate more artificial intelligence to

track and identify candid emergency situations without the

subject having to perform a gesture.

5 References

[1] US Census Bureau, “The Older population: 2010,”

November 2011. http://www.census.gov/prod/cen2010/

briefs/c2010br-09.pdf

[2] Alwan, M.; Dalal, S.; Mack, D.; Kell, S.; Turner, B.;

Leachtenauer, J.; Felder, R., “Impact of monitoring

technology in assisted living: outcome pilot,” IEEE

38 Int'l Conf. Embedded Systems and Applications | ESA'12 |

http://ieeexplore.ieee.org.ezproxy.gannon.edu/search/srchabstract.jsp?tp=&arnumber=1573721&openedRefinements%3D*%26filter%3DAND%28NOT%284283010803%29%29%26searchField%3DSearch+All%26queryText%3DAssisted+Living
http://ieeexplore.ieee.org.ezproxy.gannon.edu/search/srchabstract.jsp?tp=&arnumber=1573721&openedRefinements%3D*%26filter%3DAND%28NOT%284283010803%29%29%26searchField%3DSearch+All%26queryText%3DAssisted+Living

Transactions on Information Technology in Biomedicine,

Volume: 10 , Issue: 1, pp. 192 – 198, 2006.

[3] Hou, J.C.; Qixin Wang; AlShebli, B.K.; Ball, L.; Birge, S.;

Caccamo, M.; Chin-Fei Cheah; Gilbert, E.; Gunter, C.A.;

Gunter, E.; Chang-Gun Lee; Karahalios, K.; Min-Young

Nam; Nitya, N.; Rohit, C.; Lui Sha; Wook Shin; Yu, S.; Yang

Yu; Zheng Zeng, “PAS: A Wireless-Enabled, Sensor-

Integrated Personal Assistance System for Independent

andAssisted Living,” Joint Workshop on High Confidence

Medical Devices, Software, and Systems and Medical Device

Plug-and-Play Interoperability, HCMDSS-MDPnP,

10.1109/HCMDSS-MDPnP.2007.13, pp. 64-75, 2007.

[4] Doukas, C.N. and Maglogiannis, I., “Emergency Fall

Incidents Detection in Assisted Living Environments Utilizing

Motion, Sound, and Visual Perceptual Components,” IEEE

Transactions on Information Technology in Biomedicine, Vol.

15, No. 2, pp. 277 – 289, 2011.

[5] Stroiescu, F., Daly, K., and Kuris, B., “Event detection in

an assisted living environment,” International Conference of

the IEEE Engineering in Medicine and Biology Society,

10.1109/IEMBS.2011.6091869, pp. 7581 – 7584, 2011.

 [6] Park, K., Lin, Y., Metsis, V., Le, Z., and Makedon, F.,

“Abnormal human behavioral pattern detection in assisted

living environments,” International Conference on Pervasive

Technologies Related to Assistive Environments (PETRA

2010), 2010.

[7] Kinect for Windows, http://www.microsoft.com/en-

us/kinectforwindows, 2012.

[8] News Bureau, University of Missouri, Using Kinect to

Identify fall risk in seniors; Craven, Samantha

http://munews.missouri.edu/news-releases/2011/0906-mu-

researchers-use-new-video-gaming-technology-to-detect-

illness-prevent-falls-in-older-adults/, 2012.

[9] Kinect SDK Programming guide,

http://www.microsoft.com/enus/kinectforwindows/develop/ov

erview.aspx, 2011.

Int'l Conf. Embedded Systems and Applications | ESA'12 | 39

http://ieeexplore.ieee.org.ezproxy.gannon.edu/xpl/RecentIssue.jsp?punumber=4233
http://ieeexplore.ieee.org.ezproxy.gannon.edu/search/srchabstract.jsp?tp=&arnumber=4438165&openedRefinements%3D*%26filter%3DAND%28NOT%284283010803%29%29%26searchField%3DSearch+All%26queryText%3DAssisted+Living
http://ieeexplore.ieee.org.ezproxy.gannon.edu/search/srchabstract.jsp?tp=&arnumber=4438165&openedRefinements%3D*%26filter%3DAND%28NOT%284283010803%29%29%26searchField%3DSearch+All%26queryText%3DAssisted+Living
http://ieeexplore.ieee.org.ezproxy.gannon.edu/search/srchabstract.jsp?tp=&arnumber=4438165&openedRefinements%3D*%26filter%3DAND%28NOT%284283010803%29%29%26searchField%3DSearch+All%26queryText%3DAssisted+Living
http://dx.doi.org.ezproxy.gannon.edu/10.1109/HCMDSS-MDPnP.2007.13
http://dl.acm.org.ezproxy.gannon.edu/citation.cfm?id=1839294.1839305&coll=DL&dl=ACM&CFID=63238795&CFTOKEN=73210585
http://dl.acm.org.ezproxy.gannon.edu/citation.cfm?id=1839294.1839305&coll=DL&dl=ACM&CFID=63238795&CFTOKEN=73210585

Embedded Workbench Application of GPS Sensor for

Agricultural Tractor

Md. Mostafa Kamal Sarker
1
, DongSun Park

2
, Woonchul Ham

3
, Enkhbaatar Tumenjargal

3
and

JaeHwan Lee
 3

1&3
Division of Electronic Engineering , Chonbuk National University, Jeonju-si, Jeonbuk, Republic of Korea

2
IT Convergence Research Center, Chonbuk National University, Jeonju-si, Jeonbuk, Republic of Korea

Abstract - This paper presents a design of an embedded

workbench application of Global Positioning System (GPS)

for agricultural tractor. Electronic Control Unit (ECU) is

Global Positioning System (GPS) sensor using IAR (IAR

Embedded Workbench) and an open source library which

follows the most important characteristics of International

Organization for Standardization (ISO) 11783 communication

protocol in the serial communication network of agricultural

vehicles. These applications are written in C/C++

programming methods. We explain some test connection

configuration between working Personal Computer (PC) and

test board for studying the application program and GPS

sensor working status. This research work mainly describes

the system architecture and programming methodology of an

application program which follows some standards for

agricultural machinery.

Keywords: Electronic control unit, isobus, controller area

network, open source library, embedded workbench

1 Introduction

 Since the past few years, manufacturers of agricultural

machineries have increasingly turned to electronics to provide

products with enhanced functionality, productivity, and

performance to clients. Electronic content in agricultural

equipment has increased. A natural outcome of adding

electronic components to agricultural equipment has been

realization of the advantages of allowing the components to

communicate. A GPS sensor on a tractor, for example, may

communicate with a virtual terminal [1] (receiving the CAN

message continuously and send it to Virtual terminal through

CAN-bus). Developing the electronic control systems, a lot of

ECUs interconnected inside agriculture tractor [2]. Such as

ECU Data Source, ECU Display, ECU GPS Sensor, ECU

Tractor Bridge, etc. All ECUs connected with CAN-bus

(Controller Area Network or CAN-bus is an ISO standard

computer network protocol and bus standard, designed for

microcontrollers and devices to communicate with each other

without a host computer) and exchanging data between

control units take place on a uniform platform .This platform

is called a protocol. The CAN bus acts as a so-called data

highway.

 This research illustrates the design of an application

program for agricultural tractor GPS sensor. It also gives

some idea about tractor software design. The principle idea of

this application is developing software for tractor ECUs. On

the other hand, open source library provides the main

resources for this research work with following some

standards. Using C/C++ programming methods for the

application program and the software environment is

embedded workbench.

 In our application design, we chose our test board is

STM32F107 ARM 32-bit Cortex-M3 board for ECU

hardware of GPS sensor [3]. We also use RealSYS

CANPro USB device for analyzing CAN messages received

by GPS sensor and AMTEL mini JLINK is an optimizing

C/C++ compiler for ARM Cortex-M3 microcontroller. We

select the embedded workbench “IAR Embedded

Workbench” and the open source programming library

“ISOAgLib” [4] for developing our application program. This

paper is organized as follows: In section 2, 3, 4 and 5, we

have described an overview of standards, test environment,

embedded workbench applications, workbench results and

discussion, respectively. Finally, Conclusions are presented in

section 6.

2 An overview of standards

2.1 ISO 11783 communication protocol

 The ISO 11783 is a new standard for electronic

communications protocol for tractors and machinery in

agriculture and forestry. This ISO 11783 standard is

sometimes called as ISOBUS [5]. The network has messages

defined to allow communications between any of the

components, like communication between the Task Controller

and the GPS ECU. Navigational messages are defined and

allow positional information to be received by the Task

Controller. The task controller can then deliver the

prescription to an implement as needed based on position

measured by an onboard GPS system. It consists of several

parts: general standard for mobile data communication,

physical layer, data link layer, network layer, network

management, virtual terminal, implement messages

applications layer, power train messages, tractor ECU, task

controller and management information system data

40 Int'l Conf. Embedded Systems and Applications | ESA'12 |

interchange, mobile data element dictionary, diagnostic and

file server. The structure of electronic data communication

according to ISO 11783 is based on the Open system

interconnect (OSI) model layers, however, the higher

functional layers sometimes defined differently. Figure 1

schematically illustrates the layer stricter ISO 11783 standard.

Figure 1. Diagram of the ISO 11783 standard parts (own illustration)

 The purpose of ISO 11783 is to provide an open,

interconnected system for on-board electronic systems. It is

intended to enable electronic control units (ECUs) to

communicate with each other, providing a standardized

system. The tractor ECU shall have at least one node for

connection to the implement bus.

2.2 CAN networks

 ISO 11783 standardizes a multiplex wiring system as

described above, based on the Controller Area Network

(CAN) protocol developed by Bosch (Bosch, 1991)[6]. This

protocol uses a prioritized arbitration process to allow

messages access to the bus. When two messages are sent at

the same time, their identifiers are imposed bit-serially onto

the bus. The bus must be designed to allow dominant bits to

overwhelm recessive bits when both are applied

simultaneously by different ECUs on the bus. No conflict

occurs as long as the ECUs are sending the same bits, but

when one sends a recessive bit while the other sends a

dominant bit, the bus state is dominant. The ECU sending the

recessive bit must sense the bus is at a dominant state when

the bit was sent and must cease transmitting the message at

that time and retry the next time the bus becomes idle. This

strategy allows more dominant identifiers, those with a lower

value, to have a higher priority on the bus. To allow this

feature to work properly, CAN synchronizes messages at the

beginning of each transmission to assure bits are aligned. The

result is that ISO 11783 provides a communication system

where ECUs share a communications link, and messages at

any point in time are allowed access to the bus based on their

priority.

Figure 2. Structure of CAN-bus

2.3 CAN Message Structure

 The implementation of the CAN message for tractors

and machinery for agriculture is based on CAN Version 2.0B

[7]. This describes a 29-bit identifier and a data rate of 250

kbit/s.

Figure 3. Message frame format of CAN Data (CAN 2.0 B Extended Frame

Format)

 The composition of the 29-bit identifier is shown in

Figure 3. The Start Of Frame (SOF) bit 1, the Substitute

Remote Request (SRR) bit 13 and the ID (identifier) Identifier

Extension (IDE) bit 14 is not considered for the identifier

length.

2.4 Navigation system messages

 The set of navigational messages defined in ISO 11783-

7 [8] is provided by the installation of a global positioning

system (GPS) or differential global positioning system

(DGPS) receiver on the tractor. A special classification, “N”,

shall be appended to the class number when the tractor is able

to provide navigational information on the implement bus. For

example, a class 3 tractor implement interfaces is able to

support navigational messages can be classified as class 3N,

and supports the following parameters: navigational system

high output position; navigational system position data;

navigational pseudorange noise statistics. The navigation

location parameters specified in IEC 61162-3 (NMEA

2000[9]).The configuration of a tractor–implement connection

and the offset to and from the tractor implement reference

Int'l Conf. Embedded Systems and Applications | ESA'12 | 41

points, are used in the navigational parameters and in the

implement configuration of process data messages.

3 Test environment

 The task-controller applications layer, which defines the

requirements and services needed for communicating between

the task controller and electronic control units [10]. Task

controller is used to issue instructions to different equipment

to complete some task and management computer interface is

used for data exchange between task controller and external

management computer. Communication is realized between

different equipment in the bus network by way of the sending

of messages, and its typical application is as follows: task

controller in real time receives information of navigation and

location generated by GPS, the ECU of the engine provides

its current torque curve for transmission gearbox, and so on.

The ECU of the tractor functions as a filter for message

transport between the tractor bus and the equipment bus,

which can avoid the event that the communication task of one

bus is so heavy that the other bus is overloaded.

Figure 4. Network structure of test GPS sensor

 Figure 4 show the network structure of test GPS sensor

based on STM32F107 ARM Cortex-M3 board. The main

board STM32F107 adopts the ARM 32-bit Cortex-M3 SCM

(Single Chip Microcomputer) produced by

STMicroelectronics company of French-Italy. It is a totally

integrated mixed-signal system-on-chip, which integrates in

one chip almost all the analog peripherals, digital peripherals

and other functional components that are necessary to form a

data sampling or control system of a SCM. BOTSH CAN

controller is compatible with CAN technical specification

2.0A and 2.0B is integrated in STM32F107 and also 2.4 inch

TFT LCD Panel (320*240) with touch screen. It is composed

of CAN kernel with 256KB Flash and 64KB RAM internal

memory, message processing unit and register. CAN

controller has 32 message destinations which can be used to

send or transmit data. Received data, message destinations

and identification code are storage in Message RAM.

 All the protocol functions (such as data transmission and

receipt of filter) are performed by CAN controller. Through

the special register in the main control chip, CAN controller

can be configured to visit received data and transmitted data.

In this way, CAN communication can be realized by use of

less bandwidth of CPU. STM32F107 can perform all the

functions of the data link layer and application layer of

ISOBUS protocol. Figure 5 shows test connection

configuration between working PC and test board for

checking the ECU of GPS sensor working status.

Figure 5. Connection configuration between working PC and test board

 In this figure, test board COM1 port (i.e.name of serial

port hardware for input and output) is linked with PC COM1

port for sending time acknowledgement (ACK) of GPS

messages (CAN message) to PC. In this relationship scheme,

we use AMTEL mini JLINK (USB driven JTAG interface for

ARM cores including mini USB cable) is an optimizing

C/C++ compiler (i.e. download and debug the application

program) for ARM Cortex-M3 microcontroller and attach

between test board Channel1 and PC USB3 port (Universal

Serial Bus). This connection is main platform of our

application program development. Because of this connection

download application program from PC to the microcontroller

for debugging and make sure the ECU (test board) becomes a

GPS sensor. CAN controller has some ports but for our test

purpose we use only two ports for CAN_L and CAN_H [11]

and connect with CAN analyzer. Here, we also make a

connection between test PC and CAN analyzer (i.e. Real SYS

CAN Pro USB device for hardware) by USB2 port through

USB cable. After establishing all the connections, we can

verify the GPS message status by CAN Pro Analyzer v1.0

software in PC.USB1 port is for test board power supply

through the USB cable and LCD display is only showing

some information about GPS manufacturer.

4 Embedded workbench application

4.1 System architecture

 For the application program of GPS sensor, we use an

open source programming library named ISOAgLib. The

IsoAgLib is a C++ library in development of ISO 11783

standard applications in an Object Oriented way to serve as a

software layer between application specific program and

communication protocol details. The author of IsoAgLib

library, Dipl. - Inform. Achim Spangler, licensed with

exceptions under the terms of the GNU General Public

42 Int'l Conf. Embedded Systems and Applications | ESA'12 |

http://en.wikipedia.org/wiki/France

License (GPL). By providing simple function calls for jobs

like starting a measuring program for a process data value on

a remote ECU, the main program has not to deal with single

CAN message formatting. This way communication problem

between ECU's which use this library should be prevented.

The IsoAgLib has a modular design pursuant to the various

functional components of the standard ISO 11783. The library

has this design to make sure the minimum use of IsoAgLib in

program memory of Implement ECU. The IsoAgLib

demonstrates the layered architecture to be easily familiar

with new hardware platforms. Most of the software can be

used without alteration on all platforms. The layered

architecture is described by the diagram in Figure 6.

Figure 6. System architecture of embedded workbench applications

 The IsoAgLib was developed to be suitable with

different systems, and these systems can be an element of

processor, memory, Human Machine Interface (HMI) and

interface with the CAN bus. Therefore, the IsoAgLib is

divided into two sections: the library itself and HAL. The

HAL is responsible for communicating with the operating

system (OS) or BIOS device that is running the application, as

can be seen in Figure 7. We implement CAN-bus is real-time

operating system. The application program initialized CAN

controller and accessing CAN-bus.

4.2 Programming methodology

 For executing our GPS application program, we should

build some configuration of development board

(STM32F107) into the IAR embedded C/C++ programming

interface. We created all configurations by using ARM C/C++

[12] and “ISOAgLib” libraries and our self what we needed.

 Firstly, initializing all peripherals of our test board

(STM32F107) [code (main.cpp): void Init_All_Periph (void)

{RCC_Configuration (); InitDis (); GPIO_configuration ();

NVIC_configuration () ;}]. Here, RCC (Reset and Clock

Control) configuration [RCC_Configuration()] is creating

system clock configuration for all peripherals, initializing

display [InitDis()] is LCD display configuration, GPIO

(General-Purpose function of Input and Outputs)

configuration [GPIO_Configuration()] is creating structure of

every pin (i.e. CAN pin: RX,TX) for our development board

and setting their mode, NVIC(Nested vectored interrupt

controller) configuration [NVIC_Configuration()] is enables

low latency interrupt processing and efficient processing of

late arriving interrupts. The bxCAN (Basic Extended CAN)

[13] module handles the transmission and the reception of

CAN messages fully autonomously. Standard identifiers (11-

bit) and extended identifiers (29-bit) are fully supported by

hardware. Secondly, SysTick timer (STK) configuration

[SysTick_Conf ()] is setup SysTick Timer for interrupts. CAN

interrupt [CAN_Interrupt ()] is interrupt mode for CAN. The

processor has a 24-bit system timer SysTick which counts

down from the reload value to zero, reloads (wraps to) the

value in the load register on the next clock edge, then counts

down on subsequent clocks. The bxCAN interrupts has four

interrupt vectors dedicated. Each interrupt source can be

independently enabled or disabled by means of the CAN

Interrupt Enable Register CAN_IER). Thirdly, Universal

synchronous and asynchronous receiver transmitter

[USART1_Configuration ()] configuration is the configuration

of the CAN bit timing. According to the CAN specification

[14], the bit time is divided into four segments (see Figure 7).

The synchronization segment, the propagation time segment,

the phase buffer segment 1, and the phase buffer segment 2.

Each segment consists of a specific, programmable number of

time quanta (see Table 1). The length of the time quantum

(tq), which is the basic time unit of the bit time, is defined by

the CAN controller’s system clock fsys and the Baud Rate

Prescaler (BRP) : tq = BRP / fsys. Typical system clocks are:

fsys = fosc or fsys = fosc/2.

Figure 7. CAN bit timing

Table 1: CAN Bit Timing Parameter

 Finally, make a loop for frequently CAN message

received by our GPS sensor within a fixed time period. In

additionally, we also create our device driver and startup

(STM32 driver and startup) configuration. After complete all

steps, we can build and execute our application program

completely. Figure 8 shows the application program of GPS

sensor in IAR Embedded Workbench.

Int'l Conf. Embedded Systems and Applications | ESA'12 | 43

Figure 8. Application program of GPS sensor in IAR Embedded Workbench

5 Workbench Results and Discussion

 The main task of this work is developing the test board

as an ECU for agricultural tractor GPS sensor. With following

the programming methodology, we can build our application

program. In IAR Embedded Workbench, the program should

be downloaded to ARM Cortex-M3 microcontroller by

AMTEL mini JLINK for debugging. When debugging is

completed then run the program. After finishing all, the test

board is performing as an ECU of GPS sensor. Now, the CAN

messages are frequently received by the test GPS sensor. We

can easily analysis those messages with standards by CANPro

Analyzer v1.0. Figure 9 shows the CANPro Analyzer window

define CAN message received by our test GPS sensor.

Figure 9. CAN message received by GPS sensor

 The output window of CAN Pro Analyzer, we get the

first message data frame in 3 bytes data length and, ID

(Identifier Bit) is 18-EA-FF-FE16(hexadecimal) means that

this data have (5bit-8bit-8bit-8bit)2 CAN ID and first message

define by request for address claimed or request PG is

00EE0016 means that first data PGN is 6092810[15]. Second

message data frame is 8 bytes data length; ID is same as first

message data frame. Second message define by address

claimed and data is NAME which has some fields. We can

explain all messages that classify by hexadecimal numbers

with the help of ISO 11783 standards. Figure 10 explain only

two messages with some standards. So our result shows that

CAN messages follow the standards perfectly without error.

Figure 10. Analysis CAN messages(First and seceond)

 Now we can clarify all messages with standards which

are received by our GPS sensor.

Figure 11. Time difference between CAN messages

 Figure 11 shows the time difference between two CAN

messages received by GPS sensor is 100milisec. This mean

the events of CAN interrupt and System timer is working

perfectly (i.e. when events are changed it takes 1milisec). So

we can get CAN messages continuously with standard time.

Therefore, we have no error in our application program and

our developed GPS show’s great performance.

6 Conclusions

 Recently, a great amount of development has happened

in the field of agriculture by using information technology

over the world. Most important part has developed by

German, European and some of American researchers. Now

in Asia, Korea has been started developing their own

agricultural field by using recent information technology and

for this purpose our research team initially doing some

important research work on this sector, like developed

application program for agricultural tractor electronic control

units (ECUs) and virtual terminal, etc. All application

procedures are followed by ISO 11783 and some other

standards. For the development of our application program for

agricultural tractor GPS sensor, we use an open source library

with object oriented way. In our research result, we found that

our GPS sensor can receive CAN messages frequently with

expected time. So it works perfectly without any fault. In our

future work, we are going to compose application program for

every ECU of an agricultural tractor (ECU Data Source, ECU

Display, ECU GPS Sensor, ECU Tractor Bridge, etc.) and

developed the virtual terminal.

44 Int'l Conf. Embedded Systems and Applications | ESA'12 |

7 Acknowledgment

This work was supported in part by Brain Korea-21 and the

Center for IT Convergence Agricultural Machinery (ITAM)

grant (NO. R09-6)* funded by the Ministry of Knowledge

Economy, Republic of Korea.

8 References

[1] ISO11783-6: Tractors and machinery for agriculture and

forestry -Serial control and communications data network-

Virtual Terminal. 2002.

[2] ISO11783-9: Tractors and machinery for agriculture and

forestry -Serial control and communications data network-

Tractor ECU. 2002.

[3] The STMicroelectronics: [Online Available:

http://www.st.com/], 1998-2012.

[4] IsoAgLib: “Development of ISO 11783 applications in

an Object Oriented way", [Online Available:

http://isoaglib.org/], 2009.

[5] Peter Felimeth, “CAN-based tractor- agricultural

implement communication ISO 11783,” CAN Newsletter,

2003, 9.

[6] Bosch, Robert, GmbH. CAN Specification, Version 2.0.,

Germany, 1991.

[7] ISO11783-3: Tractors and machinery for agriculture and

forestry -Serial control and communications data network-

Data link layer. 1998.

[8] ISO11783-7: Tractors and machinery for agriculture and

forestry -Serial control and communications data network-

Implement messages application layer, 2002.

[9] NMEA 2000: The National Marine Electronic

Association’s NMEA 2000® Standard for Serial Data

Networking of Marine Electronic Devices has been approved

by the International Electrotechnical Commission (IEC), 2008

[10] ISO11783-10: Tractors and machinery for agriculture

and forestry -Serial control and communications data

network- Task controller and management information system

data interchange. 2009.

[11] ISO11783-2: Tractors and machinery for agriculture and

forestry -Serial control and communications data network-

Physical Layer. 2002.

[12] PM0056: STM32F107 Cortex-M3 programming

manual, STMicroelectronics, 1998-2012.

[13] RM0008: STM32F107 Reference manual for advanced

ARM-based 32-bit MCUs, STMicroelectronics, 1998-2012.

[14] Florian Hartwich, Armin Bassemir, Robert Bosch GmbH

“The Configuration of the CAN Bit Timing,” 6th International

CAN Conference, 1999; Turin (Italy).

[15] ISO11783-5: Tractors and machinery for agriculture and

forestry -Serial control and communications data network-

Network management. 2002.

Int'l Conf. Embedded Systems and Applications | ESA'12 | 45

DesignDesignDesignDesign ofofofof aaaa HumanizedHumanizedHumanizedHumanized VendingVendingVendingVending MachineMachineMachineMachine FrameworkFrameworkFrameworkFramework
A.A.A.A. LiLiLiLiXXXXinininin ZhaoZhaoZhaoZhao 1,,,, B.B.B.B. PingPingPingPing LiLiLiLi1
1Automation College, Beijing Union University, Beijing, China

AbstractAbstractAbstractAbstract ---- In developed countries, vending machines are
playing very important role in everyday life. Usually, people
operate the vending machines following the given instructions
mechanically, which make the shopping experience less
humanized. In this paper, current development situation of
vending machine was presented. Limitations in functionality
were outlined. A humanized vending machine design
methodology was proposed. Meanwhile, a framework for
design based on uC/OS-II was illustrated in detail including
storage of information, the functionality of key tasks, the
synchronization and mutex among key tasks, communication
among key tasks. The key checkout logic was presented in
detail. To put it into practice, hardware interface should be
implemented according to different platform which has been
implanted uC/OS-II and support I/O interrupt. A vending
machine model with basic functionalities based on this
framework has been implemented based on platform with
LPC2470/78 as Controller.

Keywords:Keywords:Keywords:Keywords: Humanized; Vending Machine; uC/OS-II

1111IntroductionIntroductionIntroductionIntroduction
In developed countries such as America and Japan,

different diversities of vending machine are in extensive use
in busy areas like the metro stations, supermarkets, shopping
malls and public facilities. On one hand, tremendous revenue
was gained. On the other hand, people’s living is becoming
more and more convenient. Meanwhile, beneath those
superficial influences, people’s living mode is changing
unwittingly with the advent of vending machine. Under the
circumstance that the same item is supplied, instead of going
towards a salesperson, people prefer to go towards a vending
machine. It is consumption psychology, living mode and
confidence in merchandise that decide [1].

But in China, people use vending machine less
frequently. One of the reasons is that vending machine is still
not popularized as extensively as in developed countries . The
commercial chance underlying vending machine is promising
enough to dig. Along with accelerating human life rhythm,
changing life mode, improving product quality, vending
machine will play a more and more important role in shopping
process.

When we applauded for wonderful humanized design of
those static products, we may ignore that part of dynamic
process. Currently, vending machine is working under the

control of a procedure-oriented “brain”—we select item and
input the money or the other way around, then we get the item
and change. This is not a perfect process. What if I don’t
know which is the right way? Or, what if I want to buy several
items after I input enough money? This less humanized
service will drive customers to go towards the salesperson.

Then, what is humanized service? Humanized service is
to meet both the function needs and psychology needs of the
customers with convenient service and easy operation
according to human’s consumption preference. So, if we want
vending machine to serve us with humanized service, firstly,
we will have to inject it a humanized “brain” which will direct
itself to act with a pattern that a salesperson act with, enabling
them to accept information customers supply and interact with
customers and assist customers fulfill their shopping process.

In this paper, a framework for designing such a
humanized vending machine based on uC/OS-II was
illustrated in detail including storage of information, the
functionality of key tasks, the synchronization and mutex
among key tasks, communication among key tasks. A vending
machine model with basic functionalities based on this
framework has been implemented based on platform with
LPC2470/78 as Controller. This vending machine looks like a
patient salesperson who is helping customers out of a
satisfying shopping process, regardless of shopping experience
they have ever had.

2222SystemSystemSystemSystem FeaturesFeaturesFeaturesFeatures
A humanized vending machine built on this framework

will have two significant features.

1) No Constraint on operation process
Customers will be allowed to operate a vending machine

with random operation instead of following a fixed process.
As customers initiate shopping process, they also initiate an
interactive process between “salesperson” and customers, so
will he be directed to fulfill shopping process.

2) No limitation on purchase
Under the circumstance that customers can afford more

items, they will be directed to purchase consecutively without
initiating a new shopping process. Under the circumstance
that money is not enough to pay the item they want to buy,
“salesperson” can still assist customers to reach their goal by

46 Int'l Conf. Embedded Systems and Applications | ESA'12 |

reminding customers to input more money as long as
customer don’t quit actively.

3333SystemSystemSystemSystem DesignDesignDesignDesign
This framework is a general-purposed framework, which

can be implemented into a vending machine on the platform
having uC/OS-II implanted and supporting I/O interrupt.

3.13.13.13.1 InformationInformationInformationInformation storagestoragestoragestorage
Humanized services from a vending machine partially

lie in effective storage of money information and item
information. To sell whatever customers want to buy, vending
machine should have ability to record all the items customers
want, which will be built into an item message queue.
Selecting an item means en-queuing an element to this
message queue; a successful deal means an item will be de-
queued from this message queue. One requirement for this
message queue is that it can be en-queued both in the front
and in the rear. uC/OS-II supplies a data structure of message
queue type as well as some operations on this data structure,
including OSQPost() and OSQPostFront() to enqueue in the
rear and in the front as well as OSQPend() to de-queue.

The total money is also built into a message queue
which has only one element in it. During the purchase process,
customers may input money at any time. So the total money

must be updated in real-time. So, when the total money needs
to be updated, this message queue will be flushed, and then a
new element with latest money information will be en-queued.
To do this, the framework simply make use of OSQFlush()
and OSQPost() to reach its goal [2].

3.23.23.23.2TasksTasksTasksTasks ConfigurationConfigurationConfigurationConfiguration
Developing an embedded system based on uC/OS-II

means a multi-task system will be designed. When developing
a multitask system, the first thing is to partition functionalities
and determine the priorities of the tasks.

Now we only consider key tasks that are involved in key
logic.

Key tasks involved in key logic including 4 tasks:
1)TaskMoney--Task for handling money information;
2)TaskItem--Task for handling items information;
3)TaskCheck--Task for checkout;
4)TaskChange--Task for delivery and change return.

The relative priorities for each task are illustrated in
Table 1.This is not the only way to design a humanized
vending machine. But the different configuration of priority
will definitely determine the way that a vending machine acts
and the level of its humanized service.

Table1 Task Priorities
Task name Priority
TaskItem High

Low

TaskMoney
TaskChange
TaskCheck

3.33.33.33.3CommunicationCommunicationCommunicationCommunication amongamongamongamong keykeykeykey taskstaskstaskstasks
Humanized services from a vending machine partially

lie in effective communication among key tasks and among
tasks and ISR. This thereby relies on the functionalities that
uC/OS-II supports— Semaphore, message box and message
queue. All the Semaphore, message box and message queue
used throughout key tasks are illustrated in Table 2.

3.3.13.3.13.3.13.3.1 SSSSynchronizationynchronizationynchronizationynchronization amongamongamongamong keykeykeykey taskstaskstaskstasks

Here is a special note. Theoretically, it should be the
memory address used to store money and item information
that will be transmitted among key tasks. Since those
functions we use to transmit information only accept
parameters that is of pointer type and integer type is the only
type that money information and item information is of, we
can simply cast integer type into pointer type to satisfy the
requirement of uC/OS-II functions to reach our goal. By doing
this, we simply avoid the complexity of defining unnecessary

data structures. The key point is the sender and the receivers
understand the protocol they have agreed so to get the correct
information from the function call. Communications among
key tasks are illustrated in Fig.1.

The checkout task (TaskCheck) will wait until
TaskMoney and TaskItem to send message to message queue
so to execute checkout logic. If the customers input money
first, then money will be accumulated, but TaskCheck won’t
respond. Only when customers select the items, will
TaskCheck execute checkout logic. Suppose customers select
items first, then, TaskCheck will execute, but only find no
money, so reset the item queue by calling OSQPostFront() to
put the item back to the front of the item queue QItem. If
customers input more money during shopping process, every
time TaskMoney will update the money information by using
OSQFlush() to clear the money Queue Qmoney then call
OSQPost() to send the latest information.

Int'l Conf. Embedded Systems and Applications | ESA'12 | 47

3.3.23.3.23.3.23.3.2 MMMMutualutualutualutual exclusionexclusionexclusionexclusion amongamongamongamong keykeykeykey taskstaskstaskstasks

Because customers can input money at any time-in the
beginning,middle or end of shopping process,due to the way
of updating the money, it will lead to the data inconsistency if
the mutex among the tasks were not handled correctly.

Suppose that the checkout logic is just executed to the
point between information accessing and information
processing of total money when customer input extra
money.Since the priority of TaskMoney is higher than
TaskCheck, TaskMoney is executed.It will update the total
money information.Afterwards,TaskCheck will go on
executing based on the past money information instead of the
latest one,so the data inconsistency occur.

As shown in Fig1,the scheme for solving this problem is
to find the critical regions in TaskMoney and TaskCheck.
Through the control of semaphore Occupying,TaskMoney
and TaskCheck can be executed mutual exclusively to
guarantee the information consistency.

Suppose that the checkout logic is just executed to the
point between information accessing and information
processing of total money when customer choose extra
items.Even though without semaphore to control the
execution of TaskItem and TaskCheck,due to the special way
of dealing with item information(append the item to item
queue),no data inconsistency will be incurred.

Table2 Message Type
Task Name Task Name Variable Name Type
TaskMoney TaskCheck QMoney Msg Queue
TaskItem TaskCheck QItem Msg Queue
TaskCheck TaskChange Change Msg Box
TaskMoney TaskCheck Occupying Semaphore

TaskMoney(void *pdata)
{...
while(1)
{
…

OSSemPend(Occupying,0,&err) ;
...
OSQPost(QMoney,(void*)TotalMoney);
...
OSSemPost(Occupying) ;

}
}

TaskItem(void *pdata)
{
while(1)
{
…

OSQPost(QItem,(void *)value);
…
}

}

TaskCheck(void *pdata)
{
while(1)
{
…

ItemNumber=(int)OSQPend(QItem,0,&err);
OSSemPend(Occupying,0,&err) ;

.....
TM=(int)OSQPend(QMoney,0,&err);

…
;checkout logic

OSSemPost(Occupying) ;
OSMboxPost(Change,(void*)ItemNumber);

…
}

}

TaskChange(void *pdata)
{
while(1)
{
…
ItemNumber=(int)OSMboxPend(Change,0,&err);
…
}

}

Fig.1. Communication among key tasks

QItem
mm

QMoney

ChangeOccupying

48 Int'l Conf. Embedded Systems and Applications | ESA'12 |

3.43.43.43.4CheckoutCheckoutCheckoutCheckout logiclogiclogiclogic
In Fig.1, the area where was circled by dashed line is the

“brain” of the vending machine. When TaskCheck is running
to here, vending machine will decide how to respond to the
customers according to such logic as Fig. 2.

This frame will have checkout logic deal with as many
as items under the current situation, meanwhile pause the

TaskCheck so to deal with the input of customers to show its
humanization.

As the interaction between vending machine and customer
goes on, the whole system will definitely fall into one of
three situations:

1) The total money is equal to the value of current item
2) The total money is more than the value of current item
3) The total money is less than the value of current item

TotalMoney=current itemvalue
Y N

Totalmoney> current itemvalue？item waiting？
NYY N

1) Deliver;
2) Update total money;
3) Remind going on select
item or give up shopping;

1) Recover item queue
to previous status;
2) Remind inputting
money or give up
shopping;

1) Deliver;1) Deliver;
2) Remind inputting
money or give up
shopping;

Fig.2. checkout logic

Table 3 Testing Case Summary
Operation type Testing goal Sub operation type

Single operation
To make sure the hardware resource
works. The number of testing case

will differ under the different platform

Inputting money

Selecting item

Consecutive
operation

To make sure consecutive operation
of inputting money and selecting item
works. The number of testing case

will differ under the different platform

Consecutive inputting money

Consecutive selecting items

Compound
operation

To make sure under the circumstance
that any order of inputting money and

selecting item, system respond
correctly.

Single inputting money
+ single selecting item
single selecting item
+Single inputting money
Consecutive inputting money
Single selecting item
Consecutive selecting item
+Single inputting money
Consecutive inputting money
+ Consecutive selecting items
Consecutive selecting items
+Consecutive inputting money
Consecutive inputting money
+ Consecutive selecting items
+ Consecutive inputting money
Consecutive selecting items
+Consecutive inputting money
+ Consecutive selecting items

Int'l Conf. Embedded Systems and Applications | ESA'12 | 49

Suppose it is the first situation that holds, then a
successful deal should be made afterwards. The code will
check whether there are other waiting items by calling
OSQAccept(). If yes, reminding customer to put more money
to fulfill the purchase. If not, put the shopping process into
the end.

Suppose it is the second situation that holds, the system
simply make a deal by updating the total money and then
return to the beginning of the loop.

Suppose it is the third situation that holds, the system
will recover the previous status by posting the item message
back to the front of the item queue, then wait until the
customers input more money or quit actively.

4444 SystemSystemSystemSystem TestingTestingTestingTesting
Base on this framework, an embedded system which

simulated the key functions of a vending machine was
developed on the platform with LPC2470/2478 as controller
[3,4]. The key resource was made full use of to simulate
inputting money, selecting item and delivering change.
Furthermore, a black-box test was executed. The testing cases
were categorized into 3 types — single operation, consecutive
operation and compound operation. Each type was
categorized further according to different situation. Because
the test was related to hardware resource, in order to
guarantee all the hardware resource function correctly, the
number of testing cases was more than doubled than ordinary
software engineering project with similar logic. The testing
result show the control system can correctly direct customers

fulfill their shopping process under any complicated
circumstance.

5555 ConclusionConclusionConclusionConclusion
Though hardware resource of an embedded system is

limited, with the help of the embedded operating system, the
function of an embedded system is becoming more and more
advanced.

This humanized vending machine design framework,
which is based on uCOS-II, endowed vending machine an
“intelligent” thinking mode. “Intelligent” thinking mode
comes from effective communication among those related
tasks. “Intelligent” thinking mode will make vending machine
humanized.

6666 ReferencesReferencesReferencesReferences

[1] LIU Fang, WEI Lili, Science and management,
1997(17)4:24~25
[2] Jean J.Labross: MicroC/OS-II The Real-time Kernel
Second Edition (Beijing University of aeronautics
&astronautics press. China 2006.3)
[3] Zhou Ligong: Notebook about ARM Embedded System
application technology based onLPC2400 (Guangzhou
Zhiyuan Electronic Co., Ltd.)
[4] Zhou Ligong: Architecture of ARM7——LPC2400
(Guangzhou Zhiyuan Electronic Co., Ltd.)

50 Int'l Conf. Embedded Systems and Applications | ESA'12 |

NAS Storage and Data Recovery

Deepak Kumar
1

1
Amity School of Engineering and Technology, Amity University / Universe Infosoft, Noida, Uttar Pradesh,

India

Abstract - Today NAS is a common storage device wildly

used by home users, small offices or even medium size

organization to storing theirs information. NAS provides

greater data protection and higher storage capacities with

different types of RAID configuration on its specialised

hardware-software combination. Even though it provides

much higher protection as compared to traditional storage

media, yet it cannot use as a complete fault tolerant, perfect

reliable storage device. In spite of NAS device importance,

here is relatively little research work on the failure patterns

of NAS device. This paper addresses various types of

failures cause in NAS storage device and step by step

procedure for successful NAS data recovery on Linux

platform using normal computer system. NAS data recovery

is different with other type of data recovery and it is a

challenge in itself.

Keywords: NAS, NAS data recovery, NAS data loss

causes, NAS recovery on Linux

1 Introduction

 Continued growth of digital data and having more

than one computer in regular use, it becomes difficult to

keep track of particular data. One is required an affordable,

smaller and more energy efficient storage solution. Network

Attached Storage (NAS) provides a central place to store

securely and serving all type of computer files on a local

network or over the Internet. NAS provide good

performance, stability, reliability and security.

“Network-attached storage (NAS) is file-level computer

data storage connected to a computer network providing

data access to heterogeneous clients. NAS not only operates

as a file server, but is specialized for this task either by its

hardware, software, or configuration of those elements”.

NAS systems contain one or more hard disk drives, often

arranged as RAID arrays. NAS use smaller, faster, and

specialized operating system instead of general-purpose

operating system like UNIX and Windows NT. NAS

devices do not require any monitor, keyboard or mouse and

are controlled and configured over the network, often using

a browser. A NAS can store any type of data that appear in

the form of file.

NAS appears on the network as a single "node" over

TCP/IP. NAS follows a client/server design and clients can

use any of several higher-level protocols built on top of

TCP/IP. Sun Network File System (NFS) and Common

Internet File System (CIFS) are most common application

protocols used on NAS. Many NAS devices are little more

than a storage device (or several) in a box with

some networking electronics. However, some having

additional functionality like email server or stream

multimedia content or some having multi-talented USB

sockets that are used for data transfer or attach more storage

space or one can attach a printer and share among all

computers on the network. Due to these specific advantages

to home and business users, are making more demands of

NAS devices. Today NAS are providing about 24% of the

total amount of on-site disk-based backup capacity [3].

NAS uses growth is driving increased adoption of NAS

storage. Despite the importance of the subject, there are

very few published studies on failure characteristics of NAS

drives. NAS failure have many factors like hard drive[s]

failure, NAS electronics failure, computer viruses or user

errors and overwriting a file or deleting it that cause data

loss. Most of the available information of failure comes

from the NAS manufacturers and their data are typically

based on Statistics from returned unit databases. We have

been known to be poor predictors of actual failure rates as

seen by consumer in the field [2]. In this paper we present

one such study depending statics of the data recovery cases

handled by Universe Infosoft in last three years. We also

proposed a data recovery method for some of failure causes.

2 NAS RAID Configuration

 Redundant Array of Independent (Inexpensive) Disks

is a well-known technique that provides faster throughput

with fault-tolerant storage over single hard disk drive.

RAID appears as one logical drive to the computer

appliance within having multiple drives. It also used for

providing access to larger pools of storage than single

drives. NAS provide power of various RAID configurations

as RAID levels 0, 5, 5+spare, 6, 6+spare, 10 and more.

Different- different RAID levels have different fault

tolerance capability. RAID 0 use striping without any parity

have no fault tolerance if any one of its drives is crashed

then all data will loss. Its contrary RAID 6 can afford two

drives tolerate and RAID levels 1, 2, 3, 4, 5, 6 and 7 can

afford one hard disk drive crash because these have the one

drive fault tolerance capability. Nested RAID configuration

can afford multiple drive tolerance depending on the

number of drives and configuration type.

Int'l Conf. Embedded Systems and Applications | ESA'12 | 51

3 Causes of Data Loss on NAS Device

 There are a number of conditions that can cause a NAS

device failure. NAS usually having proprietary operating

system and is dedicated only to serving files without having

any backup software that facilitate backup and recovery.

Although NAS confers some protection against data loss

due to hard drive failure but here are still relatively common

occurrences like:-

Hard disk drive failure

IT Admin or user error

Software error

Firmware upgrade failed or firmware corruption,

controller failure

Disaster and Crime

First two data loss causes having the partnership of more

than 75%. Depending on the type of data loss that occurs, it

may be possible to recover most, if not all, of the data using

various data recovery existing methods.

3.1 Hard disk drive failure

 Manufacturers of magmatic hard drive quote average

hard drive life as “Mean Time Between Failures” (MTBF).

These manufacturers claim hard drive MTBF 500,000 to 1.5

million hours. These drives will continue work 57 to 171

years (24x7 year) having average failure rate of at 1.754%

to 0.585% per year. However, the study showed typical

annual replacement rates of among 2% and 4%, and up to

13% observed on some systems [8].

Hard disk drive is a combination of electrical, mechanical

and magnetic component. Its most of components are

hermetically sealed on a chamber to forbid dust, humidity

and air flow. There are various palpable points of failure in a

hard disk; as a very sensitive magnetic read/write heads

move above across the 7200/10000 RPM spinning disks, the

disk motor, head assembly actuator (motor), electronics

controls, microchip and Firmware.

There are several technologies to monitor hard disk drive

errors and correct them. As Error handling mechanism like

Error Correcting Codes (ECCs), Low-Density Parity-Check

Codes (LDPC) used in hard disk drives. In additional Self-

Monitoring, Analysis and Reporting Technology

(S.M.A.R.T.) keep surveillance of hard disk health and

make a pre-Alert before hard disk going to die. But

practically about 56% of the hard disk drives failed without

any S.M.A.R.T. warning [1]. That conditions come due to

firmware corruption, electrical components burn or moving

mechanical parts can deteriorate and break.

3.1.1 Main causes of hard disk drive failure

 There are some main causes of hard disk failure…

• Head failure

• Degradation of magnetic media

• Firmware Corruption

• HDD Electronic failure

• Failure of the Motor

3.2 IT admin or user error

 Human error accounts the second most data loss causes

on NAS storage. A person / organization can face the

problem of Accidental Deletion, Re-Formatting; making

wrong configuration can lose most sensitive data.

And there some critical situations can created by admin

users as modification and overwrite of data that arise up

unrecoverable condition. Sometime admin user does not

notice or ignore the error massages by NAS device or

application software. That makes admin to follow wrong

decision and maintenance procedures. If A NAS device

needed maintenance to resolve its software or a drive failure

related issue and system maintenance engineer does not take

the right decision on time; it will arise an undesirable

situation of data loss.

3.3 Software error

 Many users use client-based applications to create

backup and schedule backup the data on their PC to the

NAS. Sometime application is corrupted or not working

properly. If a software application faces a bad sector to

reading the drive while working with database it may cause

for further data loss. Data goes corrupt is the deterioration

by software error or virus. Computer viruses are developed

to damage the computer system software, file systems or

make unwanted changes in user data without making any

notice. It can corrupt or delete user files, e-mail, or even

delete everything on NAS storage.

3.4 Firmware upgrade failed or firmware

corruption, controller failure

 Sometime things often go wrong for NAS devices. As

earlier explain NAS itself is a combination of hardware

components that are work with software. A NAS device

contain it hardware set to functioning or controlling storage

drives. It has disk array controller to manage the physical

disk drives and presents them to the user as logical units

over multiple RAID configuration. As other NAS also have

firmware or software update function on controller card.

The firmware update may be failed or compatibility

problems with existing configuration. A firmware

corruption can stop its functionality even all hard drives are

healthy. The stored data on NAS hard disk drives is safe but

there is no way to gain data access. NAS controller card is

like motherboard without any fault tolerance capability,

might be stop working like other electronics devices.

3.5 Disaster and Crime

 Although rare, relatively unlikely occurrence such as

an earthquake, hurricane, flood, tornado, or fire can become

the reason of data loss. Electronics devices are a favorite of

thieves of high-tech equipment. Theft causes to a permanent

loss of data along with the hardware device.

52 Int'l Conf. Embedded Systems and Applications | ESA'12 |

Increase in hacking incidents that lead to important and

sensitive data lost.

4 Challenges of NAS Data Recovery

 NAS devices used sophisticated and complex storage

technology. When the hard disk drive in NAS system fails,

all the data stored on the NAS data may get damaged, or

simply cause to not accessible. The higher RAID

complexity and number of working disk drive increase the

complexity of data recovery process. NAS recovery is

someway different with other data recovery. One is getting

the data from every hard disk drive attached in NAS and

second make certain of recovered data correctness are two

of the most important issues for user. Most Experts advise to

look instant a Data Recovery Company before try to recover

the data yourself. Some situations make recovery impossible

like swapping failure derive(s) in a degraded or offline

RAID array runs the risk of overwriting the striping and

parity.

NAS data recovery is a time consuming process. Time

required to recover a NAS RAID depends on the storage

hardware factors as storage capacity, data transfer speed,

NAS controller and most important is complexity of failure.

5 NAS Data Recovery

5.1 Required hardware and software

 A computer system with enough free SATA/IDE

(According to NAS drive interface) connecting port to

attach NAS all hard disk drives. A CD/DVD ROM Drive,

Enough free storage space and Internet connectivity. If NAS

have SCSI drive then arrange a SCSI adapter for installation

of NAS drives.

Get Ubuntu Desktop 12.04 LTS from Ubuntu website or the

Ubuntu shop. Complete Installation of the Ubuntu 12.04

LTS and Installation must be a complete and stable with

“mdadm”, “gparted” and “xxdiff” applications. For

installation instructions see the Graphical Install page on the

Ubuntu community documentation site.

“mdadm” is a command line RAID array utility that create,

manage, and monitor MD (multiple devices) devices.

“mdadm” can provide information about RAID arrays and

assemble a pre-existing damage array. Before using it read

its manual and be careful on its use. Remember that it can

destroy easier than it can repair. “mdadm” has 7 major

modes of operation. “mdadm : Assemble” is one of them that

can recreates a faulty array by checks that the components

do form a bona fide array, and can, on request, fiddle

superblock information.

“GParted” is a free graphical partition manager. It

visualizes the drive partition layout in a graphical way and

enables you to resize, copy, and move partitions without data

loss. Here it provides information about the drives/volumes

of the hard disk drive.

“xxdiff” is an old, Graphical File And Directories compare

tool, it start from command line, give output is legacy X. It

required later for data integrity check.

5.1.1 Caution

 There are possibilities of mistake on the time of

Ubuntu installation on wrong drive. That cans destroy the

original drive by overwriting. To prevent this situation does

not connect the NAS hard disk drives to the computer

system until you complete installation of Ubuntu OS.

5.2 Analysis of single drive failure

 Using the redundant scheme of parity on NAS can

only tolerant single disk failure but RAID-0 configuration

offers no redundancy so it is need an appropriate data

recovery. To know the chances of single disk failure; let

take a NAS box having four disks drive. The chance of at

least failure of one drive per year is (2*4) % and up to

(13*4) %. When NAS is working and one first drive was

lost, generally nobody notice it (on single drive fault

tolerance). NAS Device starting working in degraded mode

and it's still running as same, you should stop uses of NAS

or if it is not possible decrees overhead if possible.

Immediate take action to replace faulty drive with a new one

and starts rebuild but do not attempt a forced rebuild in that

case. Forced rebuild may cause malfunction. If at that time

any one of NAS drives stop working your NAS goes off-line

and all data will lost.

5.3 Analysis of double drive failure

 The NAS was running in RAID degraded mode and

unfortunately if second drive crashed during RAID rebuilds

or NAS running in normal conditions and its two drives

crashed simultaneously. The chances of failure of second

drive before full redundancy from degraded mode is

established are about 6/365 up to 39/365; if it takes 24 hours

to replace and reconstruct a failed drive. Now NAS will

offline (one drive fault tolerance capability) and it will not

show stored data. NAS Data recovery on double drive

failure is explained in section 5.5.1.

With RAID 6 or nested raid Configuration that affords multi

drives fault tolerance, address this problem like previous

section.

5.4 Applications installation

 First we install “mdadm”, “gparted” and “xxdiff”

applications for recovery process. You need administrator

right to install these applications. Find these applications on

online Ubuntu Software Centre. Follow below steps…

Application > Ubuntu Software Centre

Search [mdadm] Click on Install button

Int'l Conf. Embedded Systems and Applications | ESA'12 | 53

Search [gparted] Click on Install button

Search [xxdiff] Click on Install button

5.5 NAS data recovery steps

 During the RAID recovery process you should clones

of all hard disk drive to prevent further alteration on original

data. If you got unaccepted result, you can look for data

recovery experts. You need clone of drives equal to total

number of drives less the fault tolerance drive according to

RAID current configuration for NAS recovery process.

5.5.1 When NAS working drives are not enough

 If there is the situation of hard disk drive failed more

than fault tolerance of configured RAID and not able to

make required drives clone then you have to look to a data

recovery company for complete required clone. If Drive has

any electrical component failure on its PCB need to be

repaired or there are clicking sound coming from hard drive

chamber; may need clean room data recovery facilities. But

generally one has no clean room facilities, electronic PCB

repairing instruments and experiences to make successful

clone. To override these situations one can gets required

drive clones from a Data Recovery Company. And then can

start recovery process at his/her end.

5.5.2 Successful NAS recovery

 In order to complete successful NAS data recovery,

you must have in-depth knowledge of drive structures, hex,

MFT, mount points and partitions offsets to avoid farther

data loss while attempting to recover the damaged RAID

array. Data recovery process…

(1) Install all cloned drives to installed Ubuntu

computer system as according their connecting

interface.

(2) Boot system with Ubuntu. Frist get down derives

IDs using Gparted.

(3) Open “Gparted” with administrator right: go on

System at the top menu bar Move down to

Administration and click on “Gparted”. Enter

Administrator password if required.

Menu bar > System > Administration > Gparted

(4) On “Gparted” graphical windows, click on top

menu and move your cursor to Devices. Select the

NAS drives one by one and look for the largest

partition on each drive.

GParted > Device > ...

(5) Note the largest drive name (i.e. /dev/sdc3) of each

device (hard disk drive) on which you want to

perform recovery.

(6) Now open command prompt. For this go in

Application menu from top menu bar of Ubuntu, in

Accessories click on the Terminal.

Application menu> Accessories > Terminal

(7) Recovery commands need to be run as root. To get

root access run below command on terminal and

enter admin password if required

> sudo su

If command prompt change “$” to “#”, its show

you got root access.

(8) Start NAS recovery with testing of the NAS drive.

Here we are using the drive IDs as we note in

previous section. Type following command

replacing “/dev/sdc3” with actual partition showed

in your devices.

>mdadm --examine /dev/sdc3

>mdadm –examine /dev/sdd3

>mdadm –examine /dev/sde3

...

(9) It retrieves information from superblocks as RAID

Level, stripe size, Layout, Total Devices, failed

drives, which drive failed first and much more.

Recall this step (no. 8) until all drives has been

tested.

(10) That step constructs the damage RAID from the

components. Again you have to replace

“/dev/sdc3” with whatever actual partition is.

>mdadm assemble --run /dev/md0 /dev/sdc3

>mdadm assemble -- run /dev/md1 /dev/sdd3

...

(11) After all process completion creates an empty

directory in active user home or in the /mnt

directory to mount the recovered RAID array.

>mkdir /mnt/Raid

(12) Mount RAID array on this directory. To mounting

multiple drive devices as we construct in second

last step, repeat next command according to the

constructed drive

>mount /dev/md0 /mnt/Raid

>mount /dev/md1 /mnt/Raid

…

(13) Now you can access files and folders of the NAS

RAID from desktop. As we complete recovery

process in with root access. So there are no

permissions for others. To change permissions for

anyone get access of recovered files type these

command on prompt…

>chmod -R 777 /mnt/Raid/*

(14) Now take back up recovered data at network or on

portable storage device. Data copy will time

according the data size and data transfer speed of

storage device.

These all steps are for RAID 0 (striped) and RAID 1

(mirrored) array. For RAID array recoveries that have no

fault-tolerance you must require all original drive or drive

clone. On fault-tolerance you recovery is possible with less

drive equal to tolerant than the total number of original

RAID drive. The whole recovery process is more complex,

cannot be made detailed explanation in that paper.

54 Int'l Conf. Embedded Systems and Applications | ESA'12 |

5.5.3 Finishing the whole Process

 After completely of backup process here is optional

task to checking recovered data Integrity. Instructions to

running integrity check…

1. In this command replaces “/media/drive/Backup”

with the directory path where the recovered data

was copied.

>xxdiff /media/drive/Backup /mnt/Raid

Use “n” and “p” key hit to navigate previous and

next difference in the difference list on graphical

split windows.

2. And last action is unmounts the attached portable

storage devices, and RAID array with these

commands…

>umount /mnt/Raid

3. Finally stop RAID array by all component drives.

First stop the last RAID array component and in

end the first one

> ...

>mdadm --stop /dev/md1

>mdadm --stop /dev/md0

Next, exit from the root session and terminal window by

executing “exit” command twice. And shutdown the

computer system, remove all NAS hard disk drives and

portable storage device(s).

5.6 How to increases chances of data

recovery and save critical files?

 Data recovery is an alternative method; this is not the

solution to keep safe data. Create backup of important data

regularly keep one on safe side. If one is want to update or

making any major change on NAS RAID configuration.

(1) Create (full) backup of valuable data before

making any major change on NAS.

If one is not able to gain access of NAS data, disk volume(s)

is not showing or facing any other problem on NAS.

(2) Try to create backup of valuable data as much as

possible without modifying the content and

configuration.

(3) Do not format the NAS RAID until you confirm

what actual problem is. Formatting erases ALL

data on the NAS.

(4) Do not make any major configuration change on

NAS.

(5) Check status of all NAS hard disk drive and NAS

logs for software or hardware errors.

(6) If maintenance work is required on the NAS, it

may cause total data loss.

6 Conclusion

 NAS devices offer Small and medium enterprise a

number of important benefits over alternative storage

devices. NAS devices help to enhances overall network

performance providing efficient, flexible storage that is

accessible independently from a specific network or

application server. As rich futures like ease of use and

flexibility that your business needs and remote management

capabilities of a NAS device make it easy to manage the

entire storage environment, even multiple NAS devices are

located in geographically dispersed offices, from one central

location.

RAID technology performs a valuable role to increase NAS

reliability. Furthermore here are some unexpected

possibilities that challenge NAS reliability. In this paper, as

reported on the failure destiny of NAS storages and

procedure to recover its data on Linux platform. This

procedure addresses all small and medium NAS devices.

NAS are fault tolerant but not fault proof and as a result,

usually leave customers with a false sense of reliability.

7 References

[1] Eduardo Pinheiro, Wolf-Dietrich Weber and Luiz

Andr´e Barroso Google Inc. Failure Trends in a Large Disk

Drive Population 5th USENIX Conference February 2007.

[2] Universe Infosoft. NAS Data Recovery

http://www.universeinfosoft.com/DataRecovery/nas-data-

recovery.html

[3] Enterprise Strategy Group, 2012.

http://www.enterprisestrategygroup.com

[4] Jin, H; Hwang, K; Zhang, J. A RAID reconfiguration

scheme for gracefully degraded operations. Proceedings of

the 7th Euromicro Workshop on Parallel and Distributed

Processing 1999, Funchal, Portugal, 3-5 February 1999, p.

66-73

[5] Microsoft Corporation & Dell. Using Network

Attached Storage for Reliable Backup and Recovery.

Microsoft Corporation Published: July 2003.

[6] Aaron Harper. Embedded NAS RAID Data Recovery

Procedure. Alpha Dog Technical Services, LLC. 06 AUG

2010.

[7] Julius “Bud” Younke. How To Handle RAID Array

Failures. ©2004-2012 Reclamere, Inc. [Online]. Available:

http://www.reclamere.com/uploads/RAID%20whitepaper1.

11pdf.pdf

[8] DRG Data Recovery Group. An Ebook on Data

Recovery and Data Protection. [Online]. Available:

http://www.datarecoverygroup.com/pmebook.pdf

[9] DATA RECOVERY BOOK V1.0 Copyright © 2005-

2006 CHENGDU YIWO Tech Development Co. Ltd.

http://www.easeus.com

[10] Nick Sundby, Consulting Director European Storage

Copyright 2007 IDC. www.idc.com

Int'l Conf. Embedded Systems and Applications | ESA'12 | 55

http://www.universeinfosoft.com/DataRecovery/nas-data-recovery.html
http://www.universeinfosoft.com/DataRecovery/nas-data-recovery.html
http://www.enterprisestrategygroup.com/
http://www.reclamere.com/uploads/RAID%20whitepaper1.11pdf.pdf
http://www.reclamere.com/uploads/RAID%20whitepaper1.11pdf.pdf
http://www.datarecoverygroup.com/pmebook.pdf
http://www.easeus.com/
http://www.idc.com/

[11] Robert L. Scheier, Study: Hard Drive Failure Rates

Much Higher Than Makers Estimate Friday, March 02,

2007.

[12] Richard R. Muntz and John C.S. Lui. Performance

Analysis of Disk Arrays Under Failure* UCLA Computer

Science Department, LA, CA 90024-1596, USA.

[13] Jeffrey Doto, Brandon Krakowsky. RAID Technology

and Data Storage Today April 15th, 2007.

[14] Dr. Michael Cohen. RAID Reconstruction LCA 2005

Security Miniconf April 2005.

[15] Michael J. Leaver, 2BrightSparks Pvt. Ltd. RAID is

Not a Backup Solution www.2brightsparks.com

[16] THE BENEFITS OF NETWORK ATTACHED

STORAGE Iomega Corporation. www.iomega.com/NAS

[Online]. Available:

http://cn.iomega.com/nas/resources/nasroi.pdf ©2009

56 Int'l Conf. Embedded Systems and Applications | ESA'12 |

http://www.2brightsparks.com/
http://www.iomega.com/NAS
http://cn.iomega.com/nas/resources/nasroi.pdf

Modeling and Development of a Large Application on

RTOS

Sang Cheol Kim
1
, Young-Jin Choi

2
, and Seon-Tae Kim

1

1
Embedded Software Research Department, ETRI, Daejeon, S. Korea

2
Department of Computer Software and Engineering, UST, Daejeon, S. Korea

Abstract - Since development environment on embedded

system is usually poor, it is not easy to develop a large

application efficiently on RTOS. If the large application can

be divided into independent smaller sub-applications, the

process of developing it will be much easier and reduce

development time by utilizing the divide-and-conquer

approach. In this case, sub-applications are developed and

tested individually, and then they are combined to be the large

application later. This paper introduces a two-step model to

develop a large application on our RTOS with such an

approach. With our proposed model, we found that a large

application is rapidly built with minor modification of sub-

applications. From our experience, it is particularly useful for

a large application that is independently divided such as

menu-driven GUI application on RTOS.

Keywords: Application Modeling, RTOS, Embedded System,

UML, Program Development

1 Introduction

Today, as embedded systems are more powerful, real-time

operating system (RTOS) has supported much more

functionalities such as networking, GUI, file system, and so

on. The number of applications is growing and the

complexity of application is proportionally increasing. As a

result, writing embedded applications efficiently is a major

concern in order to reduce development cost and time [1].

Developing a large-scale embedded application is difficult,

because development environment is usually poor compared

with developing PC applications. In embedded systems, many

developers are usually faced with cross-compile environment

and even in some cases without GUI-based development tool.

Cross-compiled file for application on PC should be

transferred to the target embedded system to be tested. It

takes much time if the file size is too big.

If there is a formal way (e.g. model) in developing

embedded applications, the cost and time can be reduced by

minimizing the number of trials and errors [3][6]. For a large

embedded application, it is an obvious fact. In many cases, a

large application can be divided into smaller sub-applications

which have some dependencies among them each other [11].

In this case, sub-applications can be written and tested

individually, and then they are combined together for efficient

and reliable integration later [2]. This divide-and-conquer

approach is very useful for a collaborative team project, in

which each member takes a responsibility for a part of the

whole application and the divided parts are combined later.

In this paper, we introduce a two-step model for developing

a large RTOS application for embedded systems. The first

step is to describe the sub-application by drawing the

relationship between functions and threads, and the second

step is to describe the overall application by presenting how

to interconnect the sub-applications. To validate our model, it

was adapted to a menu-driven GUI application on our RTOS,

called AVOS. This paper is organized as follows. Related

works are given in Section 2, and AVOS is in detail presented

in Section 3 and the modeling approach for large embedded

applications is proposed in Section 4. The case study and

conclusion are given in Section 5 and Section 6, respectively.

2 Related work

There are some research works with model-based approach

for designing embedded applications and systems. UML

modeling language is typically used to describe the embedded

system [1], and the paper [5] developed a model based

approach called MARMOT. MARMOT’s product and

process models facilitate component-based structuring and

reuse in embedded systems. It states that UML is a powerful

tool to apply object-oriented and component-based design.

J. C. Maeng et. al. [3] introduced RTOS API translator using

a model-driven approach. This approach derives generic

RTOS APIs from application behavior model, and then RTOS

specific code is produced by API translator. Z. Karakehayov

[6] presented a hierarchical design model for large and

complex distributed embedded systems. M. Muller et. al. [7]

proposed RTOS-aware modeling for embedded systems,

which is to refine highly abstract application models

automatically with platform characteristics. This approach

requires automatic calculation and instrumentation of

software runtimes. They made achievement in developing a

model-based approach for embedded systems. However, it is

not easy for normal developers to adapt them to real

 This work was supported in part by the IT R&D program of Ministry of

Knowledge Economy/Institute for Information Technology Advancement,
Republic of Korea under Grant no. 10035470 “Development of

Audio/Video Group Communication System Platform in Mobile Ad-hoc

Environment.

Int'l Conf. Embedded Systems and Applications | ESA'12 | 57

embedded systems directly, because they require additional

tasks like making translator or instrument software codes.

In this paper, what we are trying to do is not to develop a

modeling language such as UML nor a generalized designing

process in developing embedded applications. Instead, we

describe the development process of a large embedded

application based on our proposed two-step model on a

specific RTOS and show how it works in developing real

embedded system by a case study. This is the difference

between our work and the rest of the other works.

3 AVOS

In this section, we introduce our RTOS, referred to as

AVOS. Our model can be adapted to any kinds of RTOS, but

it is always good to have a reference for illustration. The

AVOS is a small-sized RTOS for 32-bit ARM based

microprocessor. It supports OS APIs corresponding to OSEK

OS APIs and adopts the philosophy of OSEK OS. OSEK is

the international standard for automotive ECUs and well-

defined set of APIs [4]. Though some RTOS supports the

dynamic memory allocation at runtime [10], all system

memory should be reserved before the actual application is

running for more accurate prediction of program behavior.

AVOS keeps minimal sized kernel while supporting network

stack, GUI and file system due to its modularized structure.

Table. 1 Comparison in some part of two OS APIs

AVOS API OSEK OS API

thread_create()

thread_exit()

thread_terminate() TerminateTask()

thread_activate() ActivateTask()

thread_chain() ChainTask()

thread_sleep()

thread_wait()

thread_resume()

get_thread_id() GetTaskId()

get_thread_state() GetTaskState()

event_get() GetEvent()

event_wait() WaitEvent()

os_ctx_sw() Schedule()

But AVOS is slightly different from OSEK OS standard in

that it supports time-sliced round robin task scheduling for

equal priority tasks. OSEK OS supports only round robin

scheduling for these tasks without time-slices. Another

different thing is that it extended OSEK OS API shown in

Table. 1. OSEK OS task terminates only itself with

TerminateTask() function, whereas AVOS thread can

terminate other threads as well with thread_terminate()

function (In this paper, the term thread in AVOS was used as

the similar meaning as the term task in OSEK OS, though

both are not the same in practice).

One way to describe RTOS is to present the state diagram of

thread. The thread state diagram in AVOS is shown in Fig. 1.

The created thread is in suspended state at first with the

NORMAL_START option, and becomes in ready state after

it is activated. For direct activation of thread, the

AUTO_START option can be used. All activated threads are

ready to run and they will eventually run by a scheduler. A

thread can be destructed by calling the thread_exit() function

when it is running.

If a thread terminates, it must call thrad_terminate(SELF) or

thread_chain() to be in the suspended state. The

thread_terminate(SELF) function simply terminates a thread,

whereas the thread_chain() function is a method to designate

the next thread to be activated when a thread terminates. The

thread_wait() function stops the thread control temporarily

before the thread_resume() function is called. The

thread_resume() function starts the program control from the

exact point when it is stopped, but the thread_activate()

function starts the program control from the beginning no

matter where the thread terminates. The thread_sleep()

function lets the thread stop its program control during

desired period of time.

Developing an application in AVOS is very simple like

other RTOS [8][9]. An AVOS application needs os.h header

file and os_init() and os_start() functions in the main()

function. The os_start() function drives the entire operating

system by launching threads. All functions that need memory

allocation, such as thread_create() and alarm_create(), must

be called before the os_start() function. An example of typical

AVOS application programming is shown below in a text box

form. Here, two threads and one alarm are executed. When

the os_start() calls, two threads are automatically activated

due to AUTO_START option. If NORMAL_START option

is used, they will be activated when thread_activate() is called

since the os_start() call. The alarm calls the alarm_callback()

function at every 5 seconds.

Fig. 1 The thread state diagram in AVOS

58 Int'l Conf. Embedded Systems and Applications | ESA'12 |

4 Model

4.1 Common interface of sub-application

As described in Section 3, there are some rules of writing

applications in AVOS, e.g. the placement of os_init() and

os_start() functions. However, when we create a large

application by combining sub-applications, common factors

must be extracted so that they can be used for sub-application

to run with minor modification as well as a single application

to run and be tested. Actually, these factors are the interface

with which each sub-application handles the other sub-

application.

From our observation of AVOS behavior, five common

factors are identified as listed below.

1. sub-application number (sub-application ID)

This number must be kept within a scope of sub-application.

When program control is switching from one sub-application

to another, this number should be changed.

2. init() function

After the os_init() function calls, functions that need

memory allocation may be part of this function. The init()

function in each sub-application must be called only once in a

large application.

3. start() function

When a sub-application starts, this function is called. The

start() function may have various initialization functions(e.g.

drawing a main GUI picture). One purpose of the start()

function is to activate created threads to run the sub-

application.

4. shutdown() function

When one sub-application switches to another sub-

application, the shutdown function is called. This function

terminates all the threads which can be in running state or

ready state. This function may free some allocated resources

for sub-application such as closing some opened sockets or

files.

5. callback() functions

When a sub-application registers a callback function for a

specific RTOS service, the RTOS calls the callback function

for the service. This callback looks like interrupt service

routine in firmware programming. There may be several

callback functions in each sub-application.

In our model, the above five factors will be used to describe

the sub-application. It should be noted that it will be a

problem for compilers for duplicated variable and function

names without declaring them as static local variable and

functions if the same interface function names are used. The

common interface is important for final integration, though

some of them may be empty functions. In a real

implementation, it may be represented as C data structure. As

an example, if an interface data structure INF is defined as a

set of the mentioned variable and functions, a sub-application

should declare INF app_inf = {1, init, start, shutdown,

callback}, where 1 is the sub-application number and the rest

is the function pointers used in the sub-application.

4.2 Modeling sub-application

The sub-application is an application object that has the

common interface. Let the sub-application be simply defined

as A� � �I�, T�, M�	, where I� is the common interface set,

T� is a set of threads used in the k�� sub-application, and

M� is the mapping relationship between functions and

threads, or between threads. The common interface set,

I� � �app���, init, start, shutdown, callback	 , where

app��� is a constant, and init, start, shutdown are the

corresponding interface functions. The callback is a set of

callback functions to be called. In real sub-application, it has

functions and variables much more than the mentioned

interfacing functions. A sub-application may be thread-driven

or not. If the sub-application is not thread-driven, T� � �.

The M� describes the calling relationship between elements

in I� and T�.

An example of a sub-application is depicted in Fig. 2. The

relationship between I� and T� is represented as crossbar.

#include "os.h“

UINT8 tid1, tid2;

UINT8 alid;

void alarm_callback(void)

{
uart_printf("Alarm Callback!\n");

}

void task(void *args)

{
while (1)

{

uart_printf("Task id = %d - Got %d\n", id, i);
delay_ms(100);

}

}

int main (void)

{
os_init();
thread_create(task, NULL, 0, PRIORITY_NORMAL,

AUTO_START, &tid1);
thread_create(task, NULL, 0, PRIORITY_NORMAL,

AUTO_START, &tid2);

alarm_create(alarm_callback, SEC(5), SEC(5), &alid);
alarm_start(alid);

os_start();

return 0;
}

Int'l Conf. Embedded Systems and Applications | ESA'12 | 59

The left side is I�, and the top side is T�, where t ! T�. In

this example, there are four threads, t", t#, t$ and t%. The

numbers in the parenthesis are the priorities for each thread.

The arrow indicates the relation of function calls, and the

black dot on cross means that the relation is only valid here

(e.g. The init() creates four threads). In this example, the start()

function does not involve in threads. This dot representation

is used in order not to draw multiple arrows. The details of

the interface functions and threads were not expressed here

(They may be described in UML). But the advantage of this

model is that it is easy to understand the behavior of the sub-

application at a glance.

4.3 Modeling large application

Let the large application be denoted as L . Then, L �
�A, D, X	 consists of a set A of sub-applications, a set D of

their dependencies and a connecting program X , where

A � �A", … , A�	 , D � �+A , A,, m.| A , A, ! A, m !

�start, terminate		 and X is an additional program code

when constituting a large program by connecting them. The

program code X becomes more important when there is

much interaction among sub-applications for integration.

When sub-applications are merged into a big one, there are

two considerations. One is the code with the main() function

and the other is a callback function distributor (CFD) which

calls every callback functions of each sub-application

whenever RTOS callback is serviced. The connecting

program X � �main, CFD	 is the main() function that is

necessary for RTOS to be initialized and driven when

integrating sub-applications, plus a set of callback function

distributors, denoted as CFD, where CFD � �CFD 	, |CFD| is

the total number of callbacks in A. There may exist the same

callback functions in the sub-application. Each callback

function distributor distributes the RTOS callback to the sub-

application for the corresponding callback. In conclusion, this

X is considered as the shared code for all sub-applications.

When connecting sub-applications, there are two kinds of

dependencies (represented as function calls), start and

terminate. The +A , A,, start. means that A starts A, with

the start() call A, , whereas +A,, A , terminate. means that

A, terminates and the program control is back to A with the

terminate() call in A,. These two are a pair because when one

sub-application starts the other sub-application, when the

other sub-application terminates, the program control usually

goes back to the original sub-application.

Whenever the program control of sub-application is changed,

the sub-application number must be changed. This can be

simply performed by declaring a global variable and inserting

the program statement of assigning the sub-application

number to the global variable in the start() function of the

sub-application. In this way, there exists only one operating

mode restricted by the sub-application number. This plays an

important role in implementing the callback distributor. The

typical callback distributor distributes the OS callback to a

specific callback function according to the sub-application

number, though it is up to the developer how to design the

callback distributor.

 An example of our model is depicted in Fig. 3. Given a

large application L, which consists of six sub-applications,

from A"through A3, and two callback function distributors.

In this figure, callback function distributor 1 distributes one

type of callback to A" and A# , and callback function

distributor 2 distributes 2 type of callback to A$, A4 and A3.

The main() function of the L exists in X, which starts the

RTOS, and then the program control moves to A".

Fig. 2 An example of sub-application model

Fig. 3 An example of an application model (The asterisk

means the first driven sub-application)

60 Int'l Conf. Embedded Systems and Applications | ESA'12 |

With this model we developed, after individual testing of

sub-applications, the integrated testing of the large

application is performed. Each sub-application is running and

tested by adding the main() function. If all sub-applications

are found to be enough reliable and secure with respect to the

program function or memory requirements, they are ready.

When they are merged, there is only one main() function

which calls all init() functions of each sub-applications. Then,

the whole large application is tested and run. This process is

known as the bottom-up integration testing [2] and shown in

Fig. 4. The advantage of this approach is to reduce

development time and cost by using the common interface of

each sub-application.

5 Implementation and case study

To validate our model, we used it for writing a menu-driven

GUI application. The menu-driven GUI application shows the

GUI front page that contains the icons to be selected and

executes the corresponding sub-application. Though it is a

simple form, it is popularly used for developing GUI

applications. It is tested on a Cortex-A8 32-bit

microprocessor board, as shown in Fig. 5, which is a mobile

device with a battery, 2GBytes of flash memory, 512Mbytes

of SRAM, 2.4GHz WiFi chip and 800x480 TFT 24-bit LCD

display.

Our model of the menu-driven GUI application is shown in

Fig. 6. Our application is divided into five sub-applications

(Table. 2). Each sub-application is written in C and use

external variables to call the start() and terminate() functions

in the other sub-applications.

Table. 2 The description of sub-applications

A"

The menu front page (no thread) in which

clicking each icon executes the corresponding

application.

A#

Multi-threaded demo application (7 threads),

in which LCD window is divided into

quadratic sections. In two sections, a ball and a

cube are moving around. The other section is

displaying picture, and the rest is to control

threads freely for demo.

A$

Touch keyboard application (no thread), in

which the key is displayed on the LCD

window, whenever a key is touched.

A%
Game application that breaks blocks (4

threads).

A4

Program demo application (9 threads) which

is the example program of how event driven

program and thread-driven program are

different.

The data structure of the common interface and callback

distributor for sub-applications is represented like Fig. 7. The

callback function in Fig. 7 takes two arguments of x and y as

the touch screen coordinates in LCD. The CFD" is the touch

screen callback functions, and all the sub-applications need

the callback functions as shown in Fig. 6.

The five sub-applications are summarized in Table. 3, and

depicted in Fig. 8. In Fig. 8(a), it is a simple form since no

threads are used in A" and A$, which means that application

is very easy to understand. In case of A#, six threads are

activated by the start() function, and the highest priority

Fig. 4 Testing procedure in application development

Fig. 5 An experimented model of our large application

Fig. 6 An embedded board for experiment

Int'l Conf. Embedded Systems and Applications | ESA'12 | 61

thread T5 is activated by the callback function. If the thread

T5 is activated, lower priority threads stop until it terminates.

Table. 3 The interface description in sub-applications and a

connecting program

 Component Description

A"

app_num 1

init (Empty)

start
Draw the menu window and

icons

shutdown Turn off LCD and device

callback Start a sub-application by icon

A#

app_num 2

init Create 7 threads

start Activate 6 threads

shutdown Call the start() of A"

callback Activate thread 7

A$

app_num 3

init (Empty)

start Draw the keyboard on LCD

shutdown Call the start() of A"

callback Display the touched key

A%

app_num 4

init Create 4 threads

start Draw a ball and blocks for game

shutdown
Activate thread 3 and call the

start() of A"

callback Move the blocking control bar

A4

app_num 5

init Create 5 alarms and 9 threads

start Activate thread 9

shutdown Call the start() of A"

callback Set event 2 of thread 9

X

main

�Initialize OS (os_init())

�Initialize all sub-applications

and call the start() of A"

�Start OS (os_start())

CFD"

Distribute an OS callback to the

sub-application identified by

app_num

Fig. 7 The C data structure of (a) the standard

interface, and (b) the callback distributor

(a)

(b)

(c)

(d)

Fig. 8 An experimented model of sub-applications

62 Int'l Conf. Embedded Systems and Applications | ESA'12 |

Fig. 9. shows the experimented application which consists of

five sub-applications. Fig. 9(a) is the result of the main front

page sub-application with icons, and Figs. 9(b)(c)(d)(e) are

the result of the corresponding sub-applications executed by

clicking the icons. Whenever each sub-application terminates,

the program control goes back to the main front page sub-

application.

6 Conclusion

This paper presents a model-based approach for developing

a large application on RTOS. Our proposed model treats the

large application as a sum of divisible application objects

(referred to as sub-applications), connects the divided sub-

applications with a derived common interface. The sub-

applications are represented by relationship between threads

and the interface functions. It is quite a simple form but an

elegant solution by using the divide-and-conquer approach.

Our two-step model is enough to describe the large embedded

application for development to the level of outline, and is

helpful for performing a collaborative team project.

From our case study, our model was adapted well for menu-

driven GUI application on RTOS. Using this approach, we

could build a large application rapidly with minor

modification of sub-applications. In the future, we will

improve this model and adapt it to another large application

on RTOS that consistently monitors embedded mobile

devices connected by adhoc networks.

7 References

[1] H. Tung, C. Chang, C. Lu, and W. C. Chu, “From

Applications, to Models and to Embedded System Code: A

Modeling Approach in Action”, 10th International

Conference on Quality Software (QSIC), pp 488-494, 2010

[2] M. A. Tsoukarellas, V. C. Gerogiannis, and K. D.

Econolmides, “Systematically Testing a Real-Time Operating

System”, IEEE Micro, pp 50-60, 1995

[3] J. C. Maeng, J. Kim, and M. Ryu, “An RTOS API

Translator for Model-driven Embedded Software

Development”, 12th IEEE International Conference on

Embedded and Real-Time Computing (RTCSA'06), 2006

[4] S. Seo, Sang. Lee, S. Hwang, and J. W. Jeon, “Analysis of

Task Switching Time of ECU Embedded System ported to

OSEK(RTOS)”, SICE-ICASE International Joint Conference,

Oct. 18-2 1, 2006

[5] C. Bunse, H. Gross, and C. Peper, “Applying a Model-

based Approach for Embedded System Development”, 33rd

EUROMICRO Conference on Software Engineering and

Advanced Applications (SEAA 2007), 2007

[6] Z. Karakehayov, “Hierarchical Design Model for

Embedded Systems”, IEEE International Workshop on

Intelligent Data Acquisition and Advanced Computing

Systems: Technology and Applications, September 2009

[7] M. Muller, J. Cerlach, and W. Rosenstiel, “RTOS-Aware

Modeling of Embedded Hardware/Software Systems”, IEEE

International Conference on Computer Design (ICCD), 2010

[8] A. Dunkels, “Protothreads: Simplifying Event-driven

Programming of Memory-constrained Embedded System,” in

ACM Sensys, 2006

[9] S. Bhatti, J. Carlson, H. Dai, J. Deng, J. Rose, A. Sheth, B.

Shucker, C. Gruenwald, A. Torgerson, and R. Han, “MANTIS

OS : An Embedded Multithreaded Operating System for

Wireless Micro Sensor Platforms,” Mobile Networks and

Applications (MONET) Journal, Special Issue on Wireless

Sensor Networks, Aug. 2005

[10] J. Lee, and J. Yi, “Improving Memory Efficiency of

Dynamic Memory Allocators for Real-Time Embedded

Systems”, ETRI Journal, Volume 33, Number 2, April 2011

[11] C. Jang, S. Lee, S. Jung, B. Song, R. Kim, S. Kim, and C.

Lee, “OPRoS: A New Component-Based Robot Software

Platform”, ETRI Journal, Volume 32, Number 5, Oct. 2010

Fig. 9 Result from running the example large

application (the sub-applications (a), (b), (c), (d)

and (e) are from A" through A4, respectively)

Int'l Conf. Embedded Systems and Applications | ESA'12 | 63

Derivative-Based

Quadrature Identification of Channel Delays

Jinming Ge

Vaisala Inc

Louisville, CO 80027, USA

Abstract – Real-time detection of phase or time delay

between two ADC sample channels, especially when

fractional-delay filter is involved, often uses quadrature-

filter, which may not be cost-effective since two filter

channels have to be constructed to deal with each live

ADC sample stream. This paper presents a phase delay

quadrature detection method based on derivatives of the

sample stream. The challenge is to deal with the inherent

detection error of the naïve derivative when high

normalized frequency has to be used in RF/IF

applications. The cause of the error is analyzed, and a

proprietary algorithm is developed to cancel the error at

the critical quadrature crossing boundary, namely 0, ±90

and ±180 degree.

Keywords: phase delay, quadrature, derivative, fractional-

delay filter, real-time, cost-effective.

1 Introduction

The phase of a complex waveform described as

)1(A QjI +=∠φ

can often be obtained by

)2()/(atan IQ=φ

If the waveform is passing through a digital signal processing

(DSP) device: ADC sampled, filtered, two filters (I and Q)

have to be constructed, which may not be cost-effective in

some applications. Fig.1 illustrated a real application, in which

a waveform [1] is received from a radar front-end processing

unit, with wide dynamic range. Since the ADC doesn’t have

enough dynamic range to match the signal’s range, the signal

is “split” into two ADC channels, with one channel deals with

attenuated signal, so the overall system will not saturate when

input signal reaches its highest level. During the pre-

processing, the original signal maybe also has been phase

transformed (separated) in these two channels, besides the

intended gain separation. Before merging into an output signal

that ideally has the same characteristics of the original signal,

both the intended gain separation and unintended phase

separation must be corrected. The phase correction is done

through a reconfigurable fractional-delay finite impulse

response filter (RFDFIR) [2][3], together with a phase

sensitive detection (PSD) module. To construct two separate I

and Q filters for both the high and low gain channels will

significantly increase the implementation cost: the FPGA area

budget within a radar video processing (RVP) [4] device.

Fig 1. An example application where phase detection

with complex filters (I, Q) is not cost-effective.

64 Int'l Conf. Embedded Systems and Applications | ESA'12 |

 A novel real-time detection of phase delay over ±180

degree range without using IQ filter is presented in the

following. Section 2 describes the challenge of using naïve

derivative method, the inherent quardarature detection error

when very high normalized frequency has to be used in radar

IF domain. A proprietary algorithm is used to counter the

naïve quadrature detection error by realizing that it is the

quadrature identification itself instead of the absolute error

affects the accuracy of overall phase detection. Section 3

presents a real-life application result and further discussions

are in Section 4.

2 Derivative-Based Detection

2.1 Fundamentals of Naïve Derivatives

To cover the full range, ±180 degree angle phase

(delay) detection, the quadrature information of the angle

can be derived from the cosine alone. When the angle

detected from asin term (which covers 0~±90 degree) is

known, the actual phase can be deduced as:

)3()asin180(:)asin180(?)0(sin:asin?)0(cos −−−>>=φ

Fig. 2 shows the identification of quadrature. Note that

only the sign of the cosine term, not necessary its accurate

value is needed to identify the quadrature correctly, as long

as the quadrature crossing critical points, namely the ±90

boundaries can be identified uniquely.

 The cos term can be derived by using derivatives of

the incoming waveform stream, especially in baseband

sampling, where the normalized frequency is low, or

equivalently, the ADC sampling frequency is far higher

than signal frequency – as a result, many samples per cycle

can be sampled and used to calculate the derivative; or the

sampling period, T, is relatively very short, as defined

mathematically:

)4(,0,
)sin()sin(

)cos(Tastt
t

ttt
t ∆→∆

∆

−∆+
=

But in RF/IF signal processing, quite often bandpass

sampling, where low sampling frequency is used. Even

processing at aliasing frequency, the normalized frequency

is still very high. Fig. 3 shows an example, where a

60MHz IF signal is sampled at 72MHz. Only 6 samples

per cycle can be obtained even at the relatively lower

aliasing frequency (12MHz). Therefore the assumption in

equation (4) is not valid and considerable error will be

resulted for the derivative, as shown in Fig. 4: the phase

error between the ideal derivative (when T is tiny, shown

in cyan) and the actual one (when T is corresponding to 60

degree, shown in red) is corresponding to about half of the

sampling period.

0 60 120 180 240 300 360
-100

-50

0

50

100

aliasing wave phase (degree) -tick as sample clock

w
a
ve

 m
a

g
n
it
u
d
e

Bandpass Sampling of 60 MHz IF with 72 MHz ADC

Fig. 3. Relative high normalized frequency often used in

bandpass RF/IF sampling, with only few samples per

cycle to be used for derivatives: 60MHz IF (in green),

12MHz (in blue) with dash-line represents sampled wave

while solid line for the analog wave, sample frequency as

72MHZ (every 60 degrees of the aliasing wave)

Fig 2. Quadrature Identification with cosine

Int'l Conf. Embedded Systems and Applications | ESA'12 | 65

2.2 Improved Derivative and Phase Detection

The derivative error is a function of sampling

frequency, as shown in Fig. 4, or more precisely, of

normalized frequency. It is also related to the relative

phase delay itself when used for phase/time delay

detection; in this case, both the sin and cos terms can be

deduced using cross correlation of the two channel waves,

as shown in Fig.1. The derivative error around the critical

boundary-crossing points (i.e. ±90 degree) can be reduced

by using a proprietary algorithm, as shown in Fig. 5.

As indicated in section 2.1, only the sign of cosine

term is used to identify whether the phase is to the left or

right of the qudrature plane (Fig. 2), not the absolute phase

(acos) value, so the results shown in Fig.5 is not surprising.

Although the acos value around the phase 0 and ±180

degree is far off from the actual (about 30 degree error),

but the quadrture (left/right) can still be correctly identified

based on the sign of cosine. For example, around phase

angle 0, the acos produces value as about 30 degree instead

of 0, but the sign of cos(0) and cos(30) are the same, i.e.

positive (+); around the phase ±180 degree, the acos

produces value as around 150 degree instead of 180, but

both have the same sign in terms of cos so they will not

affect the quadrature identification either. Around the

critical ±90 degree, where the sign of cos term is abruptly

switching, the derivative method produces smooth angle

transition, error nearly as zero, as clearly shown in Fig.5.

3 An Example of Derivative-based

Phase Delay Detection

As shown in Fig.1, waveforms from two channels can

have intended gain separation and unintended phase/time

delay separation [1]. The waveforms are shown in Fig.6.

Both the gain and phase delay can be detected and then

adjusted before merging into a wider dynamic range

0 60 120 180 240 300 360
-100

-50

0

50

100

tick as sample clock

w
a
ve

 m
a

g
ni

tu
d
e

Phase Error: Derivative of ADC Samples

Fig 4. The challenge for phase detection from ADC wave

when bandpass sampling with high normalized

frequency. Ideal/ADC wave of the alias 12MHz (in blue

solid/dash); ideal derivative (cos) of 12MHz wave (in

cyan); actual derivative (in red dash) and fitting (in red

dot)

-180 -90 0 90 180
-45

0

45

actual phase delay (degree)

p
h
a
s
e

 d
e

te
c
ti

o
n
 e

rr
o
r

(d
e
g

re
e
)

Phase Delay Detection Error of Two ADC Waves

Fig 5. The phase detection error: cos for quadrature

identification (in blue) and the overall phase detection

error (in cyan). Note that although the acos (in blue) can

have as high as 30 degree absolute error at non-critical 0

and 180 degree, it can still identify the quadrature

correctly since only the sign of cos is used.

0 0.5 1 1.5 2

x 10
4

-100

-80

-60

-40

-20

0

20

40

60

80

100

sample tick

bandlimited radar IF wave before ADC
time series samples

Fig 6. Synthetic radar waveforms of high and low gain

channel of Fig.1 with both gain and phase separations.

66 Int'l Conf. Embedded Systems and Applications | ESA'12 |

waveform.

When derivative-based phase detection is used, the

detected phase are used to generate a new set of FIR

coefficients for both high and low gain channel to make

the filtered output phase aligned before merging – a matter

of simple switch between these two channels to use only

unsaturated output from corresponding channel. One

criterion to judge the accuracy of both phase detection and

correction is the phase noise of the merged waveform –

ideally perfectly aligned. Fig. 7 shows the merged

waveform, with a general noise power (high gain channel

relative to low gain channel) of -60dB.

4 Further Discussions

The accuracy of phase delay detection is

fundamentally based on cross-correlation of two channels,

where the number of total correlated samples used will play

an important role, depending on the channel noise. This is

more important for the derivative-based cosine term

detection than the sine term itself, as seen from equation

(3) at the critical boundary crossing angle ±90 degree.

Besides using more correlated samples, in a closed-

loop system, more iteration may be used to remedy

inadequate accuracy of cosine term detection around the

critical point to control the system in a stable state.

5 References

[1] J. Ge and A. Siggia, Weather Radar Virtual Signal

Generator as Test Bench for Algorithm Development,

The 16th Symposium of Meteorological Observations

and Instrumentation, 92nd AMS Annual Meeting,

New Orleans, USA, 22-26 January 2012

[2] J. Ge, Model and Algorithm for Fractional Delay HPF,

The 2011 International Conference on Scientific

Computing, Las Vegas, USA, 18-21 July 2011

[3] T. Laakso, V. Valimaki, M. Karjalainen and U.

Laine, Splitting the Unit Delay, IEEE Signal

Processing Magzine, Jan., 1996.

[4] RVP900 User’s Manual, Vaisala, Feb., 2010

0 0.5 1 1.5 2

x 10
4

-1.5

-1

-0.5

0

0.5

1

1.5
x 10

4

sample tick

merged wave
time series samples

Fig 7. The merged waveform using derivative-based

phase detection

Int'l Conf. Embedded Systems and Applications | ESA'12 | 67

68 Int'l Conf. Embedded Systems and Applications | ESA'12 |

SESSION

POWER EFFICIENCY AND MANAGEMENT +
TOOLS FOR ENERGY CONSERVATION

Chair(s)

TBA

Int'l Conf. Embedded Systems and Applications | ESA'12 | 69

70 Int'l Conf. Embedded Systems and Applications | ESA'12 |

Optimizing Energy Conservation Using Embedded
Microcontrollers

B. Shaer, A. Fuchs, J. B. Arango and D. A. Craig
Electrical and Computer Engineering Department, University of West Florida

Shalimar, Florida, United States

Abstract – Energy conservation in homes has become
imperative due to rising energy costs, increasing energy
consumption, and a world-wide shift in environmental
protection concerns. Thus, there is a growing demand for new
technologies that will help to provide energy conservation
techniques. Automating the control of energy consumption in
common household devices provides a starting point for
establishing efficient usage. Through use of existing
technologies, consumption statistics and the appropriate
algorithms can be combined with the ability to remotely and
independently control individual devices for the purpose of
energy conservation. The home automation system proposed
in this paper aims to provide a method for monitoring and
controlling energy consuming devices common to households.

Keywords: home automation, energy conservation,
microprocessors

1. Introduction
As the global population continues to increase, the resources
required to sustain the energy demand are growing rapidly.
As a result, countries and institutions around the world are
becoming more aware of the need to conserve energy and are
actively seeking new methods of decreasing per capita
consumption [1].

Energy conservation in households begins with the
homeowner’s understanding of the methods that must be
implemented and the sacrifices that must be made. Some
general examples are: turning off unused lights, purchasing
more energy efficient appliances, and unplugging unused
devices to prevent idle energy consumption. However, these
methods are often viewed as inconvenient and as having little
impact. As a result, the many small contributions required
for energy conservation are often not implemented.

Presently, there are few affordable technologies available to
aid consumers in achieving a balance between energy
conservation and convenience. The key to a solution is the
ability to develop and provide the necessary products and
methods while also establishing a balance between the many
economic, social and environmental concerns.

Environmental concerns lie at the very core of the home
automation system discussed in this paper. Optimizing
energy conservation is directly correlated to decreasing the

use of natural resources and reducing the overall impact on
the environment. By combining the automated control of
devices with a system capable of monitoring consumption,
decreasing energy consumption at the device level can be
easily addressed through the use of software.

As is often the case, economic concerns are a determining
factor in system design. The costs associated with the
process of automating a home currently are much more than
the typical household is willing to spend. While automating
homes during their construction would alleviate much of the
cost, this does not provide a solution for existing homes. A
system must be designed that can be easily retrofitted to
existing homes.

Historically, standardization has been the key to successful
and widespread implementation of new technologies [2, 3].
The proposed design focuses on making use of an existing
wireless standard to develop a system that facilitates the
automated metering and control of devices in existing
households. Through the use of this technology, coupled
with an easy to use graphical user interface, the energy
consumption of individual devices can be monitored and
automatically controlled via customizable algorithms.

The most important constraint of the proposed home
automation system is the desire to design a product that is
price competitive. In addition, the product will need to be
adaptable to varying home designs; updating the entire
electrical system of an existing home is simply not an option
in most cases.

2. Embedded System Overview
The proposed system is the vision of an energy conservation
solution that will provide a user-friendly, reliable, and
accessible product that can be adopted and implemented
wirelessly on a large scale [4-8]. Such a product will offer
end-users the tools necessary to monitor and control the use
of energy throughout their homes. By using well-known and
well-supported open source hardware and software standards,
long term support through existing online communities will
be available.

The current version of the home automation system consists
of a simple 120Vac, 6.3A design. The device plugs in to a
standard 15A receptacle and provides a standard outlet rated
at 6.3A. Electrical measurements (RMS voltage, RMS

Int'l Conf. Embedded Systems and Applications | ESA'12 | 71

current, Apparent Power, True Power, Kw/Hr., and Power
Factor) are taken internally. An internally housed control
relay provides convenient on/off capability at the touch of a
button, while the measurements can be recorded for reference,
or used to automatically control the device. The user can
monitor and control individual devices wirelessly. With the
addition of a gateway, an end user has access to their devices
from anywhere in the world through an internet connection.

3. Design Objectives
The design objectives for the proposed home automation
system encompass hardware and software specifications and
project accessibility and are described more in what follows.

The hardware consists of ZigBee compatible hardware
components [9-11] that are interoperable with ZigBee devices
from multiple vendors. In addition, the hardware requires
minimal user configuration and is reliable and safe for the end
user. The software also is friendly as well as secure and
stable. The project accessibility is ensured through the use
open-source hardware/software and standards

4. Implementation
Development of the proposed home automation system
consists of two distinct sections: hardware and software. The
seamless integration of the two requires the use of the various
tools shown in Figure 1. Hardware level programming is used
to allow for a more intricate interaction among the devices.
The iDigi gateway is programmed with Digi ESP for Python,
an IDE designed specifically for the Python language and the
gateway. Finally, the design of a web interface is made

possible by using Aptana Studio and the HTML and CSS
languages.

4.1 Hardware

The hardware portion of the proposed home automation
system directly interfaces with a variety of devices found in
residences. The ZigBee RF wireless standard enables
communication among individual devices. The system allows
for the voltage, current, power, and energy to be measured at
individual devices in addition to providing the means to
control the device operations. The data obtained from the
devices is transmitted across the ZigBee wireless mesh
network to a gateway, which enables the use of a web-based
user interface. A block representation of the system is shown
in Figure 2.

The current system revision is rated for 120Vac and 6.3A, but
can be easily modified to accommodate other voltages and
larger currents. Through the use of voltage and current
sensing transformers, the wireless metering and control circuit
is interfaced with the line voltage as shown in Figure 3. The
two low voltage power supplies (3.3 and 5 Vdc) are derived
from the 120Vac line. By using a center-tapped, 120/30Vac
transformer, and by connecting the center-tap to ground, two
15Vac waveforms (which are 180° out of phase) are half-
wave rectified to produce a DC voltage. A large capacitor is
incorporated to remove the DC ripple voltage. The two
transformed AC phases can be viewed in Figure 4, while the
DC output is shown in Figure 5. In order to provide constant
DC voltages to the various circuit components, the rectified
DC output was connected to 3.3 and 5Vdc voltage regulators.

Figure 1: Overview of System Design Aspects

72 Int'l Conf. Embedded Systems and Applications | ESA'12 |

Figure 2: Hardware Block Diagram

Figure 3: Voltage/Current Sense and Power Supply

Circuit

The two regulated DC voltages are used to power the PIC
microcontroller, the CS5460A energy metering IC, and an
XBee RF module. The Cirrus Logic CS5460A is an
integrated circuit, designed to measure and calculate energy,
instantaneous power, and RMS voltage/current values for
single-phase applications [12]. These measurements are
obtained from the voltage and current sensing transformers.
The VIN+, VIN-, and IIN+ signals, shown in Figure 3, are
conditioned before being input to the associated input
terminals of the CS5460A. The resistor/capacitor networks
used to condition these inputs are shown in Figure 6.

Data is written to and read from the CS5460A via an on-chip
serial peripheral interface (SPI). Through the use of
Microchip Technology’s PIC16F882 microcontroller [13, 14],
data is read from the CS5460A, interpreted, and formatted.
The PIC16F882 is also interfaced with an XBee RF module
via the PIC16F882 universal synchronous/asynchronous
receiver transmitter module. The XBee RF module [15]
allows data to be transmitted and received by the system, thus
allowing the ability to monitor and control devices at the

individual level. Figure 7 and Figure 8 show the SPI and
USART connections.

Figure 4: Voltage Sense Transformer Output, two AC
waveforms, 180° out of phase

Figure 5: Full Wave Rectifier Output (CH 2)

Figure 6: CS5460A Connections and Sense Conditioning

Circuits

Int'l Conf. Embedded Systems and Applications | ESA'12 | 73

4.2 Software

The various software portions of the home automation system
enable the full energy conserving potential of the system. By
using assembly language to integrate the aforementioned
hardware components with the ZigBee RF standard, the home
automation system becomes a wireless device. Use of an
iDigi ConnectPort X4 ZigBee to Ethernet gateway and the
proper Python programming makes the system internet
enabled. Finally, in order to provide a user friendly interface,
the HTML and CSS programming languages are used to
develop a web-based control interface.

Figure 7: SPI and Data Connections between the CS5460A
and the PIC16F882

Figure 8: USART Connections between the XBee and
PIC16F882

4.2.1 Assembly

The PIC16F882 microprocessor used in the system was
programmed with the Microchip Technology assembly
language, using the PICkit in-circuit debugger and

programmer. In addition, MPLAB IDE and MPASM,
Microchip Technology’s integrated development environment
and assembler, are used to facilitate the development and
testing of the source code. The use of assembly language to
program the microcontroller allowed for a finer control of the
device settings and operations.

The main task of the microcontroller, and thus the assembly
code, is to coordinate the operations of the CS5460A and the
XBee module. In addition, the processing power of the
microcontroller is used to calculate full scale data values,
from the scaled versions recorded by the CS5460A.

When powered on, the PIC microcontroller loads the
internally stored variables and definitions. The next task of the
assembly source code is the initialization of the CS5460A, the
XBee, and the built-in peripheral modules. Once initialized,
the CS5460A performs continuous calculations, and the XBee
module is put to sleep. In future project implementations, the
sleep functions of the CS5460A and the PIC16F882 will be
incorporated.

Further operations of the system are performed by request.
Using the web interface, the system can be asked to cycle the
circuit on and off, or to report the current data values. When a
request is made, the XBee is awakened from its sleep mode to
relay the appropriate messages to and from the PIC16F882. A
data request causes the PIC16F882 to read from the
CS5460A, perform the necessary calculations, and return the
data in a three byte packages. The first byte of each package
is an identifier relating to the data being read (e.g. 0x16 refers
to an RMS current reading). The remaining two bytes are the
full scale values requested. A block diagram of the assembly
code operation is shown in Figure 9.

4.2.2 Python and HTML/CSS

In order to enable internet connectivity to the system, the
iDigi gateway must be programmed to recognize the devices
with which it communicates. In addition, the gateway must
be properly configured to accept data and relay it to the web
interface.

The frontend of the home automation system is a user friendly
GUI, that can be accessed from any internet connection. This
web interface can be hosted by the Google App Engine and
iDigi’s Client Web Service. By using a hosted web service,
the need for server infrastructure within the home automation
system is removed. Customers can use their devices from afar
and check their applications reliably through Google servers.

Some of the items necessary for the development of the web
interface are Digi’s Python Development Environment
(DigiESP), the Python 2.5 programming language, and
Google’s App Engine Software Development Kit.

The iDigi DIA projects include the drivers for the XBee
module. These projects are created with Digi ESP and

74 Int'l Conf. Embedded Systems and Applications | ESA'12 |

uploaded to the ConnectPortX4 Gateway. Creating the
project also enables the remote call interface handler
presentation to enable the gateway to talk to the iDigi
platform.

Figure 9: Assembly Program Flow Chart

A Google Appspot account must be established to use the
servers. After the account is set up, the web interface is
deployed to Google’s servers. When the webpage is enabled,
it is then pointed to the iDigi developer URL, in order to
retrieve the serial data from the ConnectPortX4 Gateway.
Figures 10 and 11 are helpful in understanding how the
languages and development environments are associated.

Figure 10: Python Program Flow Chart

Figure 11: HTML/CSS Program Flow Chart

4.3 Final Design

The first step in completing the final design is implementing
the Cirrus Logic CS5460A IC and associated signal
conditioning hardware as shown in Figure 12. Next, the
PIC16F882 is interfaced with the CS5460A. A crystal
oscillator is used for the CS5460A while the PIC16F882 uses
its internal oscillator. This allows the PIC16F882 to also
provide the serial signal needed to establish SPI
communications. The CS5460A serial timing diagram is
included as Figure 13.

Figure 12: Cirrus Logic CS5460A Typical Connection
Diagram

Figure 13: CS5460A Serial Read and Write Timing
Diagram (SPI)

With the ability to send and receive serial data to and from the
CS5460A, the next design step is to access the various data
registers and to format the data that is transmitted across the
network. The registers of the CS5460A store hexadecimal
data as scaled values, ranging from 0 to 1 and from -1 to 1.
The PIC16F882 processes this data by multiplying the scaled
value by the full scale value. This data is then placed into
temporary variables, in order to be transmitted across the
XBee network.

Int'l Conf. Embedded Systems and Applications | ESA'12 | 75

Before data can be transmitted via XBee, the USART module
of the PIC16F882 needs to be properly initialized. This
involves setting the proper control bits and establishing a baud
rate to control the flow of data. Once the PIC16F882 is
configured to communicate with the XBee via USART, the
system is able to communicate with a local XBee enabled
computer. The next step establishes communications between
the XBee radios and the iDigi gateway. This is a matter of
identifying the various XBee radios by their serial number,
and by uploading a driver that receives and transmits serial
data. The final hardware design is shown in Figure 14.

The final aspect of the home automation system is the user-
friendly frontend. The iDigi development kit that accompanies
the gateway provides access to the Digi Cloud, which allows
the use of Google Apps. A complete web interface using these
resources allows for data logging and plotting as well as a
friendly environment for the user to interact with their smart
devices.

Figure 14: Final Design PCB

5. Conclusions

The proposed home automation system is a new approach to
home energy conservation. The system enables the consumer
to conveniently reduce energy consumption. The easily
incorporated design will allow consumers to retrofit their
homes. As the technologies grow and as the standards are
implemented, it is envisioned that appliances will be available
with the proposed home automation system. Homeowners
will simply log on to their computers and add their new
devices to their home automation networks.

This system will have a significant impact on the home
automation industry in the realm of energy conservation and
environmentalism. The proposed system will merge the
luxury of home automation controls with the necessity of
reducing energy consumption.

6. References
[1] S. I. Rodriguez, M. S. Roman, S. C. Sturhahn, and E. H.

Terry, "Sustainability Assessment and Reporting for the
University of Michigan's Ann Arbor Campus." Internet:
http://css.snre.umich.edu/css_doc/CSS02-04.pdf and
http://axiomamuse.files.wordpress.com/2010/12/sustain
ability_spheres1.png, [3 March 2011]

[2] Institute of Electrical and Electronics Engineers, Inc.,
IEEE Std.802.15.4-2003, "Wireless Medium Access
Control (MAC) and PhysicalLayer (PHY)
Specifications for Low Rate Wireless Personal Area
Networks (LR-WPANs)," New York, IEEE Press, Oct.
2003.

[3] Tasshik. Shon, Yongsuk Park, "A Hybrid Adaptive
Security Framework for IEEE 802.15.4-based Wireless
Sensor Networks," KSII Transactions on Internet and
Information Systems.vol.3, no.6, Dec. 2009.

[4] V. Singhvi et al, "Intelligent light control using sensor
networks," SenSys '05, 2005.

[5] I. F. Akyildiz, W. J. Su, Y. Sankarasubramaniam, E.
Cayirci, "Wireless sensor networks: a survey,"
Computer Networks, vol. 38, pp. 393- 422,Oct.2002.

[6] Heemin. Park, Jeff. Burke,Mani B. Srivastava, "
Intelligent Lighting Control using Wireless Sensor
Networks for Media Production," KSII Transactions on
Internet and Information Systems.vol.3, no.5,Oct. 2009.

[7] Changsu, Suh. Yong Bae, Ko."Design and
Implementation of Intelligent Home Control Systems
based on Active Sensor Networks" IEEE Transactions
on Consumer Electronics, vol.54, no.3, Aug. 2008.

[8] M. Ilyas, I. Mahgoub, and L. Kelly, Handbook of
Sensor Networks: CompactWireless andWired Sensing
Systems. Boca Raton, FL: CRC Press, 2004

[9] ZigBee Alliance, ZigBee Specification. version1.1,
Nov.2006.

[10] Zigbee Alliance, Smart Energy Profile Specification,
version1.0, March.11.2009.

[11] Liu. Yanfei, Wang. Cheng, Yu. Chengbo, Qiao.
Xiaojun, "Research on ZigBee Wireless Sensors
Network Based on ModBus Protocol,"Information
Technology and Applications, 2009. IFITA
'09.International Forum on, vol. 1, pp. 487 - 490, 2009.

[12] "CS5460A: Single Phase, Bi-directional Power/Energy
IC data sheet," Cirrus Logic, Austin, Texas, USA

[13] "PIC16F882 data sheet," Microchip, Chandler, Arizona,
USA

[14] "AN220 - Watt-Hour Meter using PIC16C923 and
CS5460 application note," Microchip, Chandler,
Arizona, USA

[15] "XBee/XBee-Pro ZB RF Modules data sheet," Digi
International Inc, Minnetonka, MN, USA

76 Int'l Conf. Embedded Systems and Applications | ESA'12 |

Low Power Multiplier with Alternative Bypassing
Implementation

Guan-Lin Jiang
Department of Computer Science and

Engineering
National Chung-Hsing University

No. 250, Kuo Kuang Road, Taichung, 402
Taiwan

s9856047@cs.nchu.edu.tw

Tung-Chi Wu

Department of Computer Science and
Engineering

National Chung-Hsing University
No. 250, Kuo Kuang Road, Taichung, 402

Taiwan
phd9704@csmail.nchu.edu.tw

Yen-Jen Chang

Department of Computer Science and
Engineering

National Chung-Hsing University
No. 250, Kuo Kuang Road, Taichung, 402

Taiwan
ychang@cs.nchu.edu.tw

Abstract—As portable devices have become increasingly
popular, power reduction has become an important issue in
device design. Because traditional row-bypassing multipliers
and column-bypassing multipliers use tri-state buffers, they
create the floating-point problem. This problem in turn
increases leakage power consumption. This paper presents a
low power multiplier with an alternative design. The
advantage of this multiplier design is that it does not use
tri-state buffers, and can be used in the row-bypassing method
or column-bypassing method. Based on UMC-90nm
technology, experimental results show that the proposed
multiplier design with column bypassing method reduces
dynamic power by 26.9%, and reduces the leakage power
consumption by 29.96% on average.

Keywords—dynamic power, leakage power, multiplier,
bypassing, floating point problem

I. INTRODUCTION

Given the proliferation of portable electronic devices, and
the batteries they require to operate, low power very large
scale integrated circuits (VLSI) design has become an
important issue. A low power design can extend the operating
time of portable systems, and reduces the cooling and
packaging costs of integrated circuits.

The power consumption of CMOS devices generally
includes two categories. The first category is static power
consumption, which includes gate leakage, sub-threshold
current, and drain junction leakage. Transistor power
leakage has increased exponentially in recent years due to
continued scaling down of the transistor threshold voltage and
transistor size in CMOS technology. The second category is
the dynamic power consumption incurred by charging and
discharging capacitances. The dynamic power consumption of
CMOS circuits can be expressed [1] by

Pdynamic = CLVDD

2P0→1f

where CL is the fan-out capacitance, VDD is the supply voltage,
P0→1 is the probability of switching activities every clock cycle,
and f is the clock frequency. Therefore, reducing the switching
activity can reduce dynamic power consumption.

A multiplier is an important arithmetic operation circuit in
many digital signal processing (DSP) applications including
fast Fourier transform (FFT), discrete cosine transform (DCT),
Histogram Processing, filtering, etc. Because of the high
frequency multiplication in DSP applications, multipliers
cause a lot of power consumption. Therefore, low power
multiplier design is required for power-aware devices.

A conventional array multiplier [2] has higher switching
activity. To avoid redundant switching transitions can reduce
the dynamic power, thus the low power multiplier with the
row bypassing method [3] and the low power multiplier with
the column bypassing method [4] reduce switching transitions
to save dynamic power. Previous designs [5] [6] use the same
bypassing methods, but modify the full adder circuit to reduce
power consumption. Another design is based on a simplified
add operation [7] that combines multiplexers, tri-state buffers,
and other logic gates to form a full adder circuit. Their full
adder circuits design can reduce power consumption because
they use few transistors.
This paper presents a low leakage and low dynamic power

multiplier with alternative bypassing implementation. The rest
of this paper is organized as follows. Section II reviews the
conventional array multiplier design and previous work on
multiplier with bypassing methods. Section III describes the
proposed multiplier design. The Section IV gives simulation
results and analysis. Finally, Section V offers some brief
conclusions.

II. RELATED WORKS

A. Conventional Array Multiplier

Consider two unsigned N-bit binary numbers Y =
yn-1yn-2…y0 and X = xn-1xn-2…x0, which represent the
multiplicand and multiplier, respectively. The numbers Y and
X can be expressed as

Y = � 𝑦𝑦𝑖𝑖2𝑖𝑖
𝑛𝑛−1
𝑖𝑖=0 X = � 𝑥𝑥𝑗𝑗 2𝑗𝑗𝑛𝑛−1

𝑗𝑗=0

The resulting product is defined as follows:

P = Y × X = ∑ ∑ (yixj)2i+j n−1
j=0 n−1

i=0

Int'l Conf. Embedded Systems and Applications | ESA'12 | 77

mailto:s9856047@cs.nchu.edu.tw�
mailto:phd9704@csmail.nchu.edu.tw�

Figure 1 illustrates unsigned 4×4 bits multiplication.

X =

Y =

x3

y3 y2 y1 y0

x2 x1 x0

y0x0y1x0x0y3x0

y0y2y3

y1y2y3

y0y1y2y3

x1x1x1

x2x2x2

x3x3x3x3

p7 p6 p5 p4 p3 p2 p1 p0

y2

y1

y0

x1

x2

Multiplicand

Multiplier

Partial products

Result

Figure 1 Unsigned 4 × 4 bits multiplication

y0x0y1x0y2x0y3x0
y0x1y1x1y2x1y3x1

y0x2y1x2y2x2y3x2

y0x3y1x3y2x3y3x3

FA FA FA

FA FA FA

FA FA FA

FA FA FA

0 0 0

P0P1P2P3P4P5P6P7

Figure 2 A conventional 4×4 array multiplier

Figure 2 shows an implementation of conventional array
multiplier, known as the Braun multiplier [2]. This multiplier
combines three functions: partial-product generation,
partial-product accumulation, and final addition. First,
partial-product generation requires N × N AND gates of two
inputs. Second, partial-product accumulation requires (N− 1)
rows of carry-save adders, in which every row consists of
(N− 1) full adders, and the final addition that contains a
(N− 1) bit ripple-carry adder in the last row is for carry
propagation. Therefore, a N × N bits array multiplier requires
N × (N − 1) full adders.

Because conventional array multipliers have higher
switching activity, one way to reduce dynamic power, is to
avoid redundant switching transitions. The following section
describes two bypassing multiplier designs to reduce dynamic
power, and explains the floating point problem in the original
bypassing multiplier design.

B. Array Multiplier with Row Bypassing
Ohban, et al. [3] proposed an array multiplier with row

bypassing, Figure 3 illustrates their 4×4 bit array structure in
which each modified full adder requires three tri-state buffers
and two 2-to-1 multiplexers.

The row addition can be bypassed, when the bit of
multiplier, xj is 0, 1 ≤ j ≤ n− 1 , it causes all partial
products yixj = 0, 0 ≤ i ≤ n − 1, thus the carry-save adders

can be disabled in the j-th row, and using 2-to-1 multiplexers
transmit the outputs from the (j-1)-th row to the inputs of
carry-save adders in the (j+1)-th row.

For example, if x3 is 0, the carry-save adders in the third
row do not need to be active, and the outputs from the second
row can be transmitted to the carry-save adders in the fourth
row. This design requires extra circuits (shown in the area of
dotted line in Fig. 3) to ensure the correct result of
multiplication, because the rightmost full adder in the third
row is disabled.

y0x0y1x0y2x0y3x0
y0x1y1x1y2x1y3x1

y0x2y1x2y2x2y3x2

y0x3y1x3y2x3y3x3

00 11

FA

00 11

FA

00 11

FA

00 11

FA

00 11

FA

00 11

FA

00 11

FA

00 11

FA

00 11

FA

FAFA FA FA

FA

0

0 00

x1x1x1

x2x2x2

x2

x3x3x3

x3

000

0

0

P0P1P2P3P4P5P6P7

Tri-state buffer

Figure 3 A 4×4 array multiplier with row bypassing [3]

01

FA

01

FA

01

FA

y0x0y1x0y2x0y3x0

y0x1y1x1y2x1
y3x1 000

01

FA

01

FA

01

FA

01

FA

01

FA

01

FA

y0x2y1x2y2x2y3x2

y0x3y1x3y2x3y3x3

FA FAFA

P0P1P2P3P4P5P6P7

y0

y0

y0

y0

y1

y1

y1

y1

y2

y2

y2

y2

Figure 4 A 4×4 array multiplier with column bypassing [4]

C. Array Multiplier with Column Bypassing
 Wen, et al. [4] proposed an array multiplier with column
bypassing, Figure 4 shows their 4×4 bit array structure, in
which the modified full adder only requires two tri-state
buffers and one 2-to-1 multiplexer. This design bypasses
columns of full adders and does not need extra circuits, as

78 Int'l Conf. Embedded Systems and Applications | ESA'12 |

indicated by the dotted line area in Fig. 3. The column
addition can be bypassed, when the bit of multiplicand, yi is
0, 0 ≤ i ≤ n− 2 . This causes all partial products yixj =
0, 0 ≤ j ≤ n− 1, thus full adders can be disabled in the i-th
column. Because disabled full adders may cause incorrect
multiplication results, this design includes an AND gate at the
outputs of the carry-save adder in the last row, as Fig. 4
shows.

01

FA

00 11

FA

xj yi

D E

Ai Bi Ci

Ao Bo Co

in

out

in

out

EN

EN=

Tri-state buffer

 (a) (b)

Figure 5 (a) Full adder cell in the multiplier with the row bypassing method [3]
(b) Full adder cell in the multiplier with the column bypassing method [4]

FA
Ai

Bi

Ci

Ao

Bo

Co

xj

1

0
0n 10n 4000n

Time(s)

V
ol

ta
ge

(v
)

0.5
xj

Ao

Bo

Co

(a)

(b)
Figure 6 (a) Transmission gates in the transistor level are used in the modified
FA cell. (b) The HSPICE software waveform simulates the floating-point
problem

D. Floating Point Problem
Figures 5 (a) and (b) depict modified full adder cells that

can be used in an array multiplier with the row bypassing
method [3] and an array multiplier with column bypassing
method [4], respectively. Because these designs use tri-state
buffers to eliminate redundant signal transitions, they
experience the floating-point problem. In the floating-point
problem, one point does not connect to VDD (supply voltage)
and GND (ground), and makes the current unstable. In Fig. 5,
Ao, Bo, Co, D, and E are floating points, when xj is 0, yi is 0
and the tri-state buffers are turned off.

Consider the case, in Fig. 6 (a), where the initial xj is 1v
(volts), Ai = Ao = 1v, Bi = Bo = 0v, and Ci = Co = 0v, at 0ns to
10ns. At 10ns, xj changes to 0v, Ai changes to 0v, Bi changes
to 1v, and Ci changes to 1v. Because xj is 0v, the
transmission gates are turned off, and Ao, Bo and, Co are
floating points. These points are susceptible to sub-threshold
leakage. From 10ns to 4000ns, because Ai = 0v, Ao = 1v in the
beginning, Ai and Ao have different voltages. This causes the
sub-threshold current to transmit from Ao to Ai, and thus the
Ao voltage drops to near 0v. Conversely, the Bo and Co
voltages drop to near 1v, as Fig. 6 (b) shows.

The floating-point problem, also called the DC power
problem [6], not only causes unstable voltage, but also
prevents transistors in full adder from turning off completely.
This in turn increases power consumption. To solve the
floating-point problem, this study proposes a multiplier design
with alternative bypassing implementation.

III. THE PROPOSED DESIGN

This study proposes a low power multiplier with alternative
bypassing implementation to solve the problem of increase
power consumption when using a tri-state buffer. The basic
idea is to turn off the full adder when the bit of multiplier, xj
or the bit of multiplicand, yi is zero. Figure 7 shows that to
turn off the full adder, a PMOS transistor can be added
between the pull up network of the full adder and power
supply VDD, and a NMOS transistor can be added between
the pull down network of the full adder and ground GND. A
PMOS transistor connects to VDD, because it cannot
efficiently pass GND. A NMOS transistor connects to GND,
because it cannot efficiently pass VDD. This traditional
method, called the “sleep approach” [8] turns off the full adder.
Cutting the power source can reduce leakage power
effectively, and the value in the full adder does not keep the
original state when a full adder is turned off.

Figure 7 shows the proposed modified full adder cell, where
the (a) design can be used in a row bypassing multiplier, and
the (b) design can be used in a column bypassing multiplier.
The operation of (a) design is that when the multiplier bit, xj =
0, a partial product yixj+1 is zero, so the full adder doesn’t need
to operate, we turn off a PMOS transistor and a NMOS
transistor to turn off full adder, and then the partial product
yi-1xj can bypass full adder to the output. The operation of the
(b) design is similar to the (a) design, when the bit of
multiplicand, yi = 0, a partial product yixj+1 is zero, so the full
adder is turned off, and the partial product yi-1xj can bypass full
adder to the output.

Compared with Fig. 5, the proposed design does not use
tri-state buffers, which not only reduces power consumption,
but also solves the floating point problem. Figure 8 shows the
4×4 bit multiplier design with the row bypassing method, and
Fig. 9 shows the 4×4 bit multiplier design with the column
bypassing method.

Int'l Conf. Embedded Systems and Applications | ESA'12 | 79

00 11

FA

xj 01

FA

yi

VDD VDD

GND GND

(a) (b)

yi-1xj

yixj+1 yixj+1

yi-1xj

Figure 7 Proposed modified full adder cell

00 11

FA

FA

y0x1y1x1y2x1y3x1

y0x2y1x2y2x2y3x2

y0x3y1x3y2x3y3x3

00 11

FA

00 11

FA

00 11

FA

00 11

FA

00 11

FA

00 11

FA

00 11

FA

00 11

FA

FAFA

0 1

0

0 1

0
x2 x2x2x2

x3

x3x3x3

y0x0y1x0y2x0y3x0

0 00

0

0

0

0 0

P0P1P2P3P4P5P6P7

x1x1x1

FA

FA

0

Figure 8 Proposed 4×4 multiplier design with row bypassing method

01

FAFAFA

FAFAFA

0101

01 0101

FAFAFA

01 0101

FAFAFA

0 10 1 0 1

0 0 0

y0x0y1x0y2x0y3x0

y0x1y1x1y2x1y3x1

y0x2y1x2y2x2y3x2

y0x3y1x3y2x3y3x3

000

y0

y0

y0

y1

y1

y1

y2

y2

y2

P0P1P2P3P4P5P6P7

Figure 9 Proposed 4×4 multiplier design with column bypassing method

0 1En

In1 In2

In1 In2

Out1

Out1

=

En

Figure 10 A 2-to-1 multiplexer

The multiplier design in Fig. 8 uses the row bypassing
method [3], and needs extra circuits to produce the correct
result. The extra circuits are in the dotted line area. Compare
to Fig. 3, the proposed design uses 2-to-1 multiplexers (see
Fig. 10) to replace original NAND gates, because a 2-to-1
multiplexer consumes less power than a static CMOS NAND
gate. The multiplier design in Fig. 9 uses the column
bypassing method [4]. Compared to Fig. 4, and for the same
reason, the proposed design uses 2-to-1 multiplexers to replace
static CMOS AND gates at the outputs of the carry-save adder
in the last row.

IV. EXPERIMENTAL METHOD AND RESULTS

This section, compares the performance of the proposed
design to a conventional array multiplier, an array multiplier
with row bypassing [3], and an array multiplier with column
bypassing [4]. Because these designs do not change their full
adder structure, their full adders can be replaced by other types
of full adder. In other words, it is possible to use a full adder
that has few transistors to implement these multipliers. All
these designs, use a 40-transistor static CMOS full adder [3],
and 6-transistor 2-to-1 multiplexers, as Fig. 10 shows.

All the multiplier circuits in this study were implemented
using UMC 90-nm process technology using HSPICE with a
supply voltage of 1.0V at room temperature. The length of
every PMOS transistor and NMOS transistor is 80nm, and the
width is 120nm.

This study evaluates the circuit performance of these array
multipliers in terms of average dynamic power, leakage power,
delay, and number of transistors.

In Tables I through to IV, the “Base” is a conventional array
multiplier, with the structure shown in Fig. 2. Design [3]
includes an array multiplier with row bypassing, as Fig. 3
shows. Design [4] is an array multiplier with column
bypassing, as Fig. 4 shows. The proposed design “P1”
includes the row bypassing method, as Fig. 8 shows, while the
proposed design “P2” includes the column bypassing method,
as Fig. 9 shows.

To calculate the average dynamic power, 50 input patterns
were randomly generated for 4x4, 8x8, and 16x16 array
multipliers, respectively. The random input patterns show that
the probabilities of 0 and 1 are both 50%, respectively. Table I
shows dynamic power consumption. Compared to “Base” for
16x16 bit multipliers, design P1 reduces the dynamic power
consumption by 17.16%, while design P2 reduces the dynamic
power consumption by 26.9%. Because design [3] requires
extra circuits, consumes more power.

Table II depicts the area overhead of the transistors.
Compared to design [3], design P1 reduces the transistor area
by 8%. Compared to design [4], design P2 reduces the
transistor area by 4%.

Table III shows the multiplier delay, the delay time is
calculated from least significant bit (LSB) of input change to
most significant bit (MSB) of output change. Designs P1 and
P2 have greater delay than [3] [4], because they have long
charge and discharge path in the full adder.

80 Int'l Conf. Embedded Systems and Applications | ESA'12 |

Tables IV through VI show the leakage power of 4x4, 8x8,
and 16x16 multipliers. The leakage power was calculated for 3
cases. The best case is when all the input data bits are 0, the
average case is when half of the input data bits are 0 and half
of the input data bits are 1, and the worst case is when all the
input data bits are 1.

Tables IV through VI show that [3] and [4] consume more
leakage power in the best case and average case, because they
have floating point problems. In the average case, Table VI
shows that the proposed design P1 reduces leakage power
consumption by 18.12%, and design P2 reduces leakage
power consumption by 29.96%.

TABLE I

DYNAMIC POWER (Watt) of MULTIPLIER

4x4 bits % 8x8 bits % 16x16 bits %

Base 9.18E-06 100.00% 3.18E-05 100.00% 1.05E-04 100.00%

[3] 1.17E-05 127.59% 4.04E-05 127.07% 1.36E-04 128.56%

[4] 8.82E-06 96.14% 3.04E-05 95.69% 9.02E-05 85.53%

P1 1.05E-05 114.62% 3.29E-05 103.43% 8.73E-05 82.84%

P2 8.79E-06 95.82% 2.72E-05 85.48% 7.71E-05 73.10%

TABLE II

Area (transistors) of MULTIPLIER

 4x4 bits % 8x8 bits % 16x16 bits %

Base 576 100.00% 2624 100.00% 11136 100.00%

[3] 816 141.67% 3696 140.85% 15408 138.36%

[4] 684 118.75% 3156 120.27% 13476 121.01%

P1 776 134.72% 3488 132.93% 14480 130.03%

P2 660 114.58% 3044 116.01% 12996 116.70%

TABLE III

 Delay(ns) of MULTIPLIER

4x4 bits % 8x8 bits % 16x16 bits %

Base 1.72E-10 100.00% 1.71E-10 100.00% 1.94E-10 100.00%

[3] 2.67E-10 155.50% 2.42E-10 141.13% 2.67E-10 138.04%

[4] 2.45E-10 142.70% 2.45E-10 142.88% 2.66E-10 137.52%

P1 2.27E-10 132.11% 2.33E-10 135.76% 2.79E-10 144.29%

P2 2.33E-10 135.72% 2.37E-10 138.27% 2.83E-10 146.25%

TABLE IV

 LEAKAGE POWER (Watt) of 4X4 (Bits) MULTIPLIER

Best
Case % Average

Case % Worst
Case %

Base 2.05E-07 100.00% 2.28E-07 100.00% 2.26E-07 100.00%

[3] 4.53E-07 221.04% 3.51E-07 153.77% 2.98E-07 132.18%

[4] 3.75E-07 182.96% 4.43E-07 194.17% 2.57E-07 113.74%

P1 1.31E-07 63.92% 2.42E-07 105.83% 2.98E-07 132.14%

P2 9.47E-08 46.23% 1.67E-07 73.31% 2.54E-07 112.50%

TABLE V

LEAKAGE POWER (Watt) of 8X8 (Bits) MULTIPLIER

Best
Case % Average

Case % Worst
Case %

Base 9.41E-07 100.00% 1.02E-06 100.00% 9.96E-07 100.00%

[3] 2.19E-06 232.55% 1.70E-06 167.78% 1.23E-06 123.86%

[4] 1.85E-06 196.96% 1.86E-06 183.05% 1.10E-06 110.70%

P1 4.54E-07 48.20% 9.37E-07 92.28% 1.23E-06 123.66%

P2 3.40E-07 36.13% 7.24E-07 71.31% 1.10E-06 110.10%

TABLE VI

LEAKAGE POWER (Watt) of 16X16 (Bits) MULTIPLIER

Best
Case % Average

Case % Worst
Case %

Base 4.01E-06 100.00% 4.27E-06 100.00% 4.18E-06 100.00%

[3] 9.49E-06 236.63% 7.26E-06 169.99% 4.87E-06 116.54%

[4] 8.19E-06 204.26% 7.33E-06 171.63% 4.55E-06 108.93%

P1 1.53E-06 38.23% 3.50E-06 81.88% 4.87E-06 116.52%

P2 1.25E-06 31.07% 2.99E-06 70.04% 4.54E-06 108.76%

V. CONCLUSION

This paper proposes a low power multiplier with alternative
bypassing implementation. The advantage of the proposed
multiplier design is that it does not require the use of tri-state
buffers, and can be used in the row bypassing or column
bypassing methods. Based on UMC-90nm technology,
experimental results show that the proposed 16x16 bit
multiplier design with row bypassing method reduces dynamic
power by 17.16%, and reduces the leakage power
consumption by 18.12% on average. The proposed 16x16 bit
multiplier design with column bypassing method reduces
dynamic power by 26.9%, and reduces the leakage power
consumption by 29.96% on average.

REFERENCES
[1] Jan M. Rabaey, Anantha Chandrakasan, and Borivoje Nikolic.

(2003)“Digital Integrated Circuits A Design Perspective,” second
edition, Prentice Hall

Int'l Conf. Embedded Systems and Applications | ESA'12 | 81

[2] I. S. Abu-Khater, A. Bellaouar, and M. Elmasry, “Circuit techniques
for CMOS low-power high-performance multipliers,” IEEE J.
Solid-State Circuits. vol. 31, pp. 1535-1546, 1996

[3] J. Ohban, V.G. Moshnyaga, and K. Inoue, “Multiplier energy reduction
through bypassing of partial products,” Asia-Pacific Conf. on Circuits
and Systems. vol.2, pp. 13-17. 2002.

[4] M. C. Wen, S. J. Wang and Y. M. Lin, “Low power parallel multiplier
with column bypassing,” IEEE International Symposium on Circuits
and Systems, pp.1638-1641, 2005.

[5] Y. T. Hwang, J. F. Lin, M. H. Sheu, and C. J. Sheu, “Low Power
Multiplier Designs Based on Improved Column Bypassing Schemes,”

IEEE Asia Pacific Conference on Circuits and Systems, pp. 594-597,
2006

[6] Y. T. Hwang, J. F. Lin, M. H. Sheu, and C. J. Sheu, “Low Power
Multipliers Using Enhanced Row Bypassing Schemes,” IEEE
Workshop on Signal Processing Systems, pp. 136-141, 2007

[7] J. T. Yan, Z. W. Chen, “Low-cost low-power bypassing-based
multiplier design,” IEEE International Symposium on Circuits and
Systems, pp. 2338-2341, 2010

[8] Se Hun Kim ; Mooney, V.J “Sleepy Keeper: a New Approach to
Low-leakage Power VLSI Design,” IFIP International Conference on
Very Large Scale Integration, 2006

82 Int'l Conf. Embedded Systems and Applications | ESA'12 |

Performance, Power and Area Exploration of Cache for
Embedded Applications

Mehdi Alipour1, Esmaeil Zeinali Kh.2, Kamran Moshari2, and Ensiyeh S. F. Moghaddam1

1Allameh Rafiei Higher Education Institute of Qazvin, Iran
2Dept. of Electrical, Computer, and IT Engineering,Islamic Azad University, Qazvin Branch, Qazvin 34185-1416 Iran.

mehdi.alipour@qiau.ac.ir, mehdi_10f@yahoo.com

Abstract-Power dissipation, and the resulting heat issues, has
become possibly the most critical design constraint of modern
and future processors that contain caches. This concern only
grows as the semiconductor industry continues to provide
more transistors per chip in pace with Moore’s Law. Industry
has already shifted gears to deploy architectures with multiple
cores, multiple threads , and large caches so that processors
can be clocked at a lower frequency and burn less power,
while still getting better overall performance. Controlling
power and temperature in future multi-core and many-core
processors will require even more novel architectural
approaches. In this paper we find out the optimum
performance per power consumption points for cache sizes
based on design space exploration using a new energy model
considering dynamic and leakage energy of cache for
embedded applications. Full exploration is performed based
on different parameters to find out the optimum and best
cache configuration. Results show that in different feature
sizes 30% of static power and 43 % of total power of an
embedded core is consumed in the cache hierarchy in average.
It means based on this work in smaller feature sizes and for
embedded application that can tolerate performance lose up to
3%, we should select smaller cache hierarchy to deliver better
performance per power as the most important parameter in
designing embedded systems.
Keywords: Embedded processor; design space exploration;
cache; power consumption; area; MIPS

1 Introduction
 Embedded systems are designed to perform dedicated

functions often with real-time computing constraints. While a
general-purpose computer is designed to be flexible and meet
a wide range of end-user requirements. Embedded systems
are used to control many devices in common use today [1],
such that more than 10 billion embedded processor have been
sold in 2008 and more than 10.75 billion in 2009 [2]. In
embedded processors, generally there are on-chip caches and
usually, the major part of chip area is used by cache (more
than 50% [3]) and 80% of processors transistor budget is
consumed in caches [4].

On the other hand, although cache is primarily used to
overcome the performance gap between processor and main
memory [5, 6], however, researches show that in processors,
the major part of energy is consumed in caches [6-14]. Hence,
the methods which lead to optimum performance/power ratio

for embedded processors will be applicable. Design space
exploration is one of the most used approaches in this field [9,
11, 15-17, 19, 20]. However, the previous explorations didn’t
have any constraints on the cache size and some of them
explored one level of cache or only considered data or
instruction cache or didn't consider power consumption. In
this paper we introduce a model that considers a range of
parameters that contribute in total energy consumption.
 Author of [20] introduce an optimum cache-size ranges for
embedded applications. Their results show the cache sizes in
which the selected embedded applications reach the highest
performance (best cache size) and in this paper we answer to
these questions: 1-In which cache sizes embedded
applications reach the highest performance in the lowest
energy (optimum cache size)? 2-What is the effect of leakage
energy on the exploration of the cache size for embedded
applications? Cache size ranges of [20] have many
configurations and their exploration is just based on
performance. While as mentioned above the power
consumption is as important as performance in embedded
processors.

In this paper we reduce the search space and introduce
the cache sizes which have the optimum size i.e. the best
performance per power for embedded applications by
considering the energy consumption of each introduced
configuration of [20]. W. T. Shiue et al. [12] introduced an
algorithm for finding the optimum cache configuration
considering the cache size, energy consumption and the
cycles required for executing the applications. In [13] an
analytical model to compute the power consumption of a
cache is presented.

Authors of [16, 17] presented a formula to compute the
energy consumption of cache but they didn't consider the
number of cache accesses. There is no parameter that shows
the effect of cache misses on the leakage power. In [16] the
authors have presented a model for exploring energy
consumption but just considering hit rate.

Although [19, 20] explored wide ranges of parameters
such as size of the cache, block size and associatively that
affects the performance and their results show that bigger
sizes does not deliver better performance all the time,
however, they didn't consider power in selecting the cache
sizes that deliver optimum performance per power which is
one of the most important parameters in embedded
applications. In this paper we reduce the search space of a
DSE of cache for various embedded applications considering

Int'l Conf. Embedded Systems and Applications | ESA'12 | 83

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/k/Kh=:Esmaeil_Zeinali.html�
mailto:mehdi.alipour@qiau.ac.ir�
http://en.wikipedia.org/wiki/Real-time_computing�

a wide range of parameters to calculate the energy
consumption of the cache based on the performance analysis
of [20].

The aim of this research is to explore the optimum range
of cache size for embedded applications based on the
performance, area and power constraints considering feature
size effects that has not studied deeply enough.

2 Performance analysis
 This part is based on [20]. Authors of [20] did an

exhaustive exploration of cache size for embedded
applications considering the performance and introduced the
cache size that produces lowest cycles for running an
embedded application. Their research showed that there is
a range for L1 and L2 caches that can be applied for
embedded applications. They showed that although
performance is improved by increasing the cache size,
however, over a threshold level performance is saturated
and then decreased.

Their proposed ranges for cache size are too big so in

this paper by considering another important parameter of
embedded processors i.e. power or energy consumption,
the range is reduced and just a few cache sizes for
embedded applications are introduced. Exploration of [20]
reduced 300 cache configurations to 36 configurations (6
sizes for L1 and 6 sizes for L2). In this paper we make
more reduction on cache size configurations that have to
be explored, by considering both dynamic and static power
consumption of each configuration using the cache power
model introduced in next section.

The proposed exploration in [20] has calculated the best

cache size for each application based on performance.
From now we call this point of cache size the highest cache
performance (HCP). HCP point produces the lowest cycle
simulation and HCP of all selected embedded applications
from [21-22] are shown in figure1.b in the right most
column. Author of [19] did somehow the same research.
However, neither [19], nor [20] considered the power
constraints of cache which are very important in embedded
processors.

3 Power analysis

For calculating the power consumption of each
configuration we have proposed the following model. Total
energy that is consumed by a hardware module (here a cache)
is calculated by adding total dynamic and static energy.
Dynamic energy is related to the supply voltage, module
activity, output capacitance, and clock frequency.

Et =Etd+ Ets . (1)

Where, Et is total energy dissipation, Etd equals to total
dynamic energy and Ets is total static energy. Any access to

cache is for reading or writing, so Etd is affected by both reads
and writes, so:

Etd = Edr + Edw . (2)

Where Edr and Edw are dynamic read and write energy
dissipation, respectively. In our exploration we explore the
cache memory in all levels including instruction cache level-1
(L1), data cache level-1 (D1) and unified cache level-2 (L2).

Edr is related to the number of reads (Nread) from all caches
(number of read multiply by dynamic read energy of cache),
so:

Edr = [Nread(L1) * Edr(L1)] + [Nread(D1) * Edr(D1)]+ [Nread(L2) *

Edr(L2)] + [Nread(Maim_memory) * Edr(Main_memory)]. (3)

And,

Edw = [Nwrite(L1) * Edw(L1)] + [Nwrite(D1) * Edw(D1)] + [Nwrite(L2) *

Edw(L2)] + [Nwrite(Main_memory) * Edw(Main_memory)]. (4)

Where, Nwrite is the number of writes and for example Edw(D1)
is equal to the dynamic write energy of D1. On the other
hand, Ets is calculated from accumulating the consumed static
energy (Es) of all caches. In case of a cache miss, miss penalty
which is related to the idle cache must be tolerated by the
system. In this way, for a cache, miss penalty is considered as
the cycles which are required for accessing the lower layer
cache). Therefore:

Es= [(Nmiss * miss penalty (cycle)) + idle cycles]

 *static energy per access (5)

And,

Ets=Es(L1)+ Es(D1)+ Es(L2). (6)

To use this power model effects, we have used CACTI

5.0 [18], a tool from HP that is a platform for extracting
parameters relevant to cache size considering fabrication
technology. Most important parameters that are used in this
research are listed in table 1. Based on this proposed model,
each access consumes some energy considering the cache
configuration and miss penalty. Although any access may lead
to a miss or hit, however, any events cause some energy
dissipation [17].We have calculated the energy consumption
of each cache configuration by using the proposed model,
which considers the effect of all parameters i.e. number of
cache misses/hits, access time of cache, cache level, type of
access (read or write), and static/ dynamic energy on the
energy dissipation of the cache. By using this power model
we can see that there is good overlapping cache sizes for
selected heterogeneous embedded applications that can be
seen in fig.1.a.

84 Int'l Conf. Embedded Systems and Applications | ESA'12 |

Fig.1. a) overlaping rang based on HCP and LCE, b)HCP & LCE points, c) perfromance penalty of each cache configuration

Based on the performance and energy analysis results, we

introduce two best points for cache configuration. These
points are Highest Cache Performance (mentioned before as
HCP) and Lowest Cache Energy (LCE). LCEs are for cache
size that creates the lowest energy consumption for each
application. HCP and LCE are shown in fig.1.b. Results of
this figure show that for all applications, size of LCE is
smaller than HCP so, LCE and HCP are the left and right
margins of the cache size range, respectively, and they
introduce a range for L1 and L2 considering both
performance and energy consumption. Based on figure 1,
L1 (L2) range is from minimum L1 (L2) size for LEC
column to maximum L1 (L2) size for HCP column.

Table 1. Important parameters we have applied for running CACTI[18].

L1 cache L2 cache

Cache size, Cache line size,

Associatively
Variable Variable

Number of banks 1 1

Technology node (nm) 90nm 90nm

Read/write ports 1 1

Exclusive read ports 0 0

Exclusive write ports 0 0

Change tag No No

Type of cache Fast normal/serial

Temperature (K) 300-400 300-400

RAM cell/transistor type in

data array
ITRS-HP Global

RAM cell/transistor type in tag

array
ITRS-HP Global

In this way and based on fig.1 L1 ranges are from 8KB
to 128KB and L2 ranges from 16KB to 128KB. These
ranges specify an important point: any size for L1 and L2
out of this range is not recommended because the right side
of these ranges leads to the maximum performance and the
left side have the minimum power consumption for caches
in selected embedded applications. For each application, in
the LCE point, highest performance penalty (minimum
performance) in lowest energy will be achieved and HCP
point, leads to the highest performance in highest energy
dissipation.

Based on proposed power model, 36 cache

configurations of [20] will be reduced to 12 by using the
overlapping method of fig.1.a. All extracted 12 cache
configuration have listed in fig.1.c and performance
penalty of each one related to configuration have shown in
fig1.c in the right most column. Configuration number 5 is
the best one considering but just performance parameter.

4 Analysis of 12 nominated cache configuration

Power, area, and timing need to be studied together
more than ever as technology keeps scaling down.
However, our ability to propose, design, and evaluate new
architectures for this purpose will ultimately be limited by
the quality of tools used to measure the effects of these
changes. Accurately modeling these effects also becomes
more difficult as we push the limits of technology.

Future multi/many-core designs drive the need for new
tools to address changes in architecture and technology.
This includes the need to accurately model multi-core and
many-core architectures, the need to evaluate power, area,
and timing simultaneously, the need to accurately model
all sources of power dissipation, and the need to accurately
scale circuit models into deep-submicron technologies.

Int'l Conf. Embedded Systems and Applications | ESA'12 | 85

 To find the best cache hierarchy for 12 mentioned cache
size configurations, we have explored some other
important parameters using MCPAT [23] tool, an
integrated power, area, and timing modeling framework that
supports comprehensive design space exploration for multi-
core and many-core processor configurations ranging from
90nm to 22nm and beyond. MCPAT [23] can model both a
reservation-station model and a physical register-file model
based on real architectures.

4.1 Leakage power
Fig 2.a shows the percentage of the cache leakage

power related to the selected core for all 12 configurations.
Based on leakage power results, up to 17% of total core
leakage power is consumed in the cache hierarchy. If the
most important parameter for cache configuration selection
is leakage power that has not been considered as a separate
parameter in recent researches, cfg1 in deep submicron
technology is the best cache configuration for selected
embedded applications. Based on the performance results
of MIPS section (figure 2.d) and also [20], this size will
deliver -7.85 performance penalty in average related to the
9th configuration that delivers highest MIPS. So by using
these tradeoffs, designer has to select the best
configuration. So, in the following sections performance
parameters will be calculated to consider such tradeoffs.

4.2 Dynamic power
Fig 2.b shows the percentage of cache dynamic power

related to the core for all 12 configurations. Result of fig
2.a and 2.b together; show that when the selection
parameter is only dynamic power, configuration selection
is harder than when the parameter is leakage power
because, in many configurations, relative percentage of the
cache dynamic power, are the same. According to fig 2.b
and dynamic power consumption, configuration 1 is the
best cache size for selected embedded application. Based
on the dynamic power consumption results, in 90nm
feature size, up to 40% of core dynamic power, will be
consumed in the cache hierarchy.

4.3 Total power
Fig 2.c shows the percentage of the cache hierarchy

total power (leakage + dynamic) consumption related to
the core for all 12 configurations. Here, like the previous
sections, the best cache hierarchy configuration is cfg
number 1, because this configuration consumes the lower
percentage of the core total power. Based on the total
power analysis results, in 90nm, up to 32% of core total
power will be consumed in the cache hierarchy. In another
point of view, performance is also one of the most
important parameters to tune a cache configuration for
embedded application. So the cost functions that consider

both power and performance simultaneously, can deliver
better results. So in the next section we will explore some
important parameters based on power and performance of
all 12 configurations which are more effective for
embedded applications.

4.4 Million instructions per second (MIPS)
As mentioned in previous sections, although power
analysis is one of the most important constraints for
embedded applications however, designers should consider
performance and power analysis together. At first we use
the very popular performance metric called MIPS. MIPS,
is a metric for measuring the execution speed of a
computer's CPU.
Fig 2.d shows the result of comparing MIPS of all 12
configurations. The most important result from this figure
is that MIPS exploration shows that the best configurations
are 5 and 9 e.g. L1=32 and L2=64 and L1=64 and L2=128
KB. So to reach the highest MIPS and in another view
highest performance, designer should select configuration
5 or 9. As mentioned before from one point of view we
want to reach the highest performance per power for
selected embedded applications and from other point of
view we want to consider performance per area.

4.5 Power delay product (PDP) and MIPS per power
Since power consumption varies, depending on the
program being executed, the benchmarking issue is also
relevant in assigning an average power rating. In
measuring power and performance together for a given
program execution, we may use a fused metric such as the
power-delay product (PDP) or energy-delay product
(EDP). In general, the PDP-based formulations are more
appropriate for low-power portable system in which
battery life is the primary concern of energy efficiency.
PDP, being dimensionally equal to energy, is the natural
metric for such systems. Lower PDP means better
architecture for such kind of systems.

Fig 2.e shows the results of PDP exploration for all 12
configurations. Interesting results based on this table is that
between all configurations the minimum PDP is reached in
configuration 5 (L1=32, and L2=64KB). MIPS per power
metric is the inverse of PDP formulation, where delay
refers to average execution time per instruction.
Configurations with higher MIPS per power are good
choices for embedded systems. Results of this parameter
can be seen in figure.2.f. Based on this figure and PDP
results configurations 1 to 5 deliver better MIPS per power
and the best configuration in different explored feature
sizes is configuration 5.

86 Int'l Conf. Embedded Systems and Applications | ESA'12 |

 Fig 2.a. leakage power analysis. Fig 2.b. dynamic power analysis.

Fig 2.c. Total power analysis. Fig 2.d. MIPS analysis.

 Fig 2.e. PDP analysis. Fig 2.f. MIPS per power analysis.

 Fig 2.g. Area analysis. Fig 2.h. MIPS per area analysis.

Figure2. Analysis of 12 cache configurations related to the core

Int'l Conf. Embedded Systems and Applications | ESA'12 | 87

4.6 Area analysis
Area remains one of the key design constraints to keep the
cost of designs under control because die costs are
proportional to the second power of the area. At very small
feature sizes, little margin exists between design rules and
manufacturing process variations, leading to an average
5% decrease in expected die yield with each successive
technology node for mature IC designs [23]. Therefore, on-
chip resources including cores, caches and interconnects
must be carefully designed to achieve good trade-offs
between performance and cost.

Also as mentioned before area is one of the most important
parameter for embedded applications. By changing the
configuration of cache hierarchy, area cost of embedded
cores will change. Result of fig 2.g shows the effect of
changing of this parameter. Like power analysis results,
the best point for all feature sizes is configuration 1. But
there is more important result from this table. Based on
analysis results, in 90nm up to 76% of core area will be
occupied in the cache hierarchy. Another important factor
in embedded system design is, MIPS per area parameter.

This parameter shows the area efficiency of different
configuration considering a limited area budget for multi-
core embedded designs. Fig 2.h shows the exploration of
MIPS per area for all 12 mentioned cache hierarchy. Based
on this table maximum MIPS per area will be created in
configuration 1 but, based on performance analysis section
this configuration has -7.8% performance penalties for all
selected embedded applications (as mentioned before).

5 Conclusions
In this paper we used a cache energy model considering
both dynamic and static energy. By using these design
space exploration and energy model, we introduced 2
points for cache sizes of embedded applications called
HCP and LCE that are the best point considering
performance and energy, respectively. Considering these 2
points we introduced optimum ranges for cache size and
made a reduction of search space from 36 to 12
configurations of L1 and L2 cache sizes by using very
simple but efficacious algorithm. After that we did a multi
objective exploration for 12 extracted cache configurations
considering most important parameters in designing future
processors such as leakage and dynamic power, MIPS,
power product delays and area cost related to an embedded
core that has not considered in previous researches.
Results show that in average, in 90nm, up to 17% of whole
static power of an embedded core consumed in cache
hierarchy. Also in average, in 90nm up to 40% dynamic
power and up to 32% of total power of an embedded core
consumed in cache hierarchy. Based on MIPS exploration,
cache hierarchy that apply L1=32KB and L2=64KB will

deliver highest MIPS between all 12 cache configuration
for selected embedded applications. Interesting point is
that configuration 5, also deliver minimum power product
delay (PDP) that is one of the most important parameter in
designing modern processors. Area analysis shows that up
to 76% of core area will be occupied in the cache
hierarchy in 90nm. MIPS per power analysis like power
analysis, encourages the designer to use smaller cache
sizes.

In the future we will do these explorations for future
feature sizes considering more detailed parameters like
thermal and hot spots and put all together to show the best
cache size for embedded applications considering more
than 8 parameters simultaneously.

6 References
[1] Daniel D. Gajski, Samar Abdi, Andreas Gerstlauer and
Gunar Schirner, "Embedded system design, modeling,
synthesis and verification", springer 2009.

[2] Embedded processors top 10 billion units in 2008,
available online at:
http://www.vdcresearch.com/_documents/pressrelease/press-
attachment-1503.pdf

[3] Jong Wook Kwak, Ju Hee Choi, "Selective access to filter
cache for low-power embedded systems," 43rd Hawaii
International Conference on System Sciences (HICSS), pp. 1-
8, 2010.

[4] P. Ranganathan, S. Adve ,and N. P. Jouppi,
“Reconfigurable caches and their Application to Media
Processing,” Proceedings of the 27th International
Symposium on Computer Architecture, pp. 214-224, 2000.

[5] David A. Patterson, John L. Hennessy, Computer
organization and design: the hardware/software interface,
Morgan Kaufman, 2007, 4th edition.

[6] D. Patterson and J. Hennessy. Computer architecture: a
quantitative approach, Morgan Kaufman, 2007, 4th Edition

 [7] C. Chakrabarti, "Cache design and exploration for low
power embedded systems,'' IEEE International Conference on
Performance,Computing, and Communications,pp. 135-139,
2001.

[8] D.A.M. Dioquino, K.J.S. Rosario, H.F. Supe, J.V.
Zarsuela, A.P. Ballesil, J.A. Reyes, "DLX HOTOKADA: A
Design and Implementation of a 32-Bit Dual Core Capable
DLX Microprocessor with Single Level Cache'', 15th IEEE

88 Int'l Conf. Embedded Systems and Applications | ESA'12 |

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5428222�
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5428222�
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6892�

International Conference on Electronics, Circuits and
Systems, pp. 466-469, 2008.

[9] A. Gellert, G. Palermo, V. Zaccaria, A. Florea, L. Vintan,
C. Silvano, "Energy-Performance Design Space Exploration
in SMT Architectures Exploiting Selective Load Value
Predictions," Design, Automation & Test in Europe
Conference & Exhibition (DATE), pp. 271-274, 2010.

 [10] V. Romanchenko, "Quad-Core Opteron: architecture and
roadmaps," Digital-Daily.com, 2006.

[11]S.K. Dash, T. Srikanthan, "Instruction Cache Tuning for
Embedded Multitasking Applications," IEEE/IFIP
International Symposium on Rapid System Prototyping, pp.
152-158, 2009.

[12] W.-T. Shiue and C. Chakrabarti, “Memory exploration
for low power, embedded systems,” in Proceedings of the
36th Annual ACM/IEEE Conference on Design Automation,
pp. 140-145,New Orleans, La, USA, 1999.

[13] M. B. Kamble and K. Ghose, “Analytical energy
dissipation models for low power caches,” in Proceedings of
the International Symposium on Low Power Electronics and
Design, pp.143-148, Monterey, Calif, USA, August 1997.

[14] T. M. Taha and D. S.Wills, “An instruction throughput
model of superscalar processors,” IEEE Transactions on
Computers, vol. 57, no. 3, pp. 389-403, 2008.

[15] T. S. R Kumar, C.P. Ravikumar, and R. Govindarajan,
“Memory Architecture Exploration Framework for Cache
Based Embedded SoC, VLSI design, pp. 553-559, 2008.

[16] M.Y. Qadri, and K.D.M. Maier "Data Cache-Energy and
Throughput Models: Design Exploration for Embedded
Processors," EURASIP Journal on Embedded Systems, 2009.

[17] Abel G. Silva-Filho, Filipe R. Cordeiro, Cristiano C. Ara
´ujo, Adriano Sarmento,Millena Gomes, Edna Barros, and
Manoel E. Lima, "An ESL Approach for Energy
Consumption Analysis of Cache Memories in SoC
Platforms," International Journal of Reconfigurable
Computing, pp. 1-12, 2011.

 [18] Shyamkumar Thoziyoor, Naveen Muralimanohar, and
Norman P. Jouppi, "CACTI 5.0 technical report," form
Advanced Architecture Laboratory, HP Laboratories HPL-
2007. Available online: www.hpl.hp.com/research/cacti/

 [19] Przybylski, S.; Horowitz, M.; Hennessy, J. "
Performance tradeoffs in cache design", 15th annual
international symposium on computer architecture, (ISCA 88)
pp. 290-298 , 1988 .

[20] Mehdi Alipour and Mostafa E. Salehi "Design Space
Exploration to Find the Optimum Cache and Register File
Size for Embedded Applications", 9th Int'l Conf. Embedded
Systems and Applications, Pp. 214-219, ESA', July 18-21,
2011.

[21] Ramaswamy, Ramaswamy. Tilman, Wolf,
“PacketBench: A tool for workload characterization of
network processing,” in Proc. of IEEE 6th Annual Workshop
on Workload Characterization, pp. 42-50. Oct. 2003.

[22] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin,
T.Mudge, and R. B. Brown, “MiBench: a free, commercially
representative embedded benchmark suite,” in Proceedings of
the IEEE InternationalWorkshop onWorkload
Characterization, pp. 3-14, 2001.

[23] Sheng Li, Jung Ho Ahn, Jay B. Brockman,and
Norman P. Jouppi"McPAT 1.0: An integrated power,
area, and timing modeling framework for multicore
architectures," available online at:
http://www.hpl.hp.com/research/mcpat/McPATAlpha_
TechRep.pdf.

Int'l Conf. Embedded Systems and Applications | ESA'12 | 89

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5450668�
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5450668�
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5158481�
http://www.hpl.hp.com/research/cacti/�
http://www.ecs.umass.edu/ece/wolf/pubs/2003/wwc.html�
http://www.ecs.umass.edu/ece/wolf/pubs/2003/wwc.html�
http://www.hpl.hp.com/research/mcpat/McPATAlpha_TechRep.pdf�
http://www.hpl.hp.com/research/mcpat/McPATAlpha_TechRep.pdf�

90 Int'l Conf. Embedded Systems and Applications | ESA'12 |

SESSION

REAL-TIME SYSTEMS + EMBEDDED MODULES

Chair(s)

TBA

Int'l Conf. Embedded Systems and Applications | ESA'12 | 91

92 Int'l Conf. Embedded Systems and Applications | ESA'12 |

Dependability Driven Feedback Control Scheduling for Real
Time Embedded Systems

Oumair Naseer1, Arshad jhumka2, Atif Ali Khan3,
1,2Department of Computer Science, University of Warwick, Coventry, UK,

3School of Engineering, University of Warwick, Coventry, UK,
 1O.naseer@wariwck.ac.uk, 2H.A.Jhumka@wariwck.ac.uk, 3Atif.khan@warwick.ac.uk

Abstract— Use of Feedback Control Scheduling Algorithm
(FCSA) in the control scheduling co-design of real time
embedded system has increased since some years ago, to
provide the Quality of Service (QoS) in terms of overall CPU
performance and resource allocation in open and
unpredictable environment. FCSA uses control feedback loop
to keep CPU utilization under desired unitization bound by
avoiding overloading and deadline miss ratio. FCSA design
methodology is based on the principles of separation of
concerns and doesn’t guarantee that the Safety Critical (SC)
tasks will meet their deadlines in the presence of faults. In
order to provide the services that can justifiability be trusted,
dependability has to be integrated in the control scheduling
co-design of real time embedded systems. This paper
presented a novel methodology of designing a dependability
driven feedback control scheduling for real time embedded
systems. This procedure is important for control scheduling
co-design for real time embedded systems.

Keywords: Dependability; Real time; Embedded System;
Quality of Service; Feedback based control scheduling;
Control Scheduling Co-design.

1. Introduction
Since some years ago, use of control theory in real time

embedded systems design has increased massively, and this
trend keeps on evolving day by day [1]. Due to the large
number of real time constrains and requirements, the
complexity of feedback based control co-design of embedded
systems has increased and over 90% of the embedded
controllers are used to control real time processes and
deceives[2]. Scheduling is the key lever in real time computing
system for system performance and resource utilization.
Classical real time scheduling algorithms used in embedded
system design are Rate Monotonic (RM) and Early Deadline
First (EDF). From the control point of view, all these
scheduling algorithms are open loop [10]. Also these
algorithms are designed based on the assumption that mapping
of the jobs/tasks is predefined and Worst Case Execution Time
(WCET) of jobs is known a priori. Due to the open and
uncertain environment, execution time of both safety critical
and non safety critical tasks varies. It is very difficult to predict
the timing constraints of the task before execution. To avoid

this uncertainty, feedback based control scheduling algorithms
are employed in control system co-design of real time
embedded systems [11] [12, 13, and 14]. FCSA combines the
feedback based control theory in hardware software co-design
of embedded systems, so that the available resources can be
used optimally and to increase the overall performance of the
system.

Faults associated to real time embedded systems can occur
either in hardware or in software. These faults are categorised
into (i) transient faults: occur only for a short period of time
and (ii) permanent faults: affects the system everlastingly [4].
Dependability is the ability of the system to perform services
that can justifiably be trusted in open and uncertain
environment. Dependability can be attained by means of (i)
Fault prevention: to prevent the introduction or occurrence of
fault (ii) Fault tolerance: to avoid service failure in the
presence of faults (iii) Fault removal: to reduce the number and
severity of faults and (iv) Fault forecasting: to estimate the
present number, the future occurrence and the likely
consequences of faults. Traditional Fault tolerant schemes are
based on the hardware redundancy [2, 5] and can avoid a single
transient or a single permanent fault, but this method incurs
high hardware cost to add a new functionality. On the other
hand, FT schemes can also be implemented in software. Most
promising FT schemes are; (i) Active replication, in which a
task is replicated on two or processors and replicas, perform the
required services [6]. (ii) Re-execution; in re-execution when a
fault is detected, task is re-executed from the start which
increases execution overhead to a large extent. (iii) Primary
back up; in this scheme each task has a backup whenever a
fault is detected, backup task is executed to perform the
required services

Figure 1: Tradeoffs between different fault tolerant schemes.

Int'l Conf. Embedded Systems and Applications | ESA'12 | 93

(iv) Check pointing [7]; in check pointing Safety Critical task is
divided into n sub-tasks and each sub-task contains a check
point appended by either a programmer [8] or by the compiler
[9]. Fault is detected based on these check points. In case of
fault, there are two options either to roll back or roll forward.
This scheme is helpful in avoiding the transient faults.
However, a combination of active replication and re-execution
Fig. 1(e) provides more optimized system design and better
CPU performance from the scheduling point of view and
thereof provide Fault tolerance under limited resources.

2. Problem Statement
The primary objective of FCSA is to provide QoS in terms

of CPU performance and resource utilization, by keeping CPU
utilization at schedulable bound. However, the design
methodologies of the real time embedded systems having
Feedback based scheduling algorithms are based on the
separation of the concerns [15]. These concerns are derived
from the assumptions that the feedback controllers can be
designed by assuming the fixed predefined mapping, fixed time
period and hard deadlines. These assumptions are widely used
in the control community because they help the control
embedded system designer to design control loops without
concerning the dependability of the over all system in the
presence of faults. This paper presents a new methodology of
attaining a dependability driven Feedback based control
scheduling for real time embedded systems.

3. Related work
 For real time computing systems, a feedback performance

control is presented in [16] which primarily focus on applying
control theory to real time scheduling and utilization control. A
state of the art feedback control scheduling algorithm for real
time computing systems with unknown execution time is
presented in [17] which provide the performance guarantee for
hard real time tasks. Feedback Dynamic Voltage Scaling
(FDVS) method to select proper frequency and voltage for
Fault tolerant hard real time embedded system is presented in
[37]. Author also tries to provide QoS by reducing energy
consumption and satisfying hard real time constraints in the
presence of fault. It also provides a technique to integrate DVS
with Feedback control theory for hard real time computing
systems. An analysis of distributed feedback control with
shared communication and resources utilization for real time
system is addressed in [19]. Fault tolerance scheme check-
pointing for real time embedded systems is integrated in [7]. A
perspective on integrating feedback control and computing for
control scheduling co-design is presented [18]. Control design
for networked control system; a novel approach for designing
feedback based control scheduling for the networked systems,
is addressed in [20]. Up to date control scheduling algorithms
based on Fuzzy logic controller for network control is
presented in [12]. An adaptive neural network based feedback
control scheduling for soft real time embedded systems is
addressed in [13 and 14]. In [11], author provides an approach
to recover system from fault mode for parallel systems using
check-pointing Fault tolerant scheme and control theory. A
Trade offs between reliability/FT and control theoretical
methods are presented in [39]. In [15], author uses a double

feedback based control scheduling approach for real time
systems to optimize system performance. A feedback based
control scheduling for hard real time systems is addressed in
[18], but this work doesn’t address the Fault detection and
Fault recovery mechanism together with feedback control
theory. Feedback based control scheduling co-design approach
for real time embedded systems is presented in [20], this work
shows that closed loop systems are not hard real time systems,
although control systems are more robust in nature and
uncertain to time variations, but they also suffers from time
jitters and data loss. Author also provides different techniques
to model time delays in system suffering from data loss over
network. In [22], author tires to capture the time variation of
Safety Critical (SC) tasks over network for better resource
management and bandwidth utilization in correspondence with
sampling intervals and time delays to achieve QoS in terms of
CPU performance and resource usage. System response in
presence of Fault and recovery schemes for hard real time
systems to achieve dependability in X-by-Wire (XBW)
systems is presented in [29 and 30].

A fault tolerant scheduling for hard real time systems is
addressed in [38], but this work only focuses on maintaining
CPU scheduling with specified scheduling bound by making
sure that SC tasks will meet their deadlines. Moreover, this
work doesn’t capture the state of the task in Fault mode and
provides less information about data loss. To the best of our
knowledge, this is the first work that addresses dependability
and feedback based control scheduling together for real time
embedded systems.

4. System Model
System architecture constitutes a distributed shared

Hardware (HW) platform with a network topology, where
every hardware node can communicate with every other node.
Fig. 2 shows the high level model of the system architecture
and resources elaborating the partitioning concepts. It also
describes the application execution environment, where nodes
are connected through a network bus. Each node has two cores;
one core is completely dedicated for the safety critical tasks
and second one is dedicated for the non safety critical tasks..
Each node has a capability of executing both SC and non SC
tasks. Node resource consists of a CPU, I/O controller; sensors
and actuators, RAM, ROM and a Feedback based scheduling
Controller (FSC). Every node in the system integrated
architecture utilizes the same configuration. Feedback based
control scheduling algorithm is implemented on the top of OS
layer. It is assumed that the allocations of tasks are predefined
and faults can occur at any time.

Figure 2: Integrated system architecture: Jobs of mix-criticality executes on
the same node.

94 Int'l Conf. Embedded Systems and Applications | ESA'12 |

5. Processor Scheduling Model
In order to ensure that all tasks assigned to a particular

processor are schedulable, the processor should be kept under
the scheduling bound. In case of classic real time scheduling
algorithms for example RM in which each task is assigned a
fixed priority and the task with smallest period is assigned the
highest priority. The scheduling can be ensured if CPU
utilization is kept under schedulable CPU utilization
bound 푡 2 − 1 , where t is the number of tasks assigned to
same processor [21]. This is called the Lui and Layland bound.
For EDF, the utilization bound is 1. CPU utilization model is
defined in the following equation which holds for any number
of processors [22].

 푦(푡 + 1) = 퐴푦(푡) + 퐵훥푟(푡) (1)

Where 푦 ∈ 퐿 represents the processor utilization vector
with size n; 훥푟 ∈ 퐿 represents the change to task execution
rate from the m number of tasks running on the processor.
퐵 ∈ 퐿 혹 , and is defined as;

 퐵 = 퐺 퐾 (2)
Where K is the available subtask allocation matrix that

record which number of particular tasks are running on which
processors. 퐺 = 푑푖푎푔 {푔 ,푔 , … ,푔 }is a diagonal matrix, and
푔 , where i=1,2,3…n, are scalar values that denote the ratio
between the change to the actual utilization of processor i and
its estimation훥푟(푡). The size of 푔 measures the estimation
error, i.e., how much the actual execution time of each task on
processor i deviates from its estimated value.

6. Attaining Dependability
Faults in real time embedded systems can occur at any

time. In order to make sure that the system guarantees its
services even in the presence of fault, fault tolerant scheme: re-
execution with replication is integrated with FCSA to achieve
dependability. However, the methodology is flexible for
integration of any FT schemes. In re-execution with
replication, whenever a fault is detected by the error detecting
processor [7], the job is re-executed on the same processor and
a new replica of the same job is executed on a different
processor. Since at the detection of each fault, a new job is
assigned to a different processor using the communication bus
network, this communication over network is itself a job/task
which represents a sampling interval at which communication
happens over network as shown in Fig. 3.

Figure 3: Each fault represents one sampling interval, the time at which
communication occur on network using re-execution and replication. When a
fault is detected, SC job is re-executed on the same processor and the replicated
job is executed on a new processor.

Again the selection of the network bus communication is
flexible. Most commonly used bus networks are I2C, CAN

[23], or Flex Ray [24]. These sampling intervals (jobs over the
network) introduces a time delay in the execution overall
execution time of the SC tasks. Since a fault can occur at any
time in the system and the time delay introduced by these faults
are modelled as the bounded time varying delays, such as;
 0 ≤ 푥 (푡) ≤ 푥 .

7. System Integration
System architecture consists of i processors with each

processor has some SC tasks to be scheduled on SC core and
non SC tasks [26, 27, and 28] to be scheduled on non-SC core.
Allocations of the tasks are predefined. Each processor has its
own FCSA controller to control CPU utilization. A CPU
utilization monitor continuously monitors the CPU utilization
and feeds the output signal to FCSA controller in a closed loop.
Inter-processor communication is done by using a
communication network as shown in Fig. 4.

Figure 4: FCSA integration with FT scheme, each processor has a feedback
based control scheduler and a CPU utilization monitor.

Form the communication network point of view, if a SC
task has n faults, then at each fault the SC task has to replicate
on a different processor using communication network,
represents n sampling intervals or subtasks over network. Each
subtask/sampling interval introduced a delay in the system and
that subtask is itself a job for network controller. For the
stability of the network each job on the network is modelled as
a separate subsystem. Each subsystem can have a single input
single output SISO and is modelled as a SISO impulsive
system or it may have multiple inputs and multiple outputs
MIMO, in that case system can be modelled as a MIMO
impulsive system [22]. Two kinds of subsystems and the Bus
controller are shown in Fig. 5.

Figure 5: SISO and MIMO system specifications.

 Delay 푑 introduce by the network is modelled in a closed
loop as shown in Fig. 6.

Figure 6: SISO system closed loop with sampling interval 푺풊 and delay풅풊.

Int'l Conf. Embedded Systems and Applications | ESA'12 | 95

Notation: Transpose of a matrix M is denoted by M′.
M>0 (or M<0) when is a symmetric positive (or negative)
definite matrix and a symmetric matrix X Y

Y Z as X Y
∗ Z .

Limit from below of a signal y(t) by y(t) where y(t) ≔
lim | y(d).

At 푘 time and time dealy in the 푖 subtask is denoted by
sampling interval 푠 , delay time 푑 . At the sampling time 푠 ,
where 푘 ∈ 푁, the process’s state 푥(푠) is sent to the processor,
responce arrives at 푠 + 푑 and the next sampling interval is
updated at 푠 + 푑 . For simplicity, SISO system
mentioned in Fig. 5 is considered. However, the similar
procedure can be extended to MIMO [22]. The resulting SISO
close loop system mentioned in Fig. 6 with sampling interval
푠 , delay time 푑 and having a time varing job x(t) is molded
as;

푥(푡 + 1) = 퐴푥(푡) +퐵푢(푠) 푡 ≤ t < 푡

 푎푛푑 푘 ∈ N (3)

 푤ℎ푒푟푒 퐵 ≔ 퐵 푘 & 푡 = 푠 − 푑

Where x ∈ 퐿 and 푢 ∈ 퐿 System mentioned in (3)
represents an impulsive hybrid system as a new state can be
defined as 푞1(푡) ≔ 푥 푠 with 푡 ≤ t < 푡 . So, (3) can be
written as:

 푆 (푡) = 퐹푆 (푡) 푡 ≤ t < 푡 (4)

 푆 푡 =
x(푡)
푥 푠

 푖 ∈ 푁 (5)

 푤ℎ푒푟푒 퐹 ≔ 퐴 퐵
0 0 & 푆 (푡) ≔ 푥(푡)

푞1(푡)

Equations (4, 5) completely define the behaviour of the
system. Equation (4) indicates the response of the system
between two sampling intervals and (5) addresses the abrupt
changes in the system at the edges of each sampling interval.
Since faults can occur at any time in the system, so the
sampling rate of the subtasks over network is also variable.

8. System Analysis
In order to ensure the stability of the system, the network

should be stable (exponentionally) and feedback control
scheduling should keep CPU utilization within the required
utilization bound. This can only be ensured by keeping the
sampling intervals and time delay (푆 , 푑) within upper bound.
The purpose of this section is to find the upper bounds
휌푖 and 푑푖 on the sampling intervals and time delay for
which all jobs over the network will remain stable. So,

푠 − 푠 ≤ 휌 푑 ≤ 푑 ∀ 푘 ∈ 푁 (6)

The above equation shows that by characterizing
admissible sampling intervals results in a deterministic delay
impulsive system for which there are a few stability results
[20]. This analysis is based on the Discontinuous Lyapunov
functional. Other methods for verification and analysis can be
found in [29, and 30]. For the analysis of the system

represented in (4) and (5), Lyapunov functional of the below
given form is used.

푊 ≔ 푥 퐿푥 + (휌̅ − 푡 + 푠)푥̇ (푠)푅 푥̇(푠)푑푠

+ (휌̅ − 푡+ 푠)푥̇ (푠)푅 푥̇(푠)푑푠

+ (휌̅ − 휌̅) (푥 − 푤) 푋(푥 − 푤). (7)

 Where L, X, 푅 , 푅 , are the approximately chosen positive
definite matrices and

푤(푡) ≔ 푥 푡 , 휌̅ (푡) ≔ 푡 − 푠 ,
휌̅ (푡) ≔ 푡 − 푡 , 푡 ≤ t < 푡 ,

휌̅ ≔
푠푢푝
푡 ≥ 0 휌̅ (푡), 휌̅ ≔

푠푢푝
푡 ≥ 0 휌̅ (푡).

Variables 휌̅ and 휌̅ serves as timers and their values reset 푡
times. These variables essentially measures the time elapsed
since last sampling interval and last updated input time
respectively. Based on the configuration, this Lyapunov
functional does not increase at the update times 푡 at which it is
discontinuous. To ensure stability, Lyapunov functional should
decrease at these discontinuities [30]. This condition holds if
Linear Matrix Inequalities (LMIs) in the below mentioned
theorem is satisfied. These LMIs are solved using
Matlab\Simulink [34].

Theorem 1: The system mentioned in the (4 and 5) are
(exponentionally) stable over the sampling intervals defined by
(4), if there exist symmetric positive matrices L, X, R1, R2 and
not necessarily symmetric matrices N1, N2 that satisfy the
following LMIs.

푀 + (휌 + 푑)(푀2 +푀3) 푑 푁

∗ −푑 푅 < 0 (8)

 푎푛푑
푀 + (휌 + 푑)푀 푑 푁 (휌 + 푑)(푁 + 푁)

∗ −푑 푅 0
∗ ∗ −(휌 + 푑)(푅 + 푅)

 < 0

푤ℎ푒푟푒

푀 ≔ 퐹 [푃 0 0] +
푃
0
0
퐹 −

퐼
0
−퐼

푋
퐼
0
−퐼

−푁 [퐼 −퐼 0]

−
퐼
−퐼
0

푁 −푁 [퐼 0 −퐼] −
퐼
0
−퐼

푁

푀 ≔ 퐹 (푅 + 푅)퐹,

푀 ≔
퐼
−퐼
0

푋퐹 + 퐹 푋[퐼 0 −퐼].

푎푛푑 퐹 ≔ [퐴 퐵 0]

The feasibility of the LMIs mentioned in (8) for the given
pairs of 휌 , 푑 characterizes admissible sample time
delay sequence in (4) for the processor i.

96 Int'l Conf. Embedded Systems and Applications | ESA'12 |

Theorem 1 can be extended to MIMO case to characterize
sampling intervals of other SC jobs mentioned in Fig. 5 with
more than one connection [29, and 30].

When the upper bound of the maximum number of sub-
tasks over network 휌 where i depends on the number of
processors, are given, one can use LMIs inequality to find the
number of sampling intervals and maximum time delay 푑
for which LMIs holds and consequently stability of all jobs on
network holds.

9. Practical Implementation
The implementation of Dependability driven feedback

based control scheduling for real time embedded systems is
done on an industrial system (Embedded software architecture
of mining cranes) which consists of an Operator control unit
(OCU) and a Machine Control Unit (MCU). Both OCU and
MCU contain two microcontrollers Renesas dual core
V850E2/Mx4 [31], which is the most popular microcontroller
used in motor industry for industrial automation and it contains
a built-in I2C for multi processor communication. OCU has
multi level push button keypad installed at the outer surface.
Each button is a three steps press push button, to control the
speed of the machine attached with MCU. Both OCU and
MCU has Radio Frequency Identification (RFID) chip. OCU
and MCU communicate through RFID module. [35] RFID chip
contains OCU identification number and the address of that
particular OCU. This information is transmitted through RFID
module in the form of a telegram. Each telegram is 32 byte
information and contains a start sequence, telegram
identification bytes, timing information, data bytes
(information of pressed keys), Cyclic Redundancy Check CRC
and the stop sequence. Telegram is sent periodically to MCU.
MCU receives that telegram decodes the data bytes and
performs action accordingly. One OCU can communicate to
several MCU if all MCUs have the same address and the
frequency band. 433MHz, 960MHz, and 360MHz are the
frequency bands supported by the RFID modules. Both OCU
and MCU contain a Liquid Crystal Display (LCD) attached
Fig. 7, which shows the current status of the OCU and MCU
respectively. There is an emergency stop switch attached to
OCU, whenever this switch is pressed MCU should stop
instantly.

Figure 7: OCU and MCU system architecture.

The system contains some Safety Critical (SC) and non SC
tasks associated to this system. Degree of the task replication
depends upon the safety level of the SC task and is defined by
Safety Integrity Level (SIL).

Table 1: Safety integrity levels (SIL).

SIL Criticality System failure
Probability of

dangerous failure
per hour

4 Safety critical Catastrophic
failure 10 − 10

3 Safety relevant Server failure 10 − 10
2 Critical Major failure 10 − 10
1 Non-critical Minor failure 10 − 10
0 No dependability requirements
Tasks responsible to display information on LCD are all

non-SC tasks. Tasks that scan the push buttons are SC tasks,
especially the task associated to monitor emergency stop
button. Telegram mapping and transmission tasks are SC tasks.
Both master and Slave processors build their own telegram and
then validates it before transmission using I2C communication
network. Similarly, task that decodes information on MCU is
also a SC task. FCSA modelled is constructed in
Matlab/Simulink. Based on this Simulink model a C code is
generated with is then integrated with the system code
implemented on industrial standards MISRA C, EN954-1 and
EN13849 performance level d, in Hardware Embedded
Workshop (HEW). Transient faults are injected in the system
by using test scripts at software level. Steady state response of
the system is investigated through Matlab and actual CPU
execution time is monitored by using a software time.

10. Experiments
The purpose of first experiment is to test the robustness

(variation of tasks execution in the presence of faults) of the
system with and without FT integration (to investigate the FT
integration tradeoffs). One microcontroller is configured as the
Master controller and the Second micro-controller served as the
slave controller. For this experiment, two Telegram mapping
tasks are considered as the SC tasks. Both controllers map their
own telegram independently and compare at different sampling
intervals using I2C bus network to validate the correctness of
the telegram. There are two SC tasks that perform the mapping.
For this experiment two sampling intervals for each tasks is
allocated and a software timer is used to calculate maximum
time elapsed (actual execution time) between the two sampling
intervals. CPU utilization is monitored through processor
monitoring hardware (external hardware contain high
resolution oscilloscope) both in presence and in absence of FT
scheme respectively. Estimated values are verified using
Matlab. Aggregate error for the each CPU utilization is
calculated by using the equation below when the system is in
steady state [21];

 퐸 = (∑ 푒 (푘))/(퐷2 − 퐷1) (10)

The purpose of second experiment is to investigate the

maximum schedulable limit and upper bound of g. For this
experiment, ten SC tasks are considered, eight tasks are
involved in the telegram construction and two tasks are
involved in the telegram mapping. Apart from that there are 30
non SC tasks on the Master Processor and 20 non tasks on the
Slave processor allocated.

Int'l Conf. Embedded Systems and Applications | ESA'12 | 97

11. Results
Table 1 shows the values CPU utilizations of dependability

driven feedback based Control scheduling and without
dependability integration for experiment 1. CPU utilization
value with dependability driven FCSA is more (slightly over
utilized), which suggests that enabling FT schemes (re-
execution and replication) SC tasks takes more time to execute
than expected. Ratio between estimated execution time and
actual execution time g is calculate with the help of software
timer for Master CPU utilization which turns to be g=(1.16–
1.40), which means that the actual execution time of SC task
deviates from 116% to 140% of its estimated completion
execution time. For Slave microcontroller, g=(1.35–1.55),
which means that the actual execution time of SC tasks on
slave processor deviates from 135% to 155% of its estimated
completion execution time. Both microcontrollers have
different values of g because total number of tasks executed on
Slave microprocessor is more than Master microcontroller.
Table 2: CPU Utilization of FCSA with and without dependability integration

for 2 SC tasks including 4 transient faults.

SC
Tasks

Non
SC

Tasks

CPU
Type

CPU
Utilization of
Dependability
driven FCSA

CPU
Utilizat-

ion of
FCSA

SC task
execution
overhead

2 5 Master 0.9223 0.8985 (126–130)%

2 8 Slave 0.9266 0.8753 (130–135)%
Steady state response of Master and Slave CPUs are shown

in Fig. 9. Both CPUs are robust against uncertain task
variation. Initially, both CPUs are underutilized due to System
model estimation inaccuracies but model become more
accurate later. Variation of task execution time is evident at
sampling interval 300th where g=1.26 (126% execution
overhead of SC task) and at sampling interval 700th where g =
1.30 (130%) for master CPU and at 300th g=1.30 (130%
execution deviation) at 600th g=1.35 (135% execution
deviation).

Figure 8: CPU Utilization for Experiment 1.

For the second experiment, variation in g=(0.6–2.40) for
Master microcontroller, which means actual execution time for
some SC task with dependability integration is 2.40 times more
than estimated completion execution time and for some SC
tasks executed 0.6 times their estimated time. Also there are 10
SC tasks are scheduled on the Master microcontroller. On
Slave microcontroller g=(1.8–2.2) which means that actual
execution time for SC tasks with FT scheme is 1.8–2.2 times
more than estimated completion execution time. Also there are
10 SC tasks are scheduled on the Slave Microcontroller.

Table 3: CPU Utilization with and without dependability integration with
FCSA for 10 SC tasks including 30 transient faults.

SC
Tasks

Non
SC

Tasks

CPU
Type

CPU
Utilization of
dependability
driven FCSA

CPU
Utilizat-

ion of
FCSA

SC task
execution
overhead

10 30 Master 0.9157 0.8773 (200–240)%
10 20 Slave 0.8997 0.8461 (180–220)%

Fig. 10 shows a variation in CPU utilization. At sampling
interval 200th g = 2.00, shows 200% execution time deviation
of SC tasks and at 300th g = 0.57, which suggests that some SC
tasks have completed their execution time 0.57 times before
their estimated execution time and for slave CPU sampling
interval 300th g = 1.80, shows 180% execution time deviation
and at 700th g = 2.20, shows 220% execution time deviation
and at 800th g = 0.6 which shows that SC task has completed
before its estimated execution time.

Figure 9: CPU Utilization for Experiment 2.

12. Conclusion
This paper provides a novel technique of designing a

dependability driven feedback based control scheduling for real
time embedded systems. System architecture presented in this
paper is robust against the execution variation (CPU
utilization) of jobs (schedulable) to a certain extent (9). It is
also evident from the experiments that in order to achieve a
system with higher dependability, reliability and security,
tradeoffs have to make between the CPU utilization and the
number of SC tasks to be scheduled on a particular processor.
It is also observed that from g=1.25–7.0, dependability driven
FCSA remains robust (schedulable) after that the number of
sampling intervals (jobs over the network) exceeds the upper
bound (9) and the completion time of SC tasks exceeds their
WCET and SC tasks started missing their deadlines. Greater
number of sampling intervals leads to higher reliability (avoid
greater number of faults) but on the other hand the task
execution time increases. Increasing sampling intervals beyond
required bound can also leads to network instability. To
achieve high QoS (CPU utilization and resource allocation) a
balance has to be made by the designer between the numbers of
SC tasks to be scheduled on a particular processor, the degree
of replication and sampling intervals (9) for each SC task, CPU
utilization and bandwidth utilization of communication
network.

13. Future Work
`In this paper delay time is modeled as the bounded time

varying delay, however if sampling intervals are known such

98 Int'l Conf. Embedded Systems and Applications | ESA'12 |

that there exists two scalar values d1 and d2 and the variation
exists between these two scalar values then this kind of delays
can be modeled as Interval time varying Delay.

 0 < 푑 ≤ 푑(푡) ≤ 푑 .
Also if the sample interval time function varies in a

piecewise manner than Piecewise time varying delay model
will be very helpful. For example an increasing sequence of
signal (푆) can be seen as a delayed signal with 푆(푡) = 푡 − 푡 .

This paper only focuses on the system having the identical
processor and same CPU utilization model is adapted for both
processors. However, if system has different hardware nodes in
terms of processor speed, power and dedicated ASIC
application, then hardware constraints and time delay model
has to capture these constraints as well while keeping the
system stability intact.

14. References
[1] B. Bouyssounouse, J. Sifakis, Embedded Systems Design: The ARTIST

Roadmap for Research and Development, Springer, 2005.
[2] P. Agrawal. Fault tolerance in multiprocessor systems without dedicated

redundancy, IEEE transactions on computers, 37:358-362, March 1988,
[3] P. Agrawal. Fault tolerance in multiprocessor systems without dedicated

redundancy, IEEE transactions on computers, 37:358-362, March 1988,
[4] P. A. Bernstein. Sequoia: A fault-tolerant tightly coupled multiprocessor

for transaction processing, Computer, 21:37-45, February 1988.
[5] J-C., Laprie, & B. Randell, Basic Concepts and Taxonomy of

Dependable and Secure Computing, IEEE Transactions on
DependableSecure Computing (TDSC), 1(1), pages 11{33, 2004.

[6] R. M. Keichafer, C.J. Walter, A.M. Finn & P.M. Thambidurai, The
MAFT Architecture for Distributed Fault Tolerance, IEEE Transactions
on Computers, 37(4), pages 398{405, 1988.

[7] S. Poledna, P. Barrett, A. Burns, & A. Wellings, Replica Determinism
and Flexible Scheduling in Hard Real-Time Dependable Systems, IEEE
Transactions on Computers, 49(2), pages 100{111, 2000.

[8] S. Poledna, P. Barrett, A. Burns, & A. Wellings, Replica Determinism
and Flexible Scheduling in Hard Real-Time Dependable Systems, IEEE
Transactions on Computers, 49(2), pages 100{111, 2000.

[9] Avi Ziv, jehoshua Bruck, Analysis of checkpointing schemes for
multiprocessor systems, 13th Symposium on Reliable Distributed
Systems, 1994.

[10] K. M. Chandy and C. V. Ramamoorthy, Rollback and recovery
strategies for computer programs, IEEE Transactions on computers,
21:546-556, June 1972,

[11] J. Long, W. K. Fuchs, and J. A. Abraham. Fowrawd recovery using
checkpointing in parallel systems. In the 19th International Conference
on Parallel Processing, pages 272-275, August 1990.

[12] C. Lu, J.A. Stankovic, G. Tao, S.H. Son, “Feedback control real-time
scheduling: framework, modeling, and algorithms”, Real-time Systems,
Vol.23, No.1/2, pp. 85-126, 2002.

[13] Sha, L., T. Abdelzaher, K.-E. Årzén, T. Baker, A. Burns, G. Buttazzo,
M. Caccamo, A. Cervin, J. Lehoczky, A. Mok, “Real-time scheduling
theory: A historical perspective”, Real-time Systems, Vol.28, 2004.

[14] A. Goel, Walpole, and M. Shor. "Real-rate scheduling," in proceedings
of the 10th IEEE Real-Time and Embedded technology and Applications
Symposium (RTAS), pp. 434-441, 2004.

[15] S. Lin and G. Manimaran. "Double-Loop Feedback-Based scheduling
Approach for Distributed Real-Time Systems," in proceedings of the
High Performance Computing (HiPC), pp. 268-278, 2003.

[16] J.A. Stankovic, T. He, T.F. Abdelzaher, M. Marley, G. Tao, S.H. Son,
and C. Lu. "Feedback Control Real-TimeScheduling in Distributed Real-
Time Systems," in proceedings of the IEEE Real-Time Systems, 2001.

[17] K.E. Årzén, B. Bernhardsson, J. Eker, A. Cervin, K. Nilsson, P. Persson,
and L. Sha, Integrated control and scheduling. Technical Report ISRN
LUTFD2/TFRT7586SE. Lund Institute of Technology, Sweden, 1999.

[18] C.L. Liu and J.W. Layland, “Scheduling Algorithms for
Multiprogramming in a Hard Real-Time Environment,” J. ACM, vol
20,no. 1, pp. 46-61, 1973.

[19] C. Lu, J.A. Stankovic, G. Tao, and S.H. Son, “Feedback Control Real-
Time Scheduling: Framework, Modeling, and Algorithms,”Real-Time
Systems J., vol. 23, no. 1/2, pp. 85-126, 2002.

[20] Feng Xia and Youxian Sun, Control-scheduling codesign: A prespective
on integrating control and computing. Dynamics of Continuous, Discrete
and Impulsive Systems - Series B, vol. 13, no. S1. 2008

[21] Jianguo Yao and Xue Liu, Mingxuan Yuan, Zonghua Gu, Online
Adaptive Utilization Control for Real-Time Embedded Multiprocessor
Systems, ACM, 2008.

[22] Payam Naghshtabrizi and Jo˜ao P. Hespanha. Analysis of Distributed
Control Systems with Shared Communication and Computation
Resources, American Control Conference, 2009.

[23] J. Liu, Real-Time Systems: Prentice Hall PTR 2000.
[24] C. Lu, X. Wang, and K. X., "Feedback utilization control in distributed

real-time systems with end-to-end tasks," Parallel and Distributed
Systems, IEEE Transactions on, vol. 16, no. 6, pp. 550-561, 2005.

[25] CAN Specification, Controller Area Network Specification and
Implementation, Robert Bosch GmbH,
http://www.semiconductors.bosch.de/pdf/can2spec.pdf, 1991.

[26] The FlexRay Group, FlexRay Communications System Protocol
Specification, Version 2.1, http://www.°exray.com/, 2005.

[27] Daniel Simon, NeCS-INRIA and Alexandre Seuret NeCS-CNRS Peter
Hokayem and John Lygeros, Eduardo Camacho, State of the art in
control/computing co-design. The Joint Laboratory for Petascale
Computing (JLPC). 2010.

[28] C. Wilwert, N. Navet, Y.-Q. Song & F. Simonot-Lion, Design of
Automotive X-by-Wire Systems, In The Industrial Communication
Technology Handbook, CRC Press, 2004.

[29] V. Claesson, S. Poledna & J. Soderberg, The XBW Model for
Dependable Real-Time Systems, International Conference on Parallel
and Distributed Systems (ICPADS), pages 130{138, 1998.

[30] X-by-Wire Project, Brite-EuRam 111 Program, X-By-Wire – Safety
Related Fault Tolerant Systems in Vehicles, Final Report, 1998.

[31] J. P. Hespanha, P. Naghshtabrizi, and Y. Xu, “Survey of recent results in
networked control systems,” Proc. of IEEE, vol. 95, no. 1, pp. 138–62,
Jan. 2007.

[32] P. Naghshtabrizi, “Delay impulsive systems: A framework for modeling
networked control systems,” Ph.D. dissertation, University of California
at Santa Barbara, Sep. 2007.

[33] Renesas V850E2/Mx4, family for microcontrollers Platform: and
http://am.renesas.com/products/mpumcu/v850/V850e2mx/v850e2mx4/i
ndex.jsp

[34] Stephen J. Chapman (2004). MATLAB Programming for Engineers,
Third edition. 2004.

[35] Khan, A.A.; Yakzan, A.I.E.; Ali, M.; , "Radio Frequency Identification
(RFID) Based Toll Collection System," Third International Conference
on Computational Intelligence, Communication Systems and Networks
(CICSyN), pp.103-107, 26-28 July 2011.

[36] A. Jhumka, M. Hiller, & N. Suri, Assessing Inter-Modular Error
Propagation in Distributed Software, IEEE Symposium on Reliable
Distributed Systems (SRDS), pages 152{161, 2001.

[37] Ali Sharif Ahmadian, Mahdieh Hosseingholi, and Alireza Ejlali, A
Control-Theoretic Energy Management for Fault-Tolerant Hard Real-
Time Systems, Real-Time Systems Symposium (RTSS), 2011.

[38] S. Ghosh, R. Melhem, and D. Mosse, "Fault-Tolerant Scheduling on a
Hard Real-Time Multiprocessor System," in Proc. 8th Int. Symp.
Parallel Processing, pp. 775-782, 1994.

[39] Y. Zhang and K. Chakrabarty, "Dynamic Adaptation for Fault Tolerance
and Power Management in Embedded Real-Time Systems," ACM
Trans. Embedded Computing Systems, vol. 3, no. 2, pp. 336-360, 2004.

Int'l Conf. Embedded Systems and Applications | ESA'12 | 99

Design of biomedical signal acquisition equipment with

real-time constraints using Android platform

J. Yepes
1
, J. Aguirre

2
, S. Villa

1
.

1
ARTICA, University of Antioquia, Medellin, Antioquia, Colombia

2
Electronics Department / University of Antioquia, Medellin, Antioquia, Colombia

Abstract - Android is an open source platform which

includes operating system core, application program

interfaces (APIs) and middleware, originally designed for

mobile devices. This platform has become quite popular,

extending its use to several electronic devices. However,

communications with other digital devices such as

Microcontrollers, FPGA’s, Microprocessors, data

acquisition systems and ASICs have been a bottleneck in the

application development process. The main reason for this

issue is that Android OS doesn't have support for real-time

operations. This paper presents the development and

implementation of a medical application using an Android-

based platform for management and visualization of an

Electrocardiogram (ECG) signal and a specialized ASIC for

data acquisition tasks which involves time-critical

management, converting the device communications in a

delicate requirement for this develop. This paper describes

the strategy for real-time solutions on the communication

process, and shows results awarded in final implementation.

Keywords: Android, Embedded System Design, Real Time

Applications.

1 Introduction

 The Android platform [1] is a complete set of integrated

software tools. It consists of an adapted version of the Linux

kernel, middleware, application framework and a set of

specialized APIs (Application Programming Interfaces) to

develop mobile applications. It was initially designed for

using on mobile phones; however its use has spread to a lot of

heterogeneous embedded systems [2].

Among the several advantages that Android offers for

developing applications, we may quote the following: it is an

open source, provides a free development platform for

creating mobile applications. It has a large community of

developers working on it and facilitates the administration of

a wide range of peripherals such as sensor, displays,

communication interfaces, and others. Nowadays, All those

features make Android one of the most attractive platform for

developers [3].

However, those facilities are useless if they have not been

developing a set of utilities (Drivers and APIs) that allow

design applications since a high level of abstraction.

In this paper, we describe the development of a prototype

designed for remote health supervision oriented to capture and

display electrocardiograms (ECG) signals. This prototype is a

part of the System Integration of Medical Monitoring and

Interoperability for Telecare (SIMMIT) [4]. One of the most

important objectives of this prototype consists in to develop a

real time application aimed to capturing bio-signals to be

displayed on a system running Android OS (called host). A

dedicated embedded system is responsible for the signal

acquisition. Such a system consists of two parts: An ASIC

which performs the capturing of the signals from the human

body and, a MCU (microcontroller unit) which acts like a link

between the ASIC and the host. The results of the

implemented system sampling, processing and displaying of

an ECG (Electrocardiogram) signal are also present.

This paper has the following structure: Chapter 2 presents

related work, Chapter 3 describes the hardware architecture

used in the implementation of the application, Chapter 4

presents a detailed description of the target application and

solution strategy regarding software concerns, chapter 5

shows the results obtained and finally conclusions and future

work in Chapter 6.

2 Related work

 Real-time applications have become a necessity for some

embedded and mobile systems. Android features facilitate the

development tasks; however, it is known the Android platform

doesn’t have reliable support for real time applications.

Some strategies have been explored, searching a solution for

this trouble. Specifically, four solutions have been proposed

in [5]. The first approach contemplates the replacement of the

Linux operating system by one that offers real-time features

and it considers the inclusion of a real-time Virtual Machine

(VM). The second one respects the Android standard

architecture by proposing the extension of Dalvik [6] as well

as the substitution of the standard operating system by a real-

time Linux-based operating system. The third one only

substitutes the Linux operating system for a Linux real-time

100 Int'l Conf. Embedded Systems and Applications | ESA'12 |

version and real-time applications use the kernel directly.

Finally, the fourth one suggests the addition of a real-time

hypervisor that supports the parallel execution of the Android

platform in one partition while the other partition is dedicated

to the real-time applications.

Solutions previously mentioned have a complex background:

They suggest delicate modifications to the virtual machine

and/or kernel lawyer inside the Android’s standard

architecture. This kind of modifications implicates a detailed

knowledge about the operator system and inter-lawyer

communication, thus, an implementation with real-time

support could take a long development time.

Alternatively, in [7] native C code library has been used from

developed applications with some time-restrictions. They

report the time-execution of a native application has a

significant improvement over a similar Java application

(running over Dalvik Virtual Machine). However, the

improved time doesn’t imply real-time support and the native

approach cannot guarantee the timing requirements.

3 Android architecture

 Android is a software platform, rather than just an OS,

which has the potential to be utilized in a much wider range of

devices. In practical terms, Android is an application

framework on top of Linux, which facilitates its rapid

deployment in many domains. [8]. Android’s framework is

divided in lawyers, as it can be seen in Figure 1.

Figure 1.Android Architecture.

Linux kernel gives support to low-level components, mainly

hardware drivers are managed by this lawyer. Peripherals as

cameras, printers, flash memories, Wi-Fi, displays, etc. Have

to be directly controlled by the kernel.

Android includes a set of C/C++ libraries used by various

components of the Android system. These capabilities are

exposed to developers through the Android application

framework.

Every Android application runs into its own process, with its

own instance of the Dalvik. Dalvik is an optimized virtual

machine (VM) for mobile devices and runs classes compiled

by a Java language compiler that have been transformed for

Android. The Dalvik VM relies on the Linux kernel for

underlying functionality such as threading and low-level

memory management.

Android offers developers the ability to build applications in

an easy way. Developers are free to take advantage of the

device hardware, access location information, run background

services, set alarms, add notifications to the status bar, and

much more. At the top, Android offers Java programming

language approach to development community with total

access to framework.

4 Description of hardware platform

 This work has involved three hardware platforms: A

system based on TI’s DM3730 processor for multimedia

application called Blizzard, a data acquisition system from

Texas Instruments called ADS1298, specialized for medical

applications, and a Freescale 8-bit microcontroller unit

(MC9S08JM60) [9]. The block diagram of the complete ECG

signals acquisition system is shown in Figure 2.

Figure 2. Hardware block diagram.

4.1 Data Acquisition Platform

 The ADS1298 is a fully integrated analog front end (AFE)

for patient monitoring. It belongs to family of integrated

circuits manufactured by TI, which incorporates all the

features that are required in medical applications such as

electrocardiogram (ECG) and electroencephalogram (EEG).

The ADS1298 has eight channels with simultaneously

sampling and the possibility of using digital analog converters

(ADCs) delta-sigma with 24-bit resolution by channel, with

32kSPS throughput capability. It also integrates

programmable gain amplifiers (PGAs) for signal conditioning,

internal reference voltage and an oscillator, all those inside a

single integrated circuit. Figure 3 shows the block diagram of

the ADS1298.

With its high integration degree, excellent benefits and

exceptional performance, the ADS1298 allows the

development of medical instrumentation systems by reducing

the size, power consumption and decreasing development

costs [10].

Int'l Conf. Embedded Systems and Applications | ESA'12 | 101

Figure 3. ADS1298 blocks diagram [10].

4.2 Microcontroller Unit

 Due to unsupported real time operations presented by the

Android platform, it became necessary to use an auxiliary

subsystem in order to accomplish the real time requirements in

communication tasks between the host and the data acquisition

system. We used the Freescale Semiconductor’s

MC9S08JM60 Microcontroller Unit (MCU). It is member of

the low-cost, high-performance HCS08 family of 8-bit MCUs,

has a Von-Neumann architecture, Up to 60 KB of on-chip

flash memory, 4KB of data memory, 24-MHz of internal bus

frequency, two full duplex Serial Peripheral Interfaces (SPIs)

communication ports, and other variety of modules. SPI

communication speed can be established based on the MCU

bus frequency and is configurable through control registers, to

facilitate communication with a large number of devices.

4.3 Main Display System

 Android platform is supported by Texas Instrument’s

DM3730 processor. The DM37x generation of high-

performance, applications processors are based on the

enhanced device architecture and are integrated on TI's

advanced 45-nm process technology. This architecture is

designed to provide best in class ARM and Graphics

performance while delivering low power consumption. This

balance of performance and power allows the device to

support a huge variety of multimedia applications [11].

The DM3730 integrates a GPP (General Purpose Processor)

ARM Cortex ™-A8 @1GHz, a DSP (digital signal processor)

TMS320C64x @800MHz plus a graphics accelerator 2D and

3D PowerVR SGX 530. The GPP controls all hardware

resources using a generic operating system like Linux,

Windows CE or, in this case, Android. The DSP acts as

coprocessor of GPP. It also integrates various peripherals and

interfaces to connect the different types of external devices.

5 Application description

 In this paper we develop a prototype for biomedical

monitoring. The main objective of this system is collect and

transmit first-hand bio-signal information to a host for

medical tracking and recording when a patient in emergency

state within a medical assistance vehicle or when he’s located

in other place, far from a medical center.

The signals derived from monitoring equipment such as ECG,

heart rate, respiratory rate, oxygen saturation and blood

pressure should be integrated with patient’s record. This

information will be placed in an appropriate way at the

patient's electronic medical records using a standard format in

order to send it to a remote location through a wireless

network whenever the medical staff requires it. Figure 4

illustrates the system functionality and its environment.

Figure 4. System Diagram.

Here we focus on ECG signal acquisition process, because this

signal has the highest time variability, and therefore, it

demands resources for processing tasks and high-bandwidth

capability.

5.1 Synchronization Problem

 Initially, the ADS1298 was directly connected to Blizzard

platform through SPI ports in both devices, because it was

thought that the system would operate properly. However, the

acquired signal did not show the expected behavior. For

example, for sinusoidal test waveform, we got a distorted

version (Figure 5). Some strategies were implemented trying

to fix the problem.

The issue was related with the fact that the OS in the Blizzard

platform does not support the real-time demands of the

application, necessary for the communication. Such a problem

becomes more severe when the ASIC operates under

continuous conversion mode, because the data acquisition

times must be accurately respected, for the sake of ensuring

102 Int'l Conf. Embedded Systems and Applications | ESA'12 |

correct signal sampling. Android operating system, cannot

guarantee such conditions, as shown in Figure 6.

Figure 5. Distorted sinusoidal signal.

For testing, a GPIO pin toggles when the OS makes a sample

request to the data acquisition system. As it can be seen in

Figure 6, the samples are requested at different time periods.

This phenomenon generates a distorted version of the acquired

signal

Figure 6. Communication task is not periodically handled

by the OS.

5.2 Solution Strategy

 In order to meet real time constraints imposed by the

target application, and so solving synchronization problems

mentioned above, it is necessary to find a mechanism to

efficiently handle the sampling times required by the signal

acquisition system, without leaving aside the many advantages

which the Android platform has.

As mentioned in the section on related work, the alternatives

currently available to use Android in real-time applications do

not provide an optimal solution. Because of this, the paper

presents an approach that seeks to separate the real time

processing demand of the rest of the application. Thus using

Android for what it does best: managing UI (graphical user

interface) and cellular connectivity, and a subsystem that is

responsible for managing the signal acquisition system.

That is why we use the MC9S08JM60 microcontroller,

descripted in section 3.2. This microcontroller was used in

order to overcome the synchronization drawback. It must

fulfill the task of attaching the data acquisition system with the

Android platform, seeking to meet the necessary requirements

for the correct time sampling of the ECG signal and avoiding

the overlapping/loss of data problems.

The MCU provide two serial interfaces (SPI), one to

communicate with the data acquisition system and other to

communicate with the Blizzard platform, the connection is

illustrated in Figure 7. The SPI1 is configured as master mode

with a frequency of 1Mbps. The SPI2 is configured as slave

mode, for this reason the operation frequency is imposed by

the master device (Blizzard platform) with a frequency of 500

Kbps.

Furthermore, it implements a First Input-First Output (FIFO)

memory management. The FIFO implementation is very

important because it decouples the data processes offered

from the ADS1298 and demand from the Blizzard platform.

Figure 7. Connection diagram among subsystems.

In conclusion, we have 3 subsystems as it can be seen in figure

3; the subsystem based on android, the MCU to decouple the

processes, and the data acquisition subsystem. The application

developed on the Android platform is basically responsible for

3-function: receiving, storing, and displaying information from

the data acquisition system.

The reception is performed via a SPI connection between

Android-based system and a microcontroller, where the first

acts as the master and the other one acts as slave. Also, there

is a local repository, which collects all necessary information

about the application users, both medical staff and patients.

The MCU is responsible of management the data acquisition

subsystem using a SPI protocol and implement FIFO policies.

6 Results

 By deploying the application, various tests were

performed. For the sake of evaluating the correct system

operation, a sinusoidal wave was sensed and displayed, as

shown on Figure 8. Notice that the previous exhibited

distortions (Figure 5) have been fully corrected.

Int'l Conf. Embedded Systems and Applications | ESA'12 | 103

Figure 8. Sinusoidal signal.

Thereafter samples were taken from an artificial signal from

an ECG signal generator as shown on Figure 9. It can be seen

that a continuous signal was obtained without any kind of

distortion as required for proper system operation. Sampling

of this artificial signal contributes to the system validation

processes, since the displayed signal is precisely the expected.

Figure 9. Artificial ECG signal.

The main test was conducted by connecting the System to a

patient, as shown in Figure 10.

Figure 10. Real ECG signal.

7 Conclusions

 A real-time embedded system was designed for

capturing, processing, storing and displaying an ECG signal.

For this purpose, a platform based on Android OS, a

conventional 8-bit microcontroller and data acquisition

system were used.

Proposed strategy provides a wide running flexibility, mainly

because the application acquires independency from the

specific Android device that executes it. It’s important to

remark the fact that it’s not required to make any

modification on the Android’s standard architecture for

adding real-time features. In other hand, adding new

hardware to the system has any significant increase in system

complexity, because extra hardware is quite simple, low cost,

and totally transparent to the application.

DM3730 processor with Android OS provide an excellent

solution for applications requiring joint user interface,

connectivity and complex applications.

8 Acknowledgments

 We would thank to microelectronics and control group

researchers for the support in the development of this work.

SIMMIT is being funded by COLCIENCIAS, the ICT

Ministry of Colombia, and ARTICA (Research Center of

Excellence in ICT) in the project “Design methodology of

embedded systems with high reliability and performance

focused on critical applications”.

9 References

[1] "Android.com," Available: http://www.android.com

[2] R. Kamal. “Embedded Systems: Architecture,

Programming and Design”. McGraw Hill. First Edition.

2003.

[3] "Android SDK Android Developers," Available:

http://developer.android.com/sdk/index.html.

[4] J. Yepes, L. Cobaleda, J. Villa, J.Aedo. “Design a

medical application for Android platform using model-

driven development approach”. Published in the 9th

International Conference on Modeling, Simulation and

Visualization Methods, Las Vegas, USA. 2012.

[5] C. Maia, L. Nogueira, and L. M. Pinho, “Evaluating

Android OS for Embedded Real- Time Systems”.

Published in Proceedings of the 6th International

Workshop on Operating Systems Platforms for Embedded

Real-Time Applications, Brussels, Belgium, July 2010.

pp. 63-70.

[6] Dalvik Virtual Machine insights, Available:

http://www.dalvikvm.com.

[7] Sangchul Lee, Jae Wook Jeon, "Evaluating performance

of Android platform using native C for embedded

104 Int'l Conf. Embedded Systems and Applications | ESA'12 |

systems", Control Automation and Systems (ICCAS),

2010 International Conference on , vol., no., pp.1160-

1163, 27-30 Oct. 2010

[8] “What is Android?, ” Available:

http://developer.android.com/guide/basics/what-is-

android.html

[9] MC9S08JM60 Microcontroller, Data Sheet, January

2012. Available:

http://www.freescale.com/webapp/sps/site/prod_summary

.jsp?code=S08JM&nodeId=01624684491437

[10] ADS1298, Technical Reference Manual, Available:

http://www.ti.com/product/ads1298

[11] DM37x Applications Processor Texas Instruments,

Technical Reference Manual, January 2012. Available:

http://www.ti.com/lit/ds/symlink/dm3730.pdf.

Int'l Conf. Embedded Systems and Applications | ESA'12 | 105

http://www.ti.com/lit/ds/symlink/dm3730.pdf

Ceiling-view and Front-view Localization Module with
Single Camera for Mobile Robot

Seung-Hun Kim, Changwoo Park

Intelligent Robotics Research Center, Korea Electronics Technology Institute,
Bucheon, Gyeonggi-do, Korea

Abstract - This paper presents a localization module for
mobile robot that travels around indoor environments. Our
module uses the only one sensor, a single camera that looks at
the front of a robot or looks up the ceiling. There is no
efficient enough SLAM algorithm working on embedded
system. The initial difficulty of vision based SLAM is
computational complexity to acquire reliable feature on their
algorithm. To reduce the computational complexity, we use
the ceiling segmentation to extract line features of ceiling area.
Line features are extracted from the boundaries between the
ceiling and walls. Extended Kalman Filter is used to estimate
the pose of a robot and build the ceiling map with line
features. The experiment is practiced in our indoor test-bed
and the proposed algorithm is proved by the experimental
results.

Keywords: Mobile robot, Localization, Embedded module,
Ceiling vision, Ceiling segmentation, Scene matching

1 Introduction
 When a mobile robot performs their missions, the
localization is needed basically. Several past researches
established how to obtain their location information from the
environment by using a distance sensor or a camera. However,
these methods have map-making problem when the
environment changes and localization problem while the robot
moves from sensing features has typical affine and occlusion
characteristics.

 To deal with these difficulties, ceiling vision based robot
navigation has been popular that adopts landmark from ceiling
which has less changes of environments relatively. Existing
ceiling vision localization uses point feature matching at their
researches. Almost every point features like Harris corner[1],
SIFT[2], and SURF[3] are sensitive to environmental
variations and it is a major cause of incorrect data association.

 This limitation of monotonous patterns in ceiling makes
researcher use molding line of ceiling area or another feature
mounted on ceiling such as fire sensor, sprinkler or lamp on
ceiling. In spite of these approaches, the researches still have
problem of affine and lack of feature issues. To overcome the
lack of feature problems, we propose another approach. We

segment upward camera images and extract ceiling area using
relation rules between camera and ceiling. It is simple and less
complexity enough to be adopted embedded system. The
Figure 1 is our mobile robot system embedded the localization
module.

Figure 1. Mobile robot system with the localization modules

2 Localization module
 The proposed localization module consists of three parts,
a main board, a vision board, an I/O board as shown in Figure
2. The main board has an ARM11 CPU, NAND Flash 64MB
and SDRAM 128MB. The Operation system is Linux 2.6.22
and the compiler is gcc-4.2.1. The vision board is composed
of 1/3 inch, 1.3 mega pixel CCD and 1/3 inch exchangeable
lens which can adjust field of view. The I/O board provides
TCP/IP and JTAG communication and is used for debugging.
Table 1. shows specification of boards.

Figure 2. Localization module

106 Int'l Conf. Embedded Systems and Applications | ESA'12 |

Table 1. Board Specifications

Board Specifications

Main
Board

- CPU : MCIMX31 531MHz (ARM11 36JF-S Core)
- Memory : NAND Flash 64MB,

mDDR SDRAM 128MB,
User available memory 50MB

- Communication : Serial(Debug:1, Control:2), USB

Vision
Board

- Sensor : MT9M111 (1/3 Inch 1.3MP)
- Lens : 60°, 90° (1/3 Inch), exchangeable lens
- Cable : 20 Pin FPC, 0.5mm pitch

I/O
Board

- Power: DC 5V
- Communication : Ethernet (TCP/IP), JTEC
- Microphone, Audio support
- For debugging

3 Ceiling-view based localization
 We adopt an efficient graph based segmentation to
extract ceiling area and find molding line and implemented on
embedded system.

 Extracting ceiling area has two advantages at upward
camera based robot localization. First, this system is scale-
invariant. All of features are on ceiling, and their depth is
fixed as the distance from the mobile robot to ceiling. Second,
the field of view of ceiling-view SLAM is less likely to
disturbed than front-view SLAM. The space between the
mobile robot and the ceiling is usually empty space, and the
visual field is usually guaranteed. The absence of moving
objects is a strong point for SLAM.

 When a camera locates on center of robot, the center
segmented area of the camera image belongs to ceiling area
generally. This can be strong candidate of ceiling area. Then,
we eliminated mounted stuff such as fluorescent light or
sprinkler gradually using our algorithm as shown in Figure 3.

(a) Original image

(b) Segmented image

(c) Extracted ceiling area

Figure 3. Ceiling area extraction

 We can obtain the molding edges immediately from the
ceiling area with simple edge detection algorithm and we
extracted Harris Conner feature only included in ceiling area
as shown in Figure 4.

(a) Molding edge between ceiling and wall

(b) Conner feature in ceiling area

Figure 4. Ceiling area extraction

 As we use the ceiling images as measurement input, the
line feature is the most suitable feature in view of the indoor
SLAM. Thus, we need more structural features which are
robust to environmental variations and contain structural
information like direction and size. Moreover, the structural
information can be used as a simple descriptor which is
significantly helpful for correct data association. The ceiling
has a strongly robust structural feature, that is, the boundary
between the ceiling and the wall at the sides and the boundary

Int'l Conf. Embedded Systems and Applications | ESA'12 | 107

of rectangular electric lights. Any kind of the ceiling has these
boundaries and they are apparently detected in any situations
like dark, bright, rotated, or translated. In addition, for its
flatness, the ceiling can be abstracted in 2-D space. 2-D
representation of lines can achieve significant reduction of
computational and memory cost. The lines on the ceiling are
parameterized by just two parameters, ρ and θ which are the
length and angle of the perpendicular foot from the origin to
the line. To extract the line features, we have to group the
ceiling part in an image. The ceiling grouping is based on
some assumptions. First, the image center is always on the
ceiling part. Second, the ceiling part always occupies more
than half of the image. With these assumptions, we expanded
the ceiling region from the image center until the region
occupies more than half of the image. After the ceiling
grouping, straight lines should be extracted from the
boundaries of the ceiling by the following procedure.

 1) Pick a boundary point at the image edge and save the
consecutive points along the boundary of the ceiling.

 2) Find the farthest point on the boundary from the
virtual line between two end points of the boundary.

 3) If the distance between the point and the virtual line is
over the threshold, the boundary is divided into two
boundaries at the point.

 4) If a boundary segment is too short, then it is discarded.

 5) Repeat 1)~4) until no division happens, and draw a
line between two end points of each boundary segment.

 Figure 5. shows the result of the ceiling segmentation in
our test bed following the mentioned procedure.

Figure 5. Result of ceiling segmentation

4 Front-view based localization
 We adopt the scene recognition algorithm[9] to know
where robot is roughly. The proposed approach hierarchically
combines the maximization of the inter-cluster score to detect
outliers that do not satisfy angular constraints, and the
detection of the remaining false matches by scale constraints
imposed by SIFT descriptors. The proposed approach was
used for global localization, which is the task of finding an
image corresponding to a query image among data images
because it is robust to initial false matches and we can detect
outliers with low computational complexity. Figure 6. shows
which floor the robot is using the front-view based
localization module.

Figure 6. Localization with scene recognition

5 Experimental results
5.1 Ceiling-view based localization
 We use the extended Kalman filter(EKF) for localization
and map building. EKF has been most popularly used for
SLAM work for its simplicity and cost effective
performance[4,5,6]. We have completed the EKF framework
for SLAM with line features. Since we extract robust line

108 Int'l Conf. Embedded Systems and Applications | ESA'12 |

features from the ceiling and the features are not too rare or
crowded, measurement is very steady and has advantages for
data association. The EKF should work well under this
situation.

 The robot travels around the room in our test bed. The
embedded module takes a picture of the ceiling at every step.
The robot performs the localization and map building by EKF
based SLAM in real time as shown in Figure 7. We verified
the SLAM result and the actual data. The ground truth is
measured by 3D tracker. It takes 49.8sec to complete to
SLAM and localization error(mean error) is 9.6cm in 5m by
5m. Figure 8. shows the result of SLAM in the hall.

(a) SLAM result

(red line : odometry path, green line : SLAM path, blue line :
ceiling map)

(b) Actual data

(red dot : SLAM path, green dot : odometry path, black dot :
ground truth)

 Figure 7. Experiment result in our test bed

Figure 8. Experiment result in the hall

5.2 Front-view based localization
 Figure 9. shows the experimental results for scene
matching. For the experiments, we captured the images by
driving a robot in a hall environment in real time.

Figure 9. Secne matching results in the hall

6 Conclusions
 We This paper proposed the localization modules using
scene recognition and ceiling segmention method. The
modules we developed are a single camera look at the front of
the robot and looking up the ceiling which are inexpensive and
easy-to-get everywhere. Line features are extracted from
images by the ceiling grouping method and parameterized as a
measurement form. The line features have advantages over
point features for its robustness to environmental variation and
structural information helpful to data association. With the
measurements, the EKF based SLAM localizes the robot and
draws the map in the indoor environment in real time.

Acknowledgment
 This work was supported by "Cognitive Model Based
Real-Time Environment Mapping and Global Localization
Technology” of the Ministry of Knowledge Economy,
Republic of Korea.

Int'l Conf. Embedded Systems and Applications | ESA'12 | 109

7 References
[1] C. Harris and M. Stephens (1988). "A combined corner
and edge detector". Proceedings of the 4th Alvey Vision
Conference. pp. 147–151.

[2] T. Lemaire, S. Lacroix, and J. Sola, "A practical 3D
bearing-only SLAM algorithm," in Intelligent Robots and
Systems, 2005. (IROS 2005). 2005 IEEE/RSJ International
Conference on, 2005, pp.2449-2454.

[3] T. Lemaire, C. Berger, I.-K. Jung, and S.
Lacroix,"Vision-Based SLAM: Stereo and Monocular
Approaches," Int. J. Computer Vision, vol. 74, pp.343-364,
2007.

[4] J. E. Guivant and E. M. Nebot, "Optimization of the
simultaneous localization and map-building algorithm for
real-time implementation," Robotics and Automation, IEEE
Transactions on, vol. 17, pp. 242-257, 2001.

[5] R. Smith, M. Self, and P. Cheeseman, "A stochastic map
for uncertain spatial relationships," in on The fourth
international symposium robotics research Univ. of California,
Santa Clara, California, United States: MIT Press, 1988.

[6] L. Pedraza, D. Rodriguez-Losada, F. Matia, G.
Dissanayake, and J. Valls Miro, "Extending the Limits of
Feature-Based SLAM With B-Splines," Robotics, IEEE
Transactions on, vol. 25, pp. 353-366, 2009.

[7] S. Se, D. Lowe, and J. Little, "Mobile Robot
Localization and Mapping with Uncertainty using Scale-
Invariant Visual Landmarks," The International Journal of
Robotics Research, vol. 21, pp. 735-758, August 1, 2002.

[8] S. Se, D. G. Lowe, and J. J. Little, "Vision-based global
localization and mapping for mobile robots," Robotics, IEEE
Transactions on, vol. 21, pp. 364-375, 2005.

[9] S. Se, D. Lowe, and J. Little, " Efficient Feature
Tracking for Scene Recognition using Angular and Scale
Constraints," International Conference on Intelligent Robots
and Systems, pp. 4086-4091, Sept 22, 2008.

110 Int'l Conf. Embedded Systems and Applications | ESA'12 |

Power, Delay and Area Optimized 8-Bit CMOS

Priority Encoder for Embedded Applications

J. Mohanraj
Department of Electronics and

Communication Engineering,

Vel Tech Technical University,

Avadi, Chennai 600 062, TN, India

mohanvit.86@gmail.com

P. Balasubramanian*
Department of Electronics and

Communication Engineering,

S.A. Engg College (aff to Anna Univ),

Chennai 600 077, TN, India

spbalan04@gmail.com

K. Prasad

Department of Electrical and

Electronic Engineering,

Auckland University of Technology,

Auckland 1142, New Zealand

krishnamachar.prasad@aut.ac.nz

Abstract—A n-input, n-output priority encoder, implemented in

hardware, often serves as a polling device that permits access to

a single (hardware) resource whenever access requests initiated

by multiple devices are received at its inputs, either on-chip or

off-chip. Data buses, data comparators, fixed and floating point

units, and interconnection network routers are important sub-

systems which predominantly use the priority encoder function.

In this context, the design of a new 8-bit (8-inputs and 8-outputs)

CMOS priority encoder module, suitable for embedded system

applications is presented in this work. In comparison with the

latest 8-bit priority encoder based on existing literature [14], it is

found from SPICE simulations that the proposed 8-bit dynamic

CMOS priority encoder reduces total power dissipation by 4.7%

and requires 27.6% less transistors for physical realization.

However in terms of propagation delay, the proposed design is

neck and neck with the 8-bit priority encoder constructed on the

basis of Huang and Chang’s approach [14].

I. INTRODUCTION

Data bus [1] and comparators [2] [3], fixed and floating
point arithmetic units [4], incrementer/decrementer circuits [5]
[6], interconnection network routers [7] [8], sequential address
encoder of content addressable memories [9] [10] are
important sub-systems located on-chip or off-chip, which
predominantly utilize the priority encoder function. In general,
priority encoding can be either hardware-based or software-
based. With regard to the hardware implementation, a generic
priority encoder would feature n-inputs and n-outputs, where n
specifies the number of data inputs/outputs which usually
range from 16 to 64 bits. An n-bit priority encoder is basically
a ‘priority resolver’ that accepts request activations on its
input pins and based on the priority assignment facilitates data
transfer/access grant to any one output pin. Either the least
significant or most significant input bit of a data word can be
assigned the highest priority. The priority encoder can be
thought of as a combined multiplexing-demultiplexing unit. In
a priority encoder, priority token is passed sequentially from
the highest priority bit to the lowest priority bit as the high
priority bits lose their priority. Thus the maximum operating
speed of a priority encoder module is usually dependent on the
propagation delay encountered by the priority token while
traversing a signal path of descending priority assignment. In

other words, the critical path delay of a priority encoder is
proportional to the number of primary inputs. As a result, the
design of a CMOS priority encoder is usually restricted to
small sizes, typically of the order of 4 bits or 8 bits [11] [12]
[13] [14]. Moreover, when such encoder blocks are realized
using CMOS technology, the longest signal propagation path
usually consists of a series connection of either pMOS or
nMOS transistors, with the latter being preferred on account of
improved speed [6]. Hence, higher order priority encoders are
constructed by cascading smaller size priority encoder blocks
based on a look-ahead scheme similar to that of adders. Few
novel look-ahead schemes have been proposed by researchers
[11] [6] [13], among which the parallel priority look-ahead
strategy discussed in [13] appears to be elegant, enables high-
speed and also results in low-power. The novel 8-bit CMOS
priority encoder module, to be described in this paper, is
suitable for composing higher order priority encoders based on
the look-ahead architecture elucidated in [13].

The remaining part of this paper is organized as follows.
The proposed 8-bit CMOS priority encoder design is
discussed in Section 2, and its operation is described using the
output equations. The simulation method and design metrics
estimated for different 8-bit priority encoder blocks are given
in Section 3. Finally, the conclusions are made in Section 4.

II. PROPOSED 8-BIT CMOS PRIORITY ENCODER DESIGN

The fundamental equations governing the proposed 8-bit
priority encoder shown in Figure 1 are given below; where
PI_1 to PI_8 signify the primary inputs, while PO_1 to PO_8
represent the primary outputs. It is to be noted here that the
primary outputs are allowed to evaluate to the correct steady-
state based on the input patterns and their priority assignment
at the rising-edge of the clock (CLK) provided the look-ahead
input signal (LS) is active high.

()1_1_ PIPO =

()()1_2_2_ PIPIPO =

()()()1_2_3_3_ PIPIPIPO =

()()()()1_2_3_4_4_ PIPIPIPIPO =

* This research work was performed when the author was affiliated

with the Department of Electronics and Communication Engineering,

Vel Tech Technical University, Avadi, Chennai 600 062, TN, India.

Int'l Conf. Embedded Systems and Applications | ESA'12 | 111

()()()()()1_2_3_4_5_5_ PIPIPIPIPIPO =

()()()()()()1_2_3_4_5_6_6_ PIPIPIPIPIPIPO =

()()()()()()()1_2_3_4_5_6_7_7_ PIPIPIPIPIPIPIPO =

()()()()()()()()1_2_3_4_5_6_7_8_8_ PIPIPIPIPIPIPIPIPO =

PO_1

PO_2

PO_3

PO_4

PO_5

PO_6

PO_7

PO_8

Active high look-ahead

input signal (LS)

Clock signal

(CLK)

PI_1

PI_2

PI_3

PI_8

PI_7

PI_6

PI_5

PI_4

pc1

pc2

pc3

pc4

pc5

pc6

pc7

pc8

ev1

ev2

ev3

ev4

ev5

ev6

ev7

ev8

ev9

ev10

ev11

ev12

ev13

ev14

ev15

Fig. 1 Proposed 8-bit dynamic CMOS priority encoder

The 8-bit CMOS priority encoder design portrayed above
synthesizes the equations mentioned earlier by way of sharing
common logic and corresponds to the domino logic style. In
Figure 1, the pMOS transistors marked as pc1 to pc8 are
basically precharge transistors which turn-ON (remain ON)
during the falling-edge (active low state) of CLK thereby
refreshing the primary outputs PO_1 to PO_8. When CLK
makes a low-to-high transition (rising-edge) and provided LS
is active high (logic ‘1’), pMOS transistors pc1 to pc8 are
turned-OFF as the evaluation phase commences. Now a subset
of the nMOS transistors ev1 to ev15 may turn-ON based on
the values of primary inputs. From the equations listed earlier,
it can be understood that input PI_1 (and eventually PO_1) is
accorded the highest priority among the input bits of the 8-bit
priority encoder block. The order of priority descends
sequentially from PI_1 to PI_8; likewise for outputs PO_1 to
PO_8. Nevertheless, it is to be noted that priority assignment
for primary inputs (outputs) is ideally user-defined.

During the precharge phase, CLK signal is active low;
hence transistors pc1 to pc8 turn-ON and the primary outputs
PO_1 to PO_8 are driven to logic low state. We now describe
two scenarios during the evaluate phase when CLK undergoes
a rising transition (and eventually becomes active high), with
input signal LS also assuming logic high state. These two
scenarios are representative of typical circuit operation.

• PI_1 is ‘high’: In this case, transistor ev1 is
turned-ON and PO_1 is driven to logic ‘high’ –
this occurs irrespective of the data values of
other primary inputs. Minimum data path latency
occurs for this scenario as bits PI_1 and PO_1
assume the highest priority.

• PI_8 is ‘high’ and PI_1 to PI_7 are ‘low’: In this
case, nMOS transistors ev2, ev4, ev6, ev8, ev10,
ev12, ev14 and ev15 are turned-ON leading to
logic ‘high’ state for PO_8. Complementarily,
nMOS transistors ev1, ev3, ev5, ev7, ev9, ev11
and ev13 remain OFF. Maximum data path delay
is encountered for this scenario as PI_8 and
PO_8 are associated with the lowest priority.

The complete operation of the priority encoder is further
illustrated using the truth table given in the Appendix.

III. SIMULATION METHOD AND RESULTS

Four 8-bit dynamic CMOS priority encoders including the
proposed design have been designed at the transistor level and
simulated using Tanner tools based on 0.25µm bulk CMOS
process technology with a supply voltage of 2.5V, and their
corresponding power and delay metrics were estimated using
TSPICE. The functionality of all the priority encoder modules
was completely verified using SPICE simulations by feeding
in distinct test vectors at a nominal data rate of 500Hz. The
total power dissipation and critical path delay metrics of
different 8-bit dynamic CMOS priority encoders are given in
Table 1, along with the device count required for physical
design. The device count, in terms of number of transistors, is
assumed to be representative of the area occupancy of the
circuit. PDP stands for power-delay product and EDP refers to
energy-delay product in the Table below.

TABLE I. COMPARISON OF DESIGN PARAMETERS OF DIFFERENT 8-BIT

DYNAMIC CMOS PRIORITY ENCODERS

Design

metrics

Huang

et al. [6]

Kun

et al. [13]

Huang &

Chang [14]

This

work

Delay (ns) 0.198 0.089 0.086 0.087

Power (mW) 27.65 3.12 2.99 2.85

Transistors 102 62 76 55

PDP (×10-12 J) 5.47 0.28 0.26 0.25

EDP (×10-21 Js) 1.08 0.025 0.022 0.022

 The device count of the proposed 8-bit priority encoder
module equates to just 55 transistors – much less than the 102
transistors dynamic 8-bit priority encoder block presented by
Huang et al. [6], and more optimized in comparison with the
62 transistors 8-bit dynamic priority encoder designed by Kun
et al. [13], and the 76 transistors 8-bit CMOS priority encoder
constructed on the basis of Huang and Chang’s approach [14].
Huang et al.’s priority encoder cell [6] corresponds to 4-bits,
and two such encoders are incorporated into a multi-level
look-ahead structure to realize an 8-bit encoder – it suffers
from increased power dissipation and is also observed to be
relatively slow. On the other hand, Kun et al.’s 8-bit CMOS
priority encoder [13] is an optimized circuit that is found to be
competitive with the proposed priority encoder in terms of

112 Int'l Conf. Embedded Systems and Applications | ESA'12 |

device count and operating speed. An 8-bit dynamic CMOS
priority encoder was designed manually based on Huang and
Chang’s 4-bit priority encoder cell [14] – 68 transistors were
required for the 8-bit encoder module. However, to configure
it as a basic building block for constructing higher-size
encoders on the basis of the parallel priority lookahead
architecture given in [13], provision for a lookahead signal
input was also included which necessitated adding 8 more
transistors bringing the total device count to 76.

From the simulation results mentioned in Table 1, it can be
inferred that the proposed 8-bit CMOS priority encoder
secures a clear edge over other priority encoders with respect
to total power dissipation and area occupancy (represented in
terms of number of transistors) – 4.7% less power consuming
than Huang and Chang’s encoder and having 11.3% reduced
device count than Kun et al.’s encoder. Although the proposed
encoder features roughly the same critical path delay as that of
Huang and Chang’s encoder, the former requires 27.6% less
number of transistors for physical implementation in
comparison with the latter. The above savings translate to
optimal power-delay and energy-delay products for the former
– highlighting its efficacy over its counterparts.

IV. CONCLUSION

A novel 8-bit dynamic CMOS priority encoder design was
presented in this paper. The proposed 8-bit priority encoder
requires just 55 transistors for physical realization – the best in
its category in terms of device count. Moreover, it is found to
effect good optimization of the power-delay-area envelope.
Compared to the 8-bit CMOS priority encoder hand-designed
on the basis of Huang and Chang’s 4-bit encoder cell [14],
including provision of an extra lookahead input signal, the
proposed 8-bit priority encoder exhibits better design metrics,
especially with respect to power and area. In terms of
propagation delay though, the proposed design is found to be
neck and neck with the former. The proposed 8-bit CMOS
priority encoder design belonging to domino logic style can be
incorporated into the parallel priority look-ahead architecture
of Kun et al. [13] for realizing higher order specifications.

REFERENCES

[1] E.D. Adamides, P. Lliades, I. Argyrakis, P. Tsalides, A. Thanailakis,
“Cellular logic bus arbitration,” IEE Proc. Computers and Digital
Techniques, vol. 140, no. 6, pp. 289-296, Nov 1993.

[2] S. Murugesan, “Use priority encoders for fast data comparison,”
Electronic Engineering, vol. 42, pp. 24, July 1989.

[3] H.-M. Lam, C.-Y. Tsui, “A MUX-based high-performance single-cycle
CMOS comparator,” IEEE Trans. on Circuits and Systems, Part II –
Express Briefs, vol. 54, no. 7, pp. 591-595, July 2007.

[4] J.L. Hennessy, D.A. Patterson, Computer Architecture – A Quantitative
Approach, 3rd edition, Morgan Kaufmann Publishers, NY, 2002.

[5] R. Hashemian, “Highly parallel increment/decrement using CMOS
technology,” Proc. 33rd IEEE International Midwest Symposium on
Circuits and Systems, vol. 2, pp. 866-869, 1991.

[6] C.-H. Huang, J.-S. Wang, Y.-C. Huang, “Design of high-performance
CMOS priority encoders and incrementer/decrementers using
multilevel lookahead and multilevel folding techniques,” IEEE Jour. of
Solid-State Circuits, vol. 37, no. 1, pp. 63-76, Jan 2002.

[7] J.G. Delgado-Frias, J. Nyathi, D.H. Summerville, “A programmable
dynamic interconnection router with hidden refresh,” IEEE Trans. on
Circuits and Systems, Part I, vol. 45, pp. 1182-1190, Nov 1998.

[8] D.H. Summerville, J.G. Delgado-Frias, S. Vassiliadis, “A flexible bit-
pattern associative router for interconnection networks,” IEEE Trans.
on Parallel and Distributed Systems, vol. 7, pp. 477-485, May 1996.

[9] H. Kadota, J. Miyake, Y. Nishimichi, H. Kudoh, K. Kagawa, “An 8-
kbit content-addressable and reentrant memory,” IEEE Jour. of Solid-
State Circuits, vol. SC-20, pp. 951-957, 1985.

[10] N. Mohan, W. Fung, M. Sachdev, “Low-power priority encoder and
multiple match detection circuit for ternary content addressable
memory,” Proc. IEEE International SOC Conference, pp. 253-256,
2006.

[11] J.G. Delgado-Frias, J. Nyathi, “A VLSI high-performance encoder with
priority lookahead,” Proc. 8th Great Lakes Symposium on VLSI, pp. 59-
64, 1998.

[12] J.-S. Wang, C.-S. Huang, “A high-speed single-phase-clocked CMOS
priority encoder,” Proc. IEEE International Symposium on Circuits and
Systems, pp. V-537-V540, 2000.

[13] C. Kun, S. Quan, A.G. Mason, “A power-optimized 64-bit priority
encoder utilizing parallel priority look-ahead,” Proc. IEEE

International Symposium on Circuits and Systems, pp. II-753-II-756,
2004.

[14] S.-W. Huang, Y.-J. Chang, “A full parallel priority encoder design used
in comparator,” Proc. 53rd IEEE International Midwest Symposium on
Circuits and Systems, pp. 877-880, 2010.

APPENDIX:

TRUTH TABLE OF THE 8-BIT PRIORITY ENCODER

Primary inputs Primary outputs

PI_1 PI_2 PI_3 PI_4 PI_5 PI_6 PI_7 PI_8 PO_1 PO_2 PO_3 PO_4 PO_5 PO_6 PO_7 PO_8

1 d d d d d d d 1 0 0 0 0 0 0 0

0 1 d d d d d d 0 1 0 0 0 0 0 0

0 0 1 d d d d d 0 0 1 0 0 0 0 0

0 0 0 1 d d d d 0 0 0 1 0 0 0 0

0 0 0 0 1 d d d 0 0 0 0 1 0 0 0

0 0 0 0 0 1 d d 0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 d 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1

d – don’t care condition (binary 0 or 1).

During the falling-edge of CLK, all the primary outputs are driven to ‘0’, as the precharge pMOS transistors pc1 to pc8 in Figure 1 turn-ON.

During the rising-edge of CLK, the pMOS transistors are turned-OFF. When the look-ahead input signal (LS) of the priority encoder is ‘1’,

the priority of the inputs is resolved according to the priority assignment to produce an appropriate ‘high’ primary output.

Int'l Conf. Embedded Systems and Applications | ESA'12 | 113

Hierarchical Modeling with dynamic Priority Time Petri Nets for
Multiprocessor Scheduling Analysis

Walid Karamti1, Adel Mahfoudhi1, and Yessine Hadj Kacem1

1CES Laboratory, ENIS Soukra km 3,5, University of Sfax,
B.P.:w 1173-3000 Sfax TUNISIA

Abstract— Dynamic Priority Time Petri Nets (dPTPN) rep-
resent a powerful formalism for the scheduling analysis of
Real-Time Systems running on Multiprocessor architecture.
The originality of the dPTPN semantics, compared to the
existing research work, is the dynamic calculation of the
priority of transitions in conflict.
The present paper presents a new modeling strategy with
dPTPN based on object modeling concept. Thus, a new
component is proposed and the scheduling model is consti-
tuted with different instances of it. The scheduling is assured
through the Earliest Deadline First with a set of dependent
tasks. We prove the capacity of our approach to detect the
non-schedulable sequences via an experiment.

Keywords: Real-Time System; Scheduling analysis; EDF; dPTPN

1. Introduction
Multiprocessor architectures are becoming increasingly

used in several systems such as the Real-Time system
(RTS). It can explain the growth of the variety of research
results. The main research area is the scheduling analysis
of the real-time application running on a multiprocessor
architecture. Hence, two main scheduling families exist. The
first family is called the global scheduling in which all
the tasks are charged on only one queue. In fact, although
each task can migrate among the processor resources to
achieve its execution, the cost of migration is so important
and there are no optimal scheduling algorithm [16]. As
for the second family, it is the partitioned scheduling in
which each processor resource has its own queue. When
a task is assigned to one processor, then it cannot migrate
to another. In fact, this strategy presents a reduction of
the multiprocessor scheduling to single-processor where the
optimality is proved [19].
The partitioned scheduling is based on two procedures, the
first of which is assigning tasks to processors and the second
is analyzing the scheduling of each partition [20]. It is so
important to detect the scheduling faults at an early stage in
order to minimize the costs for its correction.
Therefore, to protect such systems from problems and fail-
ure, it is necessary to implement formal techniques intended
to make reliable the development process of the real-time
applications, from their design to checking. This allows
designers to accurately validate systems, and check the

required properties of their behavior.
The choice of the adequate formal method from the existing
varieties depends on the characteristics of the considered
system and the properties to check. The technique of model
checking is of an irrefutable advantage, allowing early and
economical detection of errors at an early stage of the design
process. This explains the growing popularity it enjoys in the
industrial world.
Particularly, Petri Nets (PNs) presents an appropriate model
checking thanks to their great expressivity dynamic vision
and executable aspect. Besides, they have been successfully
used in RTS specification. Thus, it is interesting to use the
PNs for the scheduling analysis of an RTS running on a
Multiprocessor architecture.
The Multiprocessor scheduling analysis with PNs is a recent
research area, which explains the scarcity of Petri Nets
dealing with it. The dynamic priority presents a primor-
dial factor in the Multiprocessor scheduling [11] but we
distinguish a limitation of PNs extensions that support it
is distinguished. It can be explained by the difficulty to
introduce such characteristic in PNs. In what follows, we
present the PNs extensions with fixed priority and next we
detail the existing extension with dynamic priority.
The STPN [24] is a temporal PNs extension dedicated to
analyze periodic tasks on a multiprocessor architecture. It is
able to support a fixed priority scheduling policy such as RM
(Rate Monotonic) [19] thanks to the use of the inhibitor arcs.
The contribution of its proposal lies in the calculation of a
reduced state space compared to that evoked by [3]. Such
proposal has been improved by [18] and [17] to support the
tasks with variable time execution.
Before the crossing of transitions, the STPN [24] adds con-
straints to check the respect for the firing interval. Therefore,
the check of these constraints is a new dimension added to
the problem of scheduling analysis.
The PrTPNs (Priority Time Petri Nets) [4] also utilized the
inhibitor arcs to present the notion of fixed priority. The
authors propose a method of temporal analysis of the net-
work. Indeed, from a sequence of non-temporal transitions,
his method was to recover the possible durations between the
firing of transitions in order. The durations are the solutions
of a linear programming problem.
Both of PrTPN and STPN present the priority through
the inhibitors arcs added as new components to those of

114 Int'l Conf. Embedded Systems and Applications | ESA'12 |

PNs. The RTS modeling with Petri nets gives rise to the
models that are often complex. Moreover, the addition of an
inhibitor arc makes the model more complex and therefore
the extraction of properties more difficult.
A new extension PTPN (Priority Time Petri Nets) was
proposed in [12], in which a crossing date is associated with
each temporal event. In fact, a transition is valid when the
clock shows the date of firing. In addition, PTPN uses a
new method of priorities integration to address the problem
of transitions conflict. In this method, a priority is inserted
on the input arcs of the dependent transitions [12]. Moreover,
this method allows to master the complexity of the PTPN
model by eliminating the use of another component, such as
inhibitor arcs, to specify priorities.
In [13], the authors have proposed the first PNs extension
dPTPN (dynamic Priority Time Priority Time Petri Nets)
dealing with dynamic priority via a new component. Indeed,
the priority is relative to model state. The scheduling analysis
is shown through the scheduling policy LLF (Least Laxity
First) [8] and a set of independent periodic tasks running
on a multiprocessor architecture. However, the LLF is not
frequently used in practice because the cost of preemption is
so high compared to the Earliest deadline First (EDF) [19].
In the same vein, the authors have proven the capacity of the
dPTPN to deal with EDF as well as with the dependent tasks
in [14]. However, the size and the complexity is increased
even though the considered RTS is more complex. Hence,
the execution of the model and the checking of its properties
is more difficult.
The main contribution in this paper is the proposition of
a new modeling strategy to master the complexity of the
dPTPN Model. Building on Object modeling, we propose a
new dPTPN component and identify how it can be instanced
to specify the scheduling analysis model.
The present paper is organized as follows. Firstly, we start
with presenting the experimentation (robot footballer) in sec-
tion 2. Next, the definitions of the dPTPN and its semantics
are detailed in section 3. Next, section 4 shows the Object
modeling approach and the creation of a new component.
In this section, the modeling of the experiment is shown
with different instances of the new component. In section 5,
we present the dPTPN Scheduling analysis tool (dPTPNS).
Finally, the proposed approach is briefly outlined and future
perspectives are given.

2. Robot footballer experimentation
The experiment presents a football player robot appli-

cation [22] in which the video tasks for object detection,
wireless communications for message exchanging with other
devices, motors controls, sensor acquisition, image process-
ing and decision computation are included. The studied
system is composed of four major parts:
• Acquiring and processing image. It is handled through

tasks T2, T5, T7, T8 and T9;

• Communication HF: The information exchanges be-
tween the robot, the players and coaches are made by
the following tasks: T1, T4,

• T6 and T12. Knowing that while T12 is used to send
data, T1, T4 and T6 are used for reception;

• Data fusion by task T10 and path computation through
T11;

• Control of location: it is done through the new trajec-
tory coordinates calculated by the task T11 and through
the current robot position. The location is computed
through task T3. Thereafter, T13 controls the motors;

The dependencies between the 13 studied tasks are defined
in Fig. 1 as follows: As for the system architecture, it is com-

Fig. 1: Task graph of Robot footballer application

posed of four processors. In addition, the robot architecture
includes a set of memories: cache memory, DMA and RAM.
It also covers a battery and a communication bus.
The system Ω presents the scheduling formal specification of
the robot footballer experiment. It is defined by the 4-tuplet:

Ω = 〈Task, Proc, Alloc, Prec〉 (1)

with:
• Task : {T1, T2, · · · , T13},

each Taski ∈ Task is determined by

Taski = 〈Ri, Pi, Ci〉 (2)

– Ri: the date of the first activation.
– Pi: the period associated with the task.
– Ci: the execution period of the task for the Pi

period.
• Proc : {P1, P2, P3, P4}.
• Alloc : Task 7→ Proc, a function which allocates a

task to a processor. Alloc is a surjective function. In
fact a processor is allocated to at least one task. But a
task must be assigned to only one processor.

• Prec : Task × Task 7→ {0, 1}, a function which
initializes precedence relations between tasks.

3. dynamic Priority Time Petri Nets -
Preliminaries

The integration of the dynamic calculation of priorities in
Petri Nets presents the ultimate objective of the dPTPN [13].
In fact, to solve the conflict problem of enabled transitions,

Int'l Conf. Embedded Systems and Applications | ESA'12 | 115

the priority changes at runtime according to the Nets state.
The dPTPN distinguishes between temporal and concurrent
events that are sources of conflict. Indeed, two types of
transitions T (temporal transition Fig. 2) and Tcp (compound
transition Fig. 3) are proposed.

Fig. 2: T-Transition [13] Fig. 3: Tcp-Transition [13]

With respect to temporal transition T (Fig. 2) is an ordinary
PNs transition with a firing date presented with an integer
value between braces. This presentation of Time is dedicated
to deterministic Real Time Systems [12], [21], [13].
As for the second type of transitions, Tcp (Fig. 3), is a
transition with a preprocessing that precedes the crossing
to calculate its priority. In fact, when two Tcp transitions
are enabled and share at least a place in entry then the
preprocessing is made to determine the transition which will
be fired, with a priority changing according to the state of
the network described by the marking M.
We start with the presentation of the dPTPN formal defini-
tion, then we explain the semantic of execution. Next, we
have shown the internal behavior of real-time task with the
dPTPN.

3.1 Formal Definition
A Petri Net [23] can be defined as 4-tuplet :

PN = 〈P, T, B, F 〉 (3)

, where:
(1) P = {p1, p2, ..., pn} is a finite set of places n > 0;
(2) T = {t1, t2, ..., tm} is a finite set of transition m > 0
(3) B : (P × T) 7→ N is the backward incidence function;
(4) F : (P × T) 7→ N is the forward incidence function;
Each system state is represented by a marking M of the net
and defined by : M : P 7→ N.
The dPTPN is defined by the 7-tuplet :

dPTPN =
〈
PN, Tcp, Tf , BTcp

, FTcp
, coef,M0

〉
(4)

(1) PN : is a Petri Net;
(2) Tcp = {Tcp1 , Tcp2 , · · · , Tcpk

}: is a finite set of compound
transition k > 0;
(3) Tf : T 7→ Q+ is the firing time of a transition.
∀t ∈ T , t is a temporal transition ⇐⇒ Tf (t) 6= 0.
If Tf (t) = 0, then t is an immediate transition. Each
temporal transition t is coupled with a local clock (Hl (t)),
with Hl : T −→ Q+.
(4) BTcp

: (P × Tcp) 7→ N is the backward incidence
function associated with compound transition;
(5) FTcp

: (P ×Tcp) 7→ N is the forward incidence function

associated with compound transition;
(6) coef : (P × Tcp) 7→ Z is the coefficient function
associated with compound transition;
(7) M0 : is the initial marking;
The semantics of firing in dPTPN is based on the partial
order theory [2], [15], [6] building on a relation of equiv-
alence between various sequences of possible crossings,
starting from the same state. In fact, when two sequences are
found to be equivalent, then only one of them is selected.
This relation of equivalence is based on the notion of
independence of transitions.
The dPTPN semantics is presented with a dPTPN firing
machine (dPFM). For each marking M , the dpfm initializes
a set of transitions dFTs composed of enabled temporal
transitions FTs and enabled compound transitions FTsTcp

.
The initializations is called Firiability processing.

dFTs = FTs ∪ FTsTcp
. (5)

let t ∈ T, t ∈ dFTs ⇔ t ∈ FTs ∨ t ∈ FTsTcp
(6)

with
{

FTs = {t ∈ T/B (. , t) ≤M}
FTsTcp

=
{
t ∈ T/BTcp

(. , t) ≤M
}

Next, valid transitions are selected from FTs to V Ts by
applying the Validity processing. All urgent transitions must
be indicated in V Ts to be ready for firing.

V Ts = {t ∈ FTs/Hl (t) = Tf (t)} (7)

The dFTsTcp
presents all concurrent transitions. To solve

this conflict, the dpfm calculates the priority of each tran-
sition using the marking M and the coef matrix. Then,
the dFTsTcp

is filtered to present only the transitions with
the highest priority. This filtering is made with the Step
Selection processing. In fact, this processing is able to select
the Tcp transition having the highest priority according to its
neighborhood (eq. 8).

∀Tcp1 , Tcp2 ∈ Tcp, Tcp1 is a neighbor of Tcp2

⇔ ∃p ∈ P such that BTcp (p, Tcp1) 6= 0∧BTcp (p, Tcp2) 6= 0
(8)

In this step, the proposed dPTPN is able to support a
selection policy. In [13], the authors have proved that dPTPN
can attribute the priorities to transitions sharing the place
processor according to the LLF policy. In [14] the authors
has further proven their extension with the Earliest Deadline
First policy (EDF).
Finally, the dpfm fires all transitions in the updated sets. The
firing is described by the following equation:

∀FT ∈
{
V Ts, FTsTcp

}
, F iring (FT) =⇒

FT = V Ts

⇔M ′ = M +
∑

t∈FT (F (., t)−B (., t))

FT = FTsTcp

⇔M ′ = M +
∑

t∈FT

(
FTcp

(., t)−BTcp
(., t)

) (9)

116 Int'l Conf. Embedded Systems and Applications | ESA'12 |

More details about the dpfm and the firing process can be
found in [13].

3.2 Model construction with dPTPN
In the [13] and [14], the authors have suggested a spec-

ification with dPTPN of the important component of the
RTS : the Real-Time Task. In fact, the internal behavior of
tasks is presented through two major patterns, the first of
which describes the creation, the activation and the deadline
model of the tasks. This pattern is critical at the scheduling
analysis of the RTS. It is modeled for describing a stop-
Marking when it was a temporal fault in the system.
As for the second pattern, it is the modeling of the al-
location and execution of the task on the processor. The
processor is a shared resource between the tasks of the
same partition. The allocation event is modeled through a
Tcp transition and the transition having the highest priority,
under a defined policy (EDF in [13], LLF [14]) allocates the
processor and begins its execution. The execution modeling
is dedicated to discrete time and for each tic of clock
the task is asked for liberation of the processor if a new
coming task has the highest priority. Figure (Fig. 4) presents

Fig. 4: RTS Task internal behavioral with dPTPN

the completed dPTPN model of the internal behavior of
the task T1 (0, 4, 2) ∈ Task. It can be noted that this
model is composed of 16 places, 7 T-Transitions and 3 Tcp-
Transitions and for modeling the system Ω those numbers
are increased. Thus, the complexity of the modeling and its
interpretation become more and more difficult.
We distinguish that for each task of Ω, the model dPTPN is

similar. In fact, just the initialization of the model with the
firing times and the weights of arcs change. The modification
correspond to the chosen task for modeling. We can consider
the dPTPN model as an Object and each task Ti ∈ Task is
an instance of this Object.
In the coming section, we propose the definition of the
Object Task. Next, we define the new model of Ω using
the instances of the proposed Object.

4. Object modeling with dPTPN
Using Petri Nets to specify the behavioral specification of

objects is a major tendency to integrate between objects and
PNs. Indeed, the networks are used to describe the internal
behavior of objects. Besides, the internal state of objects is
indicated by the marks in the network places. Moreover, the
execution of the methods of an object is described with the
transitions.
So, the net structure specifies the availability of a method
according to the internal state of the object, and indicates
the possible sequences of methods execution by the object.
The interest of Petri nets is to describe the intrinsically
competing objects capable of executing several methods at
the same time. Furthermore, certain transitions of the net can
remain "hidden" or protected inside an object, and therefore
model the internal and spontaneous behavior of an object by
contrast to the services it offers to its environment.
The fundamental concern of such approach is to allow the
use of concepts stemming from the objects approach (clas-
sification, encapsulation) to describe the system structure,
instead of using a purely hierarchical structuring.
In the "Petri Nets in objects" paradigm, a system is described
as a set of objects which communicate the behavior of each
object being described in terms of Petri Nets. Mostly, these
approaches are class-based, which allows the association of
a PNs with a class of objects rather than with an individual
object.
Based on this approach, we now present the definition of
the new object "Task" and we specify the communication
between the different instances of this object in order to
model and analyze the schedulability of the system Ω.

4.1 Task Component
The PNs in objects depends on the encapsulation of the

various behaviors of the object in a centenary called PNs
component. We propose a dPTPN constituent called "TaskC"
to encapsulate the behavior of a Real-Time task.
"TaskC" is characterized by two interfaces which assure

the communication with its environment: input and output.
In fact, each interface is a finite set of places. The graphical
definition of TaskC is presented in Fig. 5 and defined with
the triplet:

TaskC = 〈dPTPN, II,OI〉 (10)

with:

Int'l Conf. Embedded Systems and Applications | ESA'12 | 117

Fig. 5: The Task Object with dPTPN

(1) dPTPN: is the dPTPN model presented in Fig. 4;
(2) II = {PUncreated, PReceivedData, PgetProc}: is the

places that composed the Input Interface;
(3) OI = {PReady, PDeadline, PRemainingPeriod, PSendData

, PReleasing}: is the places that composed the Output
Interface;

Let "T1 (0, 4, 2) ∈ Task" from Ω. Its corresponding
"TaskC1" component instance of "TaskC" is created as
follows:
• The firing time of the creation event is initialized with

"0": TfTaskC1
(TCreation) = 0;

• The period is initialized on putting the weight "4" on
the coming arcs of the place "PRemainingPeriod" and
on the outgoing arcs of the place "PElapsedPeriod":
FTaskC1 (PRemainingPeriod, TCreation) = 4;
FTaskC1

(PRemainingPeriod, TRestart) = 4;
BTaskC1

(PElapsedPeriod, TRestart) = 4;
• The execution time is initialized with adding the weight

"2" on the input arcs of the place "PCi" from the
transition TRestart and on the outgoing arc from the
place "Pei" to TendCi:
BTaskC1

(Pei, TendCi) = 2;
FTaskC1

(PCi, TRestart) = 2;

4.2 Modeling of the shared processors between
Tasks

The processor is the resource responsible of the
execution of tasks. In our study, we focus on the partitioned
multiprocessor system. In fact, each task is assigned to
one processor and the scheduling analysis of the system
corresponds to analyzing each processor.
The processor is modeled, with dPTPN , by a place and
its state is described by the present marking. It is free if
a mark exists and occupied otherwise. The allocation of
the processor depends on the used scheduling strategy. In
our study, we are interested in the strategy based on the
Earliest Deadline First (EDF). We consider two tasks (T1
and T2) are in the same partition and share the processor
P1 (Alloc(T1)=Alloc(T2)=P1). Fig. 6 presents the dPTPN
model corresponding to the shared processor P1 between
the instances TaskC1 and TaskC2 of TaskC.
The current state presents a mark in "P1Ready", "P2Ready"
and Proc1 to indicate that T1 and T2 call for the processor
P1. So, the event of allocation is modeled by a transition

Fig. 6: Allocation processor using the EDF policy

"T1Allocation" and "T2Allocation" for T1 and T2,
respectively. The processor will be attributed to the task
component having the transition "TiAllocation" with the
highest priority (having the earliest deadline). Indeed, the
allocation is modeled by a registration of a mark in theinput
place "PigetProc" of the corresponding task component.
In Fig. 6, the earliest deadline value is presented with
the marking of the place "P1RemainingPeriod" and
"P2RemainingPeriod".
The main interest of "coef" matrix is to provide a solution
for presenting the arithmetic operators. Indeed, in [13] it is
used to model the equation L (to calculate the Laxity) with
dPTPN. In the current study, we intercalate the coefficient
"1" on the arc connecting the place "T1RemainingPeriod"
and the "T1Allocation" associated with TaskC1 (as well as
for T2RemainingPeriod" and the "T2Allocation" associated
with TaskC2).
Based on the semantics of dPTPN, the priority
of "T1Allocation" is the multiplication of the
"T1RemainingPeriod" marking and the corresponding
coefficient of coef matrix (coef = 1). In (Fig.6),
"T1Allocation" is the highest priority because it has the
earliest deadline.
After execution, the task T1 releases the processor P1
on firing the transition "T1Releasing" associated to the
TaskC1 component. The crossing allows the liberation
of the processor by putting a token in the place "Proc1"
(Fig.6).

4.3 Modeling of the communication between
the instances of TaskC

The considered application (Robot Footballer) requires the
transmissions of data between the tasks. Indeed, some tasks
are preceded by some others as indicated in Fig. 1. Thus, the
preceded task can be activated only after receiving data from
its corresponding preceding task. Hence, the transmissions

118 Int'l Conf. Embedded Systems and Applications | ESA'12 |

time of data between tasks is negligible thanks to the high-
speed of the used DMA. As a consequence, the input task
sends the information as soon as it finishes all or a part of its
activity without the risk of waiting. Formally, the precedence
relations between all tasks are described in Ω via the Prec
function.
Fig. 7 shows the dPTPN model for the communication

Fig. 7: Communication between T1 and T4

between T1 and T4. The current marking presents a mark
in the output place "P1DataToSent" of the "TaskC1". It in-
dicates that the task T1 has finished an instance of execution
during its period and is ready to send the necessary data for
the activation of T4.
The immediate transition "T1Sending" is enabled and its
firing allows the putting of one mark in the place "T1toT1"
and one in "T1toT4". The main object for using the place
"TitoTi" is to indicate the precedence between the different
instances of execution of the task Ti.
The new marking enables and validates the transition
"T4Receiving". Since its crossing, the task T4 has all
necessary data to activate a new instance.

5. Tool and model execution
The dPTPN is accompanied with a scheduling analysis

tool called dPTPNS [14] (dynamic Priority Time Petri Nets
for Scheduling analysis). Indeed, it presents a Petri Nets
editor and executer model.
The editor is implemented under the Graphical Modeling
Framework (GMF) founded on Eclipse Modeling Frame-
work (EMF). Hence, the dPTPN Meta Model represents
the starting point of the editor’s generation process. The
ordinary Petri Nets Meta Model is extended with the addition
of two Meta class: Temporal and Tcp. The created models
are checked through a set of constraints expressed with
the Object Constraint Language (OCL) [9]. The validation
doubles through the verification during and after constructing
the model.

It is obvious that the created model is built around a drawing

Fig. 8: dPTPN Metamodel

composed of places, transitions and arcs. In fact, we need to
easily extract the existing data from the editor. Fortunately,
the created model can also be serialized to generate an XML
(Extensible Markup Language) or XMI (XML Metadata
Interchange) file. The generated file conforms to the dPTPN
Meta Model and presents the entry port point of the executer.
Due to the structure of the editor output, the properties of
the modeled net are easily interpreted.
The verification framework is sufficiently flexible and ex-
pressive to support module inclusion and extension. The
use of the editor tool makes it easier and faster to create
dPTPN models. Despite the representation of dPTPN ele-
ments provided by the editor, the palette is equipped with
dPTPN components in order to facilitate the illustration of
complex tasks and computing resources. So, it is sufficient
for the developer to select the structured dPTPN class from
the palette with the communication means.
Compared to the existing Time Petri Nets simulators such
as ROMEO [7] and TINA [5], the impetus of our tool
is the integration of the dynamic priority concept and its
structured input/output files and Petri components which
guarantee interaction with the existing PNs simulators and
Eclipse features.
If we are to situate our extension with regard to the existing
tools, in addition to the dynamic priority, we note the
following distinctions:
• Contrary to Cheddar tools [26], Mast [10], Times

[1], which cannot cover all the possible states of the
system, dPTPN starts from an initial state to succeed
in determining the error source if it occurs.

• Pertaining to the other extensions presented in Section
2, dPTPN offers a strategy that accelerates the marking
and avoids the combinatorial explosion in front of a
large number of states. This strategy is based on partial
order theory and simultaneous crossing of a set of

Int'l Conf. Embedded Systems and Applications | ESA'12 | 119

enabled transitions [13].

5.1 Model execution
To show how dPTPNS can be used to specify and analyze

the robot footballer application, we consider the following
table (Tab. 1) to present the specification of the system Ω.
The generation of the different partitions is made through

Table 1: The specification of each partition
Partitions Tasks

Name Ri Pi Ci

P1

T1 0 20 8
T2 0 30 15
T4 0 20 6
T6 0 20 4

P2
T5 0 40 15
T7 0 40 15
T8 0 45 8

P3 T9 0 40 6
T10 40 40 10

P4

T3 0 70 8
T11 40 20 12
T12 70 20 12
T13 70 30 10

a specific partitioning tool such as RTDT [27] and for each
partition the dPTPNS is used for analysis.
For modeling the instances of TaskC, we just indicate
the input and output places for each instance in the editor
dPTPNS. To model the system Ω, we create 13 instances of
TaskC.
The initial marking corresponds to initialize "PiIncreated",
TitoTi" with one mark and "TiCi", "TiRemainingPeriod"
with the corresponding Ci and Pi marks from Tab. 1,
respectively.
The dPTPNS is accompanied with a simulator that imple-
ments the semantics of the dPTPN formalism. After creating
the Ω model with dPTPN editor, the simulation is started.
At instant t= 0ms, T1, T2 and T3 are enabled and T1, T3
have the highest priority on P1 and P4, respectively. After
the execution of T1, at t=8ms, T4 receives all the necessary
data to be activated. At this moment, the deadline of T4 is
earlier than T2, so T4 takes the processor P1.
The dPTPNS simulator indicates at t=30 the activation of a
new instance of T2 when the previous one does not achieve
its execution on the P1 processor. As a consequence, the
simulator shows the crossing of the "T4deadline" transition
and puts a mark in the output place "P4Deadline" of the
TaskC4. As presented in a the model construction with
dPTPN section, the marking of "P4Deadline" is a stop-
Marking. Thus, the simulation is stopped and the dPTPNS
indicates that T1, T2, T4 and T6 are non-schedulable on
the processor P1. This description presents not only the
scheduling analysis results, but also a useful feedback to the
portioning tools to eliminate this task combination during
the next generation.

6. Conclusion
The development of dynamic Priority Time Petri Nets

(dPTPN) [13] models for the scheduling analysis of a multi-
processor system has given very important results [13], [14].
In fact, it presents, on the one hand, a detailed specification
of Real-Time System behavior. On the other hand, it is
able to indicate the exact description of the non-schedulable
sequence and request it as a feedback to the partitioning tool
to obtain new partitions.
However, as the increasing complexity of the RTS gives birth
to a very complex dPTPN model, in this paper, we present a
new modeling technique. Based on the object modeling, we
present a new component TaskC. Using different instances
of it we obtain the new scheduling model. Hence, the
scheduling policy considered in this paper is the Earliest
Deadline First (EDF) [19] dealing with dependent tasks.
In future work, we are interested in the properties verification
such as liveliness and safety to particularly present the
behavior of an RTS. Furthermore, we intend to integrate
the dPTPN formalism into a HW/SW partitioning approach
based on a Model Driven Engineering (MDE) [25]. In fact,
we aim at showing how the dPTPN can be able to prove an
RTS and how it can be useful to reduce the space solutions
of the partitioning activity.

References
[1] T. Amnell, E. Fersman, L. Mokrushin, P. Pettersson, and Yi. Wang.

Times - a tool for modelling and implementation of embedded sys-
tems. In TACAS ’02: Proceedings of the 8th International Conference
on Tools and Algorithms for the Construction and Analysis of Systems,
pages 460–464, London, UK, 2002. Springer-Verlag.

[2] V. Antti. Stubborn sets for reduced state space generation. In
Applications and Theory of Petri Nets, pages 491–515, 1989.

[3] B. Berthomieu and M. Diaz. Modeling and verification of time
dependent systems using time petri nets. IEEE Trans. Softw. Eng.,
17(3):259–273, 1991.

[4] B. Berthomieu, F. Peres, and F. Vernadat. Bridging the gap between
timed automata and bounded time petri nets. In FORMATS, pages
82–97, 2006.

[5] B. Berthomieu and F. Vernadat. Time petri nets analysis with tina. In
QEST, pages 123–124, 2006.

[6] U. Buy and R.H. Sloan. Analysis of real-time programs with simple
time petri nets. In ISSTA ’94: Proceedings of the 1994 ACM SIGSOFT
international symposium on Software testing and analysis, pages 228–
239, New York, NY, USA, 1994. ACM.

[7] G. Gardey, D. Lime, M. Magnin, and O. H. Roux. Romeo: A tool
for analyzing time petri nets. In CAV, pages 418–423, 2005.

[8] Joel Goossens, Pascal Richard, P. Richard, and Université Libre De
Bruxelles. Overview of real-time scheduling problems. In Euro
Workshop on Project Management and Scheduling, 2004.

[9] Object Management Group. UML 2.0 OCL Specification. OMG
Adopted Specification ptc/03-10-14. Object Management Group,
October 2003.

[10] M. Gonzalez Harbour, J. J. Gutierrez Garciia, J. C. Palencia Gutierrez,
and J. M. Drake Moyano. Mast: Modeling and analysis suite for
real time applications. Real-Time Systems, Euromicro Conference on,
0:0125, 2001.

[11] J.Carpenter, S.Funk, P.Holman, A.Srinivasan, J.Anderson, and
S.Baruah. A categorization of real-time multiprocessor scheduling
problems and algorithms. In Handbook on Scheduling Algorithms,
Methods, and Models. Chapman Hall/CRC, Boca, 2004.

120 Int'l Conf. Embedded Systems and Applications | ESA'12 |

[12] Y. Hadj Kacem, W. Karamti, A. Mahfoudhi, and M. Abid. A petri net
extension for schedulability analysis of real time embedded systems.
In PDPTA, pages 304–314, 2010.

[13] W. Karamti, A. Mahfoudhi Y. Hadj Kacem, and M. Abid. A formal
method for scheduling analysis of a partitioned multiprocessor system:
dynamic priority time petri nets. In PECCS, pages 317–326, 2012.

[14] W. Karamti, A. Mahfoudhi, and Y. Hadj Kacem. Using dynamic
priority time petri nets for scheduling analysis via earliest deadline
first policy. In ISPA, page to appear, 2012.

[15] V. Kimmo. On combining the stubborn set method with the sleep
set method. In Robert Valette, editor, Application and Theory of Petri
Nets 1994: 15th International Conference, Zaragoza, Spain, June 20–
24, 1994, Proceedings, volume 815 of Lecture Notes in Computer
Science, pages 548–567. Springer-Verlag, Berlin, Germany, 1994. l’
Springer-Verlag Berlin Heidelberg 1994.

[16] S. H. Kwang and J.Y.-T. Leung. On-line scheduling of real-time tasks.
In IEEE Real-Time Systems Symposium, pages 244–250, 1988.

[17] D. Lime and O. H. Roux. Formal verification of real-time systems
with preemptive scheduling. Real-Time Syst., 41(2):118–151, 2009.

[18] D. Lime and O.H. Roux. A translation based method for the
timed analysis of scheduling extended time petri nets. In RTSS
’04: Proceedings of the 25th IEEE International Real-Time Systems
Symposium, pages 187–196, Washington, DC, USA, 2004. IEEE
Computer Society.

[19] C. L. Liu and James W. Layland. Scheduling algorithms for mul-
tiprogramming in a hard-real-time environment. J. ACM, 20:46–61,
January 1973.

[20] L.Sha, T. Abdelzaher, K.E. arzén, A. Cervin, T. Baker, A. Burns,
G. Buttazzo, M. Caccamo, J. Lehoczky, and K.A. Mok. Real time
scheduling theory: A historical perspective. Real-Time Systems,
28:101–155, 2004. 10.1023/B:TIME.0000045315.61234.1e.

[21] A. Mahfoudhi, Y. Hadj Kacem, W. Karamti, and M. Abid. Compo-
sitional specification of real time embedded systems by priority time
petri nets. The Journal of Supercomputing, pages 1–26, 2011. doi
10.1007/s11227-011-0557-9.

[22] H.Kitano M.Veloso, E.Pagello. Robocup-99: Robot soccer world cup
iii. In Velsoso (Eds.).

[23] C. A. Petri. Fundamentals of a theory of asynchronous information
flow. In IFIP Congress, pages 386–390, 1962.

[24] O. H. Roux and A. M. Déplanche. A t-time Petri net extension for
real time-task scheduling modeling. European Journal of Automation
(JESA), 36(7):973–987, 2002.

[25] Douglas C. Schmidt. Model-driven engineering. IEEE Computer,
39(2), February 2006.

[26] F. Singhoff, J. Legrand, L. T. Nana, and L. Marcé. Cheddar : a flexible
real time scheduling framework. ACM Ada Letters journal, 24(4):1-8,
ACM Press, ISSN :1094-3641, November 2004.

[27] H. Tmar, J. P. Diguet, A. Azzedine, M. Abid, and J. L. Philippe.
Rtdt: A static qos manager, rt scheduling, hw/sw partitioning cad tool.
Microelectronics Journal, 37(11):1208–1219, 2006.

Int'l Conf. Embedded Systems and Applications | ESA'12 | 121

122 Int'l Conf. Embedded Systems and Applications | ESA'12 |

SESSION

SOFTWARE TOOLS AND ENVIRONMENTS,
DEVELOPMENT ISSUES + EDUCATION

Chair(s)

TBA

Int'l Conf. Embedded Systems and Applications | ESA'12 | 123

124 Int'l Conf. Embedded Systems and Applications | ESA'12 |

Curriculum Improvements in a Microcontroller Based

Embedded Systems Course

Girma S. Tewolde

Electrical and Computer Engineering Department, Kettering University, Flint, MI, USA

Abstract - Microcontroller based Embedded Systems course

is commonly offered in most Electrical Engineering, Computer

Engineering and Computer Science degree programs.

Microcontrollers form core components of a wide spectrum of

embedded systems in use for various applications. Typical

course contents include material on processor architecture,

instruction set, low and high level language programming,

memory models, interrupts, and various peripheral modules.

This paper presents curriculum improvements introduced in

one such course at our institution and the experiences from

the past two years of the course offering. The main

motivations for initiating the curriculum improvements are: a)

to keep up with advancements in the technology that students

will encounter in the professional world, b) to actively engage

students in the course delivery and learning process, and c) to

provide opportunities for students to explore their interests

related to applications of the subject matter covered in the

course. This paper presents the experiences from all aspects of

the improved course curriculum and results of the assessment.

Keywords: Embedded Systems, Curriculum

1 Introduction

 Courses in embedded systems form the core of the

undergraduate Computer Engineering curriculum at our

institution. We have the following courses focusing in the area

of Embedded Systems:

1. DS-I Digital Systems I (Sophomore II)

2. MS-I Microcomputer Systems I (Junior I)

3. MS-II Microcomputer Systems II (Junior II or Senior I)

4. DS-II Digital Systems II (elective – Junior II or Senior)

5. DES Distributed Embedded Systems (elective – Junior

II or Senior)

6. IMR Introduction to mobile Robotics (elective – Junior II

or .Senior)

The main reasons for offering a series of two courses in

each stream of the Embedded Systems field is because of the

shortage of time to cover the required material in greater

breadth and depth. Unlike semester systems Kettering

University uses a term system, with each term having only 10

weeks of classes.

DS-I and MS-I are required courses for all students

majoring in Computer Engineering, Computer Science, and

Electrical Engineering. They provide the foundation on the

principles and practices of embedded system design using

digital logic technology (in DS-I) and microcontrollers (in

MS-I). The courses also have laboratory components that use

software and hardware kits that aid in the understanding of the

basic concepts offered in each of the courses. The labs allow

the students to design, implement and debug simple to

intermediate scale embedded systems based on digital logic or

microcontrollers.

The DS-II course focuses on computer aided design,

simulation, synthesis and implementation techniques for

systems targeted on programmable logic devices, such as

FPGAs. Hardware description languages are extensively used

in the course for building systems with a wide range of

complexities. This course prepares the students for a course on

computer architecture as well as for a career in embedded

systems for real-world applications with strict requirements in

speed, power consumption, and physical size.

The MS-II course focuses on contemporary 16 and 32 bit

general purpose microcontroller architectures. We use

Microchip PIC24 and PIC32 MCUs in this course, although

the concepts taught also apply to most general purpose MCUs

with little modifications. In addition to the lecture materials on

the essential MCU internal details and various built-in

peripheral interface modules, we offer several practical

laboratory activities that help enhance the understanding of the

concepts and demonstrate real-world applications. The lab

exercises include activities on low-level programming to give

insights on how the processor operates, manipulates data

between different types of storages, and see how the compiler

manages the hardware resources, etc. But for the most part the

laboratory activities focus on peripheral interfacing techniques

to let students explore ways the MCU talks to common

input/output devices in embedded environments.

The other elective courses listed above focus on specific

application domains of embedded systems. The DES course

presents embedded system architectures for distributed and

networked systems in industrial and automotive application

domains. It introduces different networking technologies and

addresses timing, reliability, and safety issues in critical

applications. The IMR course focuses on embedded system

application for mobile robotic systems. General architecture of

mobile robots, system components, important hardware and

software subsystems, sensors and actuators, localization, path

planning and navigation techniques are presented.

Int'l Conf. Embedded Systems and Applications | ESA'12 | 125

All the courses in our curriculum undergo continuous

improvement process in attempts to bring the courses up to

date in response to technological advancements as well as

feedbacks from students and our industry partners. For

example, when the MS-II course was first introduced in our

Computer Engineering curriculum it was offered based on the

Motorola MC68332 microcontroller. As this processor was

getting dated, in 2004 the first revision of the course was

implemented by modifying it to use the Freescale HCS12

microcontroller. Since this processor was gaining greater

popularity in academic and industrial environments many

useful development kits and software tools became available.

The HCS12 has a simple architecture that is easy to master

and write programs for in assembly as well as C. The

hardware development kit used in the course had several built-

in input/output devices to experiment with in labs for

interfacing to external devices.

In the latest improvement of the MS-II course we adopted

Microchip’s 16 and 32 bit processors as the target platforms.

Preceding this change, the MS-I course was updated to adopt

HCS12. This was considered a timely move since the MC6811

that MS-I had used for over a decade was getting dated.

Therefore, the change in MS-I necessitated yet another

upgrade in the MS-II course. The use of both 16 and 32 bit

architectures in the new revision of MS-II allows the students

to appreciate the architectural differences as well as other

factors that need to be considered when evaluating processors

for particular applications. Both PIC24 and PIC32 are RISC

processors, with easy to learn programming models, and come

with several built-in standard peripheral modules for

interfacing to external devices.

The rest of this paper focuses on the MS-II course and the

recent curriculum improvements we introduced in it. The

main objectives for initiating the curriculum improvements

were to keep the course up to date, enhance the active

engagement of the students, and provide project opportunities

for the students.

2 Course Information

The MS-II course is typically taken at Junior II or Senior I

term. Students need to have taken MS-I or have other similar

background in microcontrollers and programming before

registering for MS-II. The course is required for students

majoring in Computer Engineering, but it is also common

among Electrical Engineering and Computer Science majors.

The course is followed by the elective courses DES, IMR, and

capstone, although there is no strict pre-requisite relationship.

Especially students find the material covered in this course

quite useful and practically applicable in the capstone design

projects as most of the projects end up using some sort of

microcontroller based system.

Course learning objectives: By the end of the course,

students are expected to be able to do the following:

1. Demonstrate practical understanding of the architectures

of contemporary 16 and 32-bit microcontrollers (such as

Microchip PIC24 & PIC32).

2. Write simple assembly language programs for the

Microchip PIC24 & PIC32.

3. Demonstrate practical understanding of the PIC24 &

PIC32 Memory organization

4. Demonstrate practical understanding of the software

development process – abstraction, modular design,

layered software systems, documentation.

5. Demonstrate a practical understanding of the PIC32

interrupt system and writing interrupt handler routines.

6. Write device driver program to interface a Keypad to a

microcontroller.

7. Write programs that configure and use the PIC32 core

timer module.

8. Write programs that configure and use the PIC32 standard

timer modules in different ways.

9. Write programs for controlling character LCD displays.

10. Write programs for interfacing to touch screen graphics

displays.

11. Write device driver programs for serial interfacing using

protocols such as UART, SPI, and I2C.

12. Write programs that configure and use the ADC module.

13. Demonstrate practical understanding of the PIC32

Parallel Master PORT (PMP) and its use for interfacing

to peripheral devices.

14. Demonstrate basic understanding of CAN

15. Demonstrate basic understanding of low-power embedded

processor architectures.

16. Demonstrate basic understanding of innovation and

entrepreneurship concepts.

Besides course topics addressing the core learning

objectives listed above, based on the needs of the audience

and when time permits other miscellaneous topics are also

introduced. Common such topics include ZigBee, DMA, and

USB.

The course is organized to have three hours of lecture

(meeting 3 days a week for one hour each) and two hours of

lab that meets once a week. We have not yet found a good

textbook for the course, but we use a couple of reference

books [1,2], device datasheets, library reference manuals, user

guides and application notes from the manufacturers. There

are a total of six required and two optional lab assignments in

the course. The list of the 8 lab assignments is given below.

1. Familiarization with the MPLAB programming

environment.

Core concepts:

a. Integrated development environment

b. Code entry, compilation and linking

c. Program debugging using processor simulation

environment

d. Single stepping, breakpoints, watching variables

e. Examining and modifying register and memory

contents

126 Int'l Conf. Embedded Systems and Applications | ESA'12 |

f. Using the built-in Logic Analyzer

2. Assembly language programming on Microchip PIC24

MCU.

Core concepts:

a. Assembly language structure

b. Assembly directives and include files

c. Implementing a task in assembly language

d. Declaring variables and understanding how they are

allocated memory

e. Memory organization

f. Instruction cycles and clock cyles

3. Simple Input/Output interfacing of the PIC32 to switches

and LEDs.

Core concepts:

a. Basic I/O port hardware architecture

b. Configuration and status registers

c. Configuring a general purpose I/O pin for output

d. Configuring a general purpose I/O pin for input

e. Switch de-bouncing using hardware and software

techniques

f. Timing using software idle loops

4. Interfacing a keypad to the PIC32 and displaying

characters on a terminal window.

Core concepts:

a. Basic concept of keypad

b. Keypad scanning techniques

c. Configuration of UART to interface to a PC serial

port

d. Setting up a HyperTerminal window for accepting

serial inputs

e. Displaying characters sent from the keypad on the

HyperTerminal window

5. Kitchen timer

Core concepts:

a. Using CPU core timer and/or one or more standard

timer modules

b. PIC32 Interrupt system

c. Writing code for an interrupt service routine (ISR)

d. Using timer module for accurate timing applications

e. Writing device driver program for interfacing to

multiple 7-segment display units using a shared data

interface

f. Supporting multiple modes of operation of the

kitchen timer (set time, run time, alarm)

g. Accept input for the kitchen timer from keypad

module

6. Programming a Graphic LCD using the Microchip

Primitive Layer Graphics Library.

Core concepts:

a. Basic concept of graphic LCD display

b. Pixels, colors, how they are represented, screen size

and resolution

c. Images, their representation, and Primitive Layer

functions to display and manipulate them

d. Fonts, their representation, and Primitive Layer

functions to display them

e. Image and Font converter utilities

f. Primitive layer functions for drawing basic

geometrical objects

7. Interactive application programming with touch-screen

interface

Core concepts:

a. Basic concepts of different types of (resistive and

capacitive) touch screens

b. Layered architecture of the Microchip Graphics

Library

c. Use of widgets in the Object Layer of the Microchip

Library

d. Library functions to recognize inputs from touch

screen

e. Implementation of call back function to respond to

user inputs

f. Implementation of interactive application programs

8. Digital Thermometer

Core concepts:

a. Understanding different A/D operating modes and

their configuration

b. Reading analog input signals using A/D channels

c. Writing device driver for character LCD module

d. Reading temperature sensor values using A/D

interface

e. Displaying thermometer readings on LCD module

The course has been continuously evolving over time in

response to changes in technology as well as desire to

incorporate independent project component to it. In its latest

form, we have the first six labs as required for all the students.

The last two labs are selected by the students based on their

focuses of interest and their final project topic choices.

Students working on projects that require the use of touch

screen graphics module for user interface component of their

applications benefit by taking Lab 7. Those students who work

on tasks that interact with the user using simple character LCD

modules and/or utilize A/D modules for analog signal

interfacing benefit by taking Lab 8.

3 Laboratory Kits

This section presents the hardware and software kits utilized

for the labs:

1) Explorer 16 Development Board [3] supports 16-bit PIC
®

microcontrollers (MCUs) and digital signal controllers

(DSCs) as well as 32-bit MCU devices. The board has a

socket for installing one of the supported processor

modules. It has some I/O capability with 4 push button

switches, 8 LEDs, a 2x16 character LCD, an RS-232 serial

port, an on-board temperature sensor, a program/debug

port, small prototyping area, and PICtail plus expansion

ports.

Int'l Conf. Embedded Systems and Applications | ESA'12 | 127

Fig. 1 Hardware kits used in the lab

2) PIC24 and PIC32 plug-in modules [4] (PIMs) that can be

installed on the Explorer 16 processor socket.

3) In-house developed I/O board. This board has a 16-key

keypad and four 7-segment display modules. It is designed

and built to be compatible to the PICtail plus standard

interface available on the Explorer 16 board.

4) Microchip graphics LCD module [5] that is compatible to

the PICtail plus standard interface available on the

Explorer 16 board.

The software tools utilized in the lab are:

1) MPLAB IDE [6] is an integrated embedded program

development environment. It is used to create,

assemble/compile, link, download and debug assembly and

C programming projects for Microchip PIC
®
 MCUs and

DSCs. It also comes with a built-in simulation tool that

facilitates testing of programs without a need for the actual

target hardware.

2) C-30 and C-32 compilers [7] for the 16-bit and 32-bit PIC

microcontrollers, respectively.

3) Microchip Peripheral Library [8,9] that provides high level

C functions to access the microcontroller peripheral

features.

4) Microchip Graphics Library [10]

Besides the hardware and software kits described above there

are also several additional project-specific components,

including sensors and actuators, utilized by different final

projects in the course.

4 Choice of MCU

The main motivations for the choice of PIC24/32 MCUs are

listed below:

- The PIC24 and PIC32 processors have rich instruction set

architecture (ISA), featuring 16 and 32 general purpose

registers, respectively, and support for both two operand

and three operand instructions.

- Compatibility of the PIC24 and PIC32 family makes it

easy to cover both processors in a single course. Moreover,

learning both of these 16 and 32 bit processors makes it

easy for the students to make informed optimal choices for

given projects.

- Microchip offers a rich set of the processor family

members with a range of pins, data memory, program

memory, and on-chip peripheral devices.

- Since the low-cost PIC MCUs have become one of the top

choices by faculty and students in capstone and other

projects in our department, it would be beneficial for the

students to have an exposure to such hardware and tools.

- Availability of free academic versions of the compilers and

IDE for program development.

- Availability of low-cost hardware development kits,

programmers and debuggers.

- Due to our partnership with Microchip we were able to get

support from the company for course development

resources.

FPGA based platforms are also possible choices for

embedded systems course. The DS-II course actually teaches

128 Int'l Conf. Embedded Systems and Applications | ESA'12 |

digital systems design and implementation using FPGA with

most of the programming done in VHDL. The DS-II course

also addresses system-on-programmable-chip (SOPC) design

using hard or soft processor cores built in the FPGA along

with hardware accelerator implemented in the logic fabric.

Since MS-II is a microcontroller based embedded systems

course we decided to use an MCU rather than an FPGA as the

target device.

5 Final Projects

In the past two years of the course offering a final project

component has been introduced. The main motivation for this

component of the course is to allow the students explore their

interests and apply what they have learnt in the course to solve

real-world problems. This is in line with a bigger undertaking

by the University to instill innovation and entrepreneurship

mindset in the students. University wide workshops and

seminars are conducted to inspire students to become

innovative, and enhance their problem-solving, team-work,

and leadership skills.

Students work in groups of two to three students. They make

their project proposal with five minute class presentations

discussing the need, approach, benefits and competition of

their project. The audience provides comments and feedback

that the project teams may take into account. Once the projects

are approved by the instructor the students start the design and

implementation work. At the end of the course all project

groups present and demonstrate their work to the class. The

project grade is made up of project presentation, demo, peer

evaluation, and project paper.

A list of the projects conducted over the last two years

include the following:

1) Wireless wrist watch as 3D mouse

2) Bio alarm clock with gesture recognition

3) Wireless mesh network for equipment monitoring

4) PIC32 platform for controlling iRobot

5) BrainTrainer v2.0 – a game to increase brain’s ability in

short term memory

6) Human-machine interface for home security system

7) Digital bumper sticker

8) Remote pet care and monitoring

9) Home automation

10) Hard drive clock

11) Computerized storage and access system

12) Space Hero Pilot 2011 – space adventure game

13) Connect Four

14) Developing a playing agent for Connect 4

15) Micro light bikes – multiplayer game with wireless

interface between game consoles

16) Wireless patient monitoring with ZigBee

17) Wireless triangulation using WiFi access points

6 Peer Teaching

To help improve students’ active engagement in the

teaching and learning activities we introduced a peer-teaching

component in the course. This peer-teaching activity is meant

to take students out of their passive comfort zone and motivate

them to take the lead in learning an assigned course topic and

teach it to the class. The inspiration for peer-teaching came

from previous research in the literature [11], which describes

the effectiveness of the method in actively engaging the

participants and enhancing learning in both the peer-teachers

and learners.

After the first four weeks of lectures and labs students will

have the necessary background to make informed decisions

about the topics they would like to investigate further. Most of

the peer-teaching topics identified are microcontroller

peripheral modules, such as the various serial communication

interface protocols, analog interfacing, and low-power

wireless communication, etc. Students are required to submit

electronic copy of their presentation three days ahead to the

professor for review and feedback. The presenters also

prepare short quizzes, which could be modified by the

professor, and given to the class at the end of the

presentations. The presentations typically run for 30 to 40

minutes, followed by 10 to 20 minutes of discussions, with the

last 10 minutes left for quiz.

7 Assessment

The assessment techniques employed is of qualitative nature

including SII surveys completed by the students at the end of

the course and the university-wide course evaluations

completed by the students. Feedback received from these

assessments help improve the course term after term. For

example, in the first offering of the peer-teaching activity an

important improvement suggested by a number of students

was to add a quiz at the end of each presentation to make sure

the class is paying good attention to the student presentations.

This and other important feedbacks were incorporated in the

subsequent offerings of the course. A few quotes of students’

comments are given below:

On peer-teaching:

Strength: “I enjoyed this activity. It provided us an

opportunity to show a detailed level of understanding

revolving around a single topic. It also is one of the only

classes I’ve had where I was able to teach the class

something, and interact with the students in that manner. I felt

that was a good experience.”

Improvement: “Provide an outline of what material should be

covered (minimum) for each topic to ensure that all material

is covered.”

Insight: “Best way to learn something is to try to teach it.”

Int'l Conf. Embedded Systems and Applications | ESA'12 | 129

On final projects:

Strength: “I like how the topics were left open to the students,

but also suggestions were made by the professor. I’m a firm

believer that if students are able to work on a topic that

genuinely interests them, they will put more time and effort

into it resulting in a better outcome as well as a better

educational experience throughout the project.”

Improvement: “Help students reign in the project to realistic

proportions for the time they have to work on it. Do more

planning/milestones to keep students on track.”

Insight: “The project allows students who have passion to

really continue on beyond a normal classroom limitation and

really explore the potential of that area of study … in this

case microcomputers.”

8 Conclusions

 The paper presented curriculum improvements introduced in

a microcontroller based embedded systems course at our

institution and the experiences from the past two years of the

course offering. The assessment results and the feedback

received from the students at the completion of the course

demonstrate that the improvements in the curriculum achieved

the intended goals by providing opportunities for active

engagement in classrooms and motivating the students to be

innovative in their design projects.

9 References

[1] Programming 32-bit Microcontrollers in C - Exploring the

PIC32, by Lucio Di Jasio, 2008.

[2] Microcontrollers: From Assembly Language to C Using the

PIC24 Family, by R. Reese, B. Jones, and J. W. Bruce, 2008.

[3]Explorer 16 development board

http://www.microchip.com/stellent/idcplg?IdcService=SS_GET_

PAGE&nodeId=1406&dDocName=en024858

[4] Microchip PIC plug-in-modules (PIMs)

http://www.microchip.com/stellent/idcplg?IdcService=SS_GET_

PAGE&nodeId=1406&dDocName=en531260

[5] Microchip graphics LCD module

http://www.mouser.com/ProductDetail/Microchip-

Technology/AC164127/?qs=sGAEpiMZZMu6TJb8E8Cjryzyow

YGDGw%252b

[6] MPLAB IDE

http://www.microchip.com/stellent/idcplg?IdcService=SS_GET_

PAGE&nodeId=1406&dDocName=en019469

[7] MPLAB C Compiler for Academic Use

http://www.microchip.com/stellent/idcplg?IdcService=SS_GET_

PAGE&nodeId=1406&dDocName=en536656

[8] http://www.microchip.com/stellent/idcplg?IdcService=

SS_GET_PAGE&nodeId=2680&dDocName=en554272

[9] http://www.microchip.com/stellent/idcplg?IdcService=

SS_GET_PAGE&nodeId=2680&dDocName=en554265

[10] Microchip Graphics Library

http://www.microchip.com/stellent/idcplg?IdcService=SS_GET

_PAGE&nodeId=2680&dDocName=en543091

[11] Whitman, Neal A. Peer Teaching: To Teach is to Learn Twice.

ASHE-ERIC Higher Education Report No. 4. Washington,

D.C.: Association for the Study of Higher Education, 1988

130 Int'l Conf. Embedded Systems and Applications | ESA'12 |

A Hardware/Software Co-Design Method for Java Virtual
Machine Oriented to High-Level Synthesis

Hitoki ITO1, Kiyofumi TANAKA1

1School of Information Science, Japan Advanced Institute of Science and Technology, Nomi, Ishikawa, Japan

Abstract - We propose a hardware/software co-design
method that covers the weakness of high-level synthesis and
maximizes the benefits of high-level synthesis. We view the
high-level synthesis process from the standpoint of granularity
of operations and I/Os, and introduce an I/O library
composed of hardware and device drivers. We apply this
method to the Java Virtual Machine (JVM), and use the Java
Native Interface (JNI) for handshake between synthesized
hardware and Java applications. In addition, we show an
example of application of our co-design method that
calculates the AES-CMAC to explain the possibility of whole
automatic translation from Java language to hardware and
generality of this co-design method brought by Java and Java
Native Interface.

Keywords: High-Level Synthesis, Co-Design, Java, JVM,
JNI, Android

1 Introduction
 Formerly, design methodology of LSI was circuit
diagram editing, however, HDL (Hardware Description
Language) and logic synthesis have become popular as
increase of circuit scale. In recent years, we have new option
of circuit design methodology called high-level synthesis. It
allows behavioral C source codes as input, and outputs
structural HDL. We can raise the abstraction level of our
circuit designing by this methodology, can expect decrease of
source code lines, and can also expect the architecture
exploration with trade-off in speed, area, and power. In our
experience, this partially showed the decrease of description
amount and the flexibility of exploration, while it partially
revealed its weak points. The effect of high-level synthesis is
erratic in actual LSI design, so we have conceived a new
method that covers the weak points of high-level synthesis
with libraries. We also use the Java language for efficient
description, and have tried to apply this new method to the
subset of AES-CMAC algorithm. The product works on Java
Virtual Machine and high-level synthesized hardware
connected via Java Native Interface.

2 Related works
 Fleischmann, et. al. reported the principle style of co-
design environment for Java Virtual Machine in the reference
[1]. Our suggestion is similar to their idea, but we consider

high-level synthesis and clearly orient our method to it.
Hwang, et. al.[2] reported the advantage in performance of
hardware method invoked via Java Native Interface[3]. This
result allows us to expect the improvement of performance in
our target system.

3 Consideration of high-level synthesis
 To determine the weak point of high-level synthesis,
and to concretize the requirements to our co-design
environment, we have to observe high-level synthesis/co-
design environment from another viewpoint. We present our
understanding about them in following subsections.

3.1 Granularity of operations and I/Os

 The information processing is constituted of inputting,
processing and outputting. If we have an operation circuit that
has enough speed and enough small area/power, the whole
processing must be done in moment. However in real circuit,
we face to the limits of speed, area, and power. Therefore,
information processing is divided into consecutive units of
fine-grained processing (Fig. 1).

ProcessingInput Output

ProcInput Output ProcInput OutputProcInput Output

Fig. 1. Granularity of information processing.

 In case of Von Neumann Architecture, especially RISC
architecture, input/output is represented as load/store
instruction, and processing corresponds to other operation.
The amount of contribution of hardware to processing
depends on processor architecture (Fig. 2). For example, in
case of ASIP (Application Specific Instruction-set Processor),
the weight of the hardware becomes large.

Int'l Conf. Embedded Systems and Applications | ESA'12 | 131

OPLD ST OPLD STOPLD ST

Programs

Hardware

Programs

Hardware

Xtensa,
MeP,
etc.

Pentium,
ARM,
etc.

General Purpose
Processor

ASIP

Fig. 2. A case of Von Neumann Architecture.

 Therefore, we understand that the high-level synthesized
hardware is the special case of application specific processor.
Many instructions described in source code are assembled
and integrated into custom integrated circuit (Fig. 3).

OPLD ST OPLD STOPLD ST

OP High-Level Synthesized
Hardware

Fig. 3. High-level synthesized hardware.

 However, the load/store operations have not been well
cared about in high-level synthesis, hence we have conceived
a new method that covers this weak point with I/O library that
encapsulates handshakes between hardware and software.

3.2 Application suitable for high-level synthesis

 The best suitable application of high-level synthesis is
the complex finite state machine (FSM) which has many
states, but its I/Os can be presented in simple graphic form
(Fig. 4).

S2

S1

Sn

S0

Acknowledge
& Outputs

Request
& Inputs

Fig. 4. Application suitable for high-level synthesis.

 The FSM starts state transition when a request arrives,
and stops after acknowledge output. We focused on the
request/acknowledge and inputs/outputs to encapsulate them.

3.3 Implementations of I/Os

 There are many variations of request/acknowledge and
input/output. For example, an acknowledge is implemented as
a polling function or an interrupt signal and its handler. These
variations should be encapsulated to library and should be
provided to co-design users as design options.

4 Co-design environment by Java
 Now we suggest the co-design environment composed
of four translators and libraries (Fig. 5). This co-design
environment accepts synthesizable Java source codes that can
be compiled by Java compiler immediately, and are
executable on Java Virtual Machine (JVM) as a pure Java
application.

Device Driver

Native Binary

Byte Code

Synthesizable
C

Verilog
FSM

Verilog
Register I/F

RTL Simulator

Java to Verilog
Translator

C Compiler
High-Level
Synthesizer

Java
Source Code

Java
Source Code

Java to C
Translator

Synthesizable Java ApplicationJava Application

Java to C
Translator

Java
Compiler

Java Virtual Machine

Byte Code

Java to Java
Translator

JNI Wrapper

Java
Compiler

CPU & RAM & Bus Model

Our Product

Fig. 5. Co-design flow chart.

 Synthesizable Java source codes are translated to four
parts: JNI wrapper, device driver, register interface described
in Verilog, and high-level synthesizable C source codes. Both
device driver and register interface have physical base
address information, and register interface implements a
concretized bus protocol such as APB (Advanced Peripheral
Bus)[4]. High-level synthesizable C source codes should be
synthesized to structural Verilog description with external
tools.

5 Application to AES-CMAC
 Now we show an example application of our co-design
method that calculates the AES-CMAC[5]. This example

132 Int'l Conf. Embedded Systems and Applications | ESA'12 |

presents the whole automatic translation path from Java
source codes to hardware.

AesCmacApp.java

AesCmac.java

AesCmacApp.java

AesCmac.java

AesCmacRegIF.v

AesCmacProc.c

AesCmacDrv.c

Method InvocationMethod Invocation

Native Method Invocation

Register Access

Wires between Modules

Java Apprication

JNI Wrapper

Device Driver

Register I/F
implements
APB Protocol

High-Level
Synthesized
FSM

Java Application

Synthesizable
Java
Application

Fig. 6. Translation overview.

 Fig. 6 shows the translation overview of our co-design
environment. AesCmac.java on the left side is an accelerator
of AES-CMAC calculation, and AesCmacApp.java is a user
program which invokes the acceleration method described in
AesCmac.java. These two input files can be compiled
immediately and are executable on JVM. Five files on the
right side are translation outputs among which
AesCmacApp.java is not changed. Therefore, AesCmac.java
is to be translated to four files. We show details of them in
the following subsections.

5.1 Inputs of translation

 Fig. 7 shows AesCmacApp.java defines AesCmacApp
class. This is a user program which invokes the acceleration
method defined in AesCmac.java. In the main method, the
set/get methods are called to set keys and data and to get
calculation results before/after the processing. This code is
not a target of translation.

/*
* AES-CMAC Application
*/

class AesCmacApp {
public static void main(String[] args) {

/* set inputs */
AesCmac.setKey0(0x16157e2b);
AesCmac.setKey1(0xa6d2ae28);
AesCmac.setKey2(0x8815f7ab);
...
AesCmac.setInput0(0xe2bec16b);
...
/* proc AES-CMAC Accelerator */
AesCmac.process();
/* get outputs */
System.out.printf("0x%08x¥n", AesCmac.getMac0());
System.out.printf("0x%08x¥n", AesCmac.getMac1());
System.out.printf("0x%08x¥n", AesCmac.getMac2());
...

}
}

Fig. 7. AesCmacApp.java.

 Fig. 8 shows original AesCmac.java defines AesCmac
class. This is an accelerator of AES-CMAC calculation. The
algorithm of AES-CMAC in this file is described with some
cares for synthesizability. The private static fields correspond
to setting registers, and set/get methods correspond to device
driver APIs. The process method will be translated to high-
level synthesizable C source codes.

/*
* AES-CMAC Accelerator
*/

public final class AesCmac {
/* input fields */
private static int key0;
...
private static int input0;
...
/* output fields */
private static int mac0;
...
/* set methods */
public static void setKey0(int key) {key0 = key;}
...
/* get methods */
public static int getMac0() {return(mac0);}
...
/* synthesizable method */
public static void process() {

int[] k = new int[4];
...
int i;
k[0] = key0;
...
aes128(k, mLast, m);
...
mac3 = m[3];

}
}

Fig. 8. AesCmac.java (Original).

5.2 Outputs of translation

 Fig. 9 shows translated AesCmac.java defines AesCmac
class. This is a wrapper of device drivers. The original set/get
methods are translated to Java Native Interface (JNI)
connected to device driver APIs. This file does not include
substantial definitions of methods and private static fields.

Int'l Conf. Embedded Systems and Applications | ESA'12 | 133

/*
* AES-CMAC Accelerator
*/

public final class AesCmac {
/* input/output fields removed */
/* native set/get methods */
public static native void setKey0(int key);
...
public static native void setInput0(int input);
...
public static native int getMac0();
...
/* native processing method */
public static native void process();
/* loading library */
static {

System.loadLibrary("AesCmac");
}

}

Fig. 9. AesCmac.java (Translated).

/*
* AES-CMAC Device Driver
*/

#include <jni.h>
...
#include "AesCmac.h"
/* user defined base address */
#define BASE 0xffff0000
/* native set/get functions */
JNIEXPORT void JNICALL

Java_AesCmac_setKey0(JNIEnv *env, jclass cls, jint i)
{*(volatile int *)(BASE + 0x00000004) = i;}

...
JNIEXPORT void JNICALL
Java_AesCmac_setInput0(JNIEnv *env, jclass cls, jint i)

{*(volatile int *)(BASE + 0x00000014) = i;}
...
JNIEXPORT jint JNICALL

Java_AesCmac_getMac0(JNIEnv *env, jclass cls)
{return (*(volatile int *)(BASE + 0x00000024));}

...
/* native handshake function */
JNIEXPORT void JNICALL

Java_AesCmac_process(JNIEnv *env, jclass cls) {
/* assert request */
*(volatile int *)(BASE + 0x00000000) = 1;
/* wait for acknowledge */
while ((*(volatile int *)(BASE + 0x00000034)) == 0);
*(volatile int *)(BASE + 0x00000000) = 0;
while ((*(volatile int *)(BASE + 0x00000034)) != 0);

}

Fig. 10. AesCmacDrv.c.

 Fig. 10 shows AesCmacDrv.c generated from a part of
AesCmac.java. This is a device driver of high-level
synthesized hardware. This source code contains substantial
set/get method definitions and user-defined physical base
address information.

/*
* AES-CMAC Register Interface
*/

/* user defined base address */
`define BASE 32'hffff0000
module AesCmacRegIF (

PCLK, PADDR, PWRITE, ... PREADY,
req, key0, ... input0, ... mac0, ... ack

);
input PCLK; /* APB Signals */
input [31:0] PADDR;
input PWRITE;
...
output PREADY;
output [31:0] req; /* request signal */
output [31:0] key0; /* input signals */
...
input [31:0] mac3; /* output signals */
input [31:0] ack; /* acknowledge signal */
...
always @(posedge PCLK) /* APB register write */

if (PSEL & (PADDR == `BASE + 32'h00000000) & ...)
req <= PWDATA;

always @(posedge PCLK) /* APB register write */
if (PSEL & (PADDR == `BASE + 32'h00000004) & ...)

...
always @(posedge PCLK) /* APB register read */

if (PSEL & ~PWRITE & PENABLE)
case (PADDR)

`BASE + 32'h00000024: PRDATA <= mac0;
`BASE + 32'h00000028: PRDATA <= mac1;
...

endcase
endmodule

Fig. 11. AesCmacRegIF.v.

 Fig. 11 shows AesCmacRegIF.v generated from a part
of AesCmac.java. This is an on-chip bus interface that
contains user-defined physical base address information and
concretized implementations of APB[4] protocol selected
from library. This description also contains substance of
private static fields as setting registers that retain inputs/
outputs of high-level synthesized hardware.

134 Int'l Conf. Embedded Systems and Applications | ESA'12 |

/*
* AES-CMAC Process
*/

int req; /* request input */
int key0; /* inputs */
...
int mac3; /* outputs */
int ack; /* acknowledge output */
/* target of high-level synthesis */
void process() {

int k[4];
...
int i;
/* wait for request */
while (req == 0);
k[0] = key0;
...
aes128(k, mLast, m); /* will be unrolled */
...
mac3 = m[3];
/* assert acknowledge */
ack = 1;
while (req != 0);
ack = 0;

}

Fig. 12. AesCmacProc.c.

 Fig. 12 shows AesCmacProc.c generated from a part of
AesCmac.java. This is an input of high-level synthesis and
should be synthesized to Verilog description of finite state
machine (FSM). This description contains substance of the
processing method, and has some additional codes taken from
library that handles request/acknowledge signals.

5.3 Generality brought by Java and JNI

 This co-design methodology stands on Java and JNI.
Therefore, this methodology has architecture-independent
generality, and can be applied to any platform that has JVM
and JNI such as Android platform.

5.4 Future Work

 This co-design methodology covers Java applications,
synthesized hardware, and interfaces between synthesized
hardware and Java applications. This is a sufficient solution
to control synthesized hardware, but not enough to transfer
large data between the hardware and Java applications. The
next step of this study is to extend this methodology to
manage large data placed on native memory shared by
synthesized hardware and Java applications, and to cover the
interfaces between native shared memory and synthesized
hardware/Java applications.

6 Conclusions
 We proposed a hardware/software co-design method
that covers the weakness of high-level synthesis. We
observed high-level synthesis/co-design environment from
another viewpoint of granularity of operations and I/Os, and
introduced an I/O library composed of hardware and device
drivers. We choose the Java as both a programming language

and a software execution environment, and use the JNI for
handshake between synthesized hardware and Java
applications. In addition, we showed an example of
application of our co-design method that calculates the AES-
CMAC with actual source codes to explain the whole
automatic translation path from Java source codes to
hardware. Also, we discussed the generality of this co-design
method brought by Java and JNI.

7 References

[1] Josef Fleischmann, Klaus Buchenrieder, Rainer Kress,
"Codesign of embedded systems based on Java and
reconfigurable hardware components", DATE '99:
Proceedings of the conference on Design, automation and test
in Europe, January 1999.

[2] David Hwang, Bo-Cheng Lai, Patrick Schaumont,
Kazuo Sakiyama, Yi Fan, Shenglin Yang, Alireza Hodjat,
Ingrid Verbauwhede, "Design flow for HW / SW acceleration
transparency in the thumbpod secure embedded system",
DAC '03: Proceedings of the 40th annual Design Automation
Conference, June 2003.

[3] Sheng Liang, " The Java Native Interface: Programmer's
Guide and Specification", Addison Wesley, 1999.

[4] ARM, "AMBA 3 APB Protocol Specification v1.0",
http://www.arm.com/, 2004.

[5] JH. Song, R. Poovendran, J. Lee, T. Iwata, "RFC4493:
The AES-CMAC Algorithm", http://www.ietf.org/rfc/rfc4493,
2006.

Int'l Conf. Embedded Systems and Applications | ESA'12 | 135

Android Conversion Support Framework for Android
Software

Won Shin1, Tae-Wan Kim2, and Chun-Hyon Chang1, *

1Department of Computer Engineering, University of Konkuk, Seoul, Korea

2Department of Electrical Engineering, University of Myongji, Gyeonggido, Korea

* Corresponding author.

Abstract - The android software is needed huge test process
for many kinds of devices and android platforms because
android platform does not support interoperability among
various platform versions, and it can be modified by device
manufacturer. To resolve this problem, we suggested a new
tool named Android Conversion Support Framework (ACSF).
The ACSF has several functions which help to remove some
repetitive or unnecessary tasks on the software testing. Those
functions execute automatically and find some points of
software which seem to have problems and need to fix. In this
paper, we show several components of the tool and explain
characteristics of the tool in detail. Developers who use the
tool can fix problems of their software, are related with
portability, on the porting process easily and quickly.

Keywords: Android Software, Test-case, Framework,
interoperability

1 Introduction
 We can see lots of android software as known as App
easily. Manufacturer of device which is based on android
platform can modify android platform code for their devices
suitably because Google allows to modify source code of the
platform if the platform can be passed CTS test. Android
platform is also well known that it is not support
interoperability among various platform versions. It means
that there are a lot of difficulties in testing software on various
platforms and devices. For instance, a developer make an
application based android platform version 2.0 but he does
not sure about that his application executes well on the
version 2.1 because of the interoperability. Therefore, the
android software is needed huge tests process for diverse
devices and android platform versions.

 Many tools and techniques exist for automating the
testing of mature, well-established applications, such as
desktop or server programs. However, the physical constraints
of various device as well as interoperability problem of
android platform make android software prone to new kinds

of bugs [2]. To resolve this problem, we suggested a new tool
named Android Conversion Support Framework (ACSF). The
ACSF support several functions and those functions help
developers to reduce a time for doing repetitive or
unnecessary tasks on the software testing. Those functions are
mostly automatic and detect potential bugs in the software.
Developers get helpful information from the tool without their
effort when they only use the tool. To find potential error, first,
developer generates monitoring code. Secondly, the
monitoring code is compiled and is executed on emulator
automatically. Finally, the ACSF try to detect errors in logs
generated from the software. In this paper, we show several
components of the tool and explain characteristics of the tool
in detail. Developers who use the tool can fix problems of
their software, which are related with portability, on the
porting process easily and quickly.

 The rest of the paper is organized as follows. Section 2
describes related works and ACSF we suggested. Section 3,
then, presents characteristics of the tool in detail. Finally,
Section 4 concludes and explains future works.

2 Related works

2.1 Previous Test Techniques
 To test android software is needed to verify whether
functions of the software have some problems or not.
Developers usually use a tool or framework for functionality
test such as JUnit [4], Robotium [6], Android Testing
Framework [1]. Those solutions support developers to make
test-case for testing android software easily. For instance,
JUnit for android has a function to generate test source for
Activity, Intent and so on. Developer can define an action
when an activity is creating or destroying via the function of
JUnit. In testing phase with JUnit, once developer makes a
test-case using them, and then they run the test-case.

 Android software is GUI software, therefore, it require
GUI test which verify to be executed well by some GUI

136 Int'l Conf. Embedded Systems and Applications | ESA'12 |

events such as click, drag and drop, and so on. There are three
kinds of GUI test technique. Record Play-Back (RPB)
technique is the most famous and is known well among them
because to use it is easier than the others. In the RPB
technique, one event is called the Record and script includes
several records [7]. In testing phase with GUI test technique,
one developer makes an event script which contains sequence
of events, and then feed each event from the script.

For applying the RPB technique to the android software
testing, it firstly needs to consider how to adopt concepts of
android software such as Activity, Intent and so on. It also
adds new method to reduce effort for making test-case
because there is no support to generate a test-case
automatically.

2.2 Design of ACSF
 Developers have several tasks for software test, for
example, making a test-case, running the test-case, analyzing a
log. Some logs are generated during running software via
logging instructions. Developers try to detect potential errors
in the logs. A role of ACSF reduces tasks of developer, hence,
architecture of ACSF is considered android platform and
technique about automatic comparison logs like Fig 1.

Analysis
Info.

Program
Analysis

Component

Program
Analyzer

Analysis Info.
Generator

Monitoring
CodeGenerating

Component

Monitoring
Sensor Gen.

Monitoring
Code Gen.

Monitoring Sensor
Template

Program Auto
Test Component

Compile
Automation

Execute
Automation

Test-
case

Acquire log
Component

Communicati
on Module

Log Gen.

Log
Repository

Log Analysis
Component

Log Analyzer

Report Gen.

Report Template

Figure 1 Architecture of Portability Analysis Tool

 A process of android software is very similar
development phase of embedded software. Testing software
on emulator or real device is vital element in development of
the embedded software. A testing on emulator is rather
important than a testing real device because a testing on real
one takes more time and it is difficult to test whole devices
due to its price. Moreover, it needs more tasks for testing. For
instance, once developer prepares a device and copy software
in the device. And then they tests software using the device.
After testing, they move a log which is made during running
the software to the desktop computer. Finally, they analyze
the log. However, testing on emulator, it just requires
configuration of emulator.

 Architecture of ACSF is based on conceptual
development process for android software[8]. The
Architecture is largely divided into five components. The

program analysis component analyzes software for making an
Analysis Information which contains scope of analysis. The
monitoring code generating component makes a meta file and
generate source code as a test-case using the meta file[3, 9].
The program auto test component compiles the test-case and
execute on emulator[10]. The acquire log and the log analysis
component collect logs and make a report via analyzing the
logs.

3 Implementation of ACSF
 Many developers use Eclipse with Android
Development Tool (ADT) plugin which help us to develop
android software easily via emulator, monitoring tool, etc.
Therefore we decide to develop our tool based on Eclipse
plug-in. ACSF consists of five kinds of components like Fig 1.
In this paper, we concentrates on generating test-case, auto
executing android software on emulate or device and
analyzing portability of the software because those
components have to considered android environment and vice
versa.

3.1 Generating test cases process
 An Android software is GUI based software, therefore,,
functions of the software are executed by events generated
from users. Also, events can have sequences or not. On the
other hands, test-case may contain sequence of events.
Consequently, we divide manual mode and automatic mode
for making test-case. The manual mode has dependency with
user’s events or data, and vice versa.

 The manual mode is based on improved RPB technique
which record user event as a script and execute the script. If
developer only changes some event in the script, developer
makes a script again although the script exists. Therefore we
support sequence concept which is method to modify or
arrange a script. As making a sequence, user can use records
as well as UI components contained in activity. The manual
mode is used for alerted software error due to malfunctions of
the software. Fig 2 illustrates manual test-case generator.

Figure 2 Manual Test-case Generator

 On the automatic mode, user only chooses pair of
activity name and sensor type. It means that selected activity
will be generated logs from selected sensor. The sensor is a
source code for making various logs and is used for various

Int'l Conf. Embedded Systems and Applications | ESA'12 | 137

purposes such as verification status, making screenshot and so
on. Table 1 illustrates types of sensors.

Table 1. Types of monitoring sensor

Sensor Type Description (purpose of this sensor)
TIA Whether activities run well or not
TIE Whether events run well or not
TIC Capture device’s screen
DIV Important variable value
DIS System status
UIU User defined log

 TIA and TIE are function to verify whether activity or
event is running well or not. Thus those are inserted next
instruction which creating and destroying activity, and event
execution. A log, which is made by TIA and TIE, explain that
operation of activity is normal and event has no problem
because it is impossible to be generated the log if program is
not running well. TIC sensor captures a screen in various
devices to discern difference. Actually, to compare two
images is a role of developer because they must be too
subjective. The tool can only give numerical value related to
image’s color or structure, and those value is use to divide
into two groups which need to verity and not. DIV is
monitored values of some variables because variable must
have boundary and an error is occurred when the variable has
under or upper boundary. DIS is to make a log related to
system status. The reason why gathering system status log is
that embedded system like a mobile affects from system a lot.
It means that it is important a system log to find a bug on
software.

 The automatic mode is used for finding unexpected error
in software because it generates randomly input in test-case.
Fig 3 illustrate automatic test-case generator.

Figure 3 Automatic Test-case Generator

3.2 Automation running the test cases
 After making monitoring code, it will be run on the
various platforms or devices. Those tasks are really

troublesome works because it is repetitive. Compile the code
first to make an APK file and then upload the APK file to
emulator. Finally, run test cases. The program auto test
component supports above process automatically.

 Users select first what device is needed a test and then
they choose test-case which is made in previous step. They
click the test-case create button to generate selected test-case.
For making the test-case, we use compilation technique which
parses the source code and then makes an Abstract Syntax
Tree (AST), transform the AST and travel the tree to generate
the test code. Transform the tree means that search several
parts of code, which the position for inserting the monitoring
code, and then insert special AST node into the tree. The
special AST node is made from a code which has special
instruction such as printing log, capturing screen and so on.

Figure 4 Automatic Execution Test-case

3.3 Analyze portability
 Software may generate several logs post-run. Actually,
developers compare and analyze those logs. They try to find
differences among the logs because those must be no change
if software is not modified. Existing difference means that the
software is affected by android platform or device, hence
ACSF finds candidates which are expected to generate error,
and then generate a report.

Figure 5 Portability Analysis

138 Int'l Conf. Embedded Systems and Applications | ESA'12 |

 To make a report, developer should select two kinds of
logs. One of them is generated by software which has no
errors and finished already software development. It is to be
the criteria for comparison logs and is named default platform.
Another one is generated by the others except default platform,
and it seems to expect making an error.

Figure 6 Report of the ACSF

 Information of a report is largely divided by summary
information, compilation information, execution information
like Fig 6. The summary information contains of description,
statistics, it help understand structure of the software,
recognize status of test phase and explains what devices are
tested. Developers can decide how much effort is needed to
fix bugs of this software via the summary information. The
compilation information explains how many errors are
occurred during compile source code and which platforms
make problems. Moreover, it also contains compilation error
logs. Developers can recognize what kinds of errors are
occurred without running their software on the platform. They
just find why error is occurred on that platform and then
resolve the problem. The execution information describe
comparing image of execution activity on each platforms and
explain differences between logs. It is difficult to find a
problem which is made by difference between resolutions of
two devices, hence ACSF just support two kinds of images of
each platforms.

4 Conclusion
 Most developers have a difficult time finding the bug
which is due to portability. To overcome this difficulty, they
use tool which support several functions to reduce their
repetitive and unnecessary tasks. The ACSF generates a report
from analyzing and running software. The report contains
diverse information such as summary information,
compilation information, execution information. Especially,
candidate of error in the execution information is the most
important one. We are not sure about that the candidates will

make an error during running the software, but developer
must know existence of the potential error. Developer should
fix it or prevent problem due to it. To use the tool, it may
reduce the time for software testing, therefore, developers
concentrate on the service of their software and improve
software quality.

 In future, we will make more meaningful information for
developers to help their development process.

5 Acknowledgments
 This research was supported by R&DB Support Center
of Seoul Development Institute, Korea, under Seoul R&BD
Program (ST100107)

6 References

[1] Android Testing Framework,
“http://developer.android.com/guide/topics/testing/index.html
”

[2] Cuixiong Hu, Iulian Neamtiu, “Automating GUI Testing
for Android Applications”, Proc. of International Workshop
on Automation of Software Test, pp. 77-83, 2011.

[3] Doo-Ho Park, Won Shim, Tae-Wan Kim, Chun-Hyon
Chang, “Android Software Test case Generation System using
Record-PlayBack”, Proc. of the Korea Computer Congress
2011, Vol. 38, No. 1(B), pp. 171-174, 2011.

[4] JUnit, “http://www.junit.org”

[5] Monkey UI/Application Exerciser,
“http://developer.android.com/guide/developing/tools/monkey
.html”

[6] Robotium, “http://code.google.com/p/robotium/”

[7] Wei Hoo Chong MIET, “RPB in Software Testing”,
Proc. of the International Multi-Conference on Computing in
the Global Information Technology (ICCGI), pp. 8-13, 2007.

[8] Won Shin, Tae-Wan Kim, Chun-Hyon Chang,
“Portability Analysis Tool for Android Application”, Proc. of
the JCCIS, Vol. 4, No. 2, pp. 186-189, 2010.

[9] Won Shin, Jung-Min Park, Tae-Wan Kim, Chun-Hyon
Chang, “Methodology of Automatic Test-case Generation for
Android Software”, Proc. of the Korea Computer Congress
2011, Vol.38, No. 1(A), pp.198-201, 2011.

[10] Won Shin, Jong-Soo Seok, Tae-Wan Kim, Chun-Hyon
Chang, “Test Automation System for Android Software”,
Proc. of the Korea Computer Congress 2011, Vol.38, No.
1(A), pp.202-205, 2011.

Int'l Conf. Embedded Systems and Applications | ESA'12 | 139

140 Int'l Conf. Embedded Systems and Applications | ESA'12 |

SESSION

EMBEDDED SYSTEMS AND NOVEL
APPLICATIONS AND ALGORITHMS

Chair(s)

Prof. Hamid Arabnia

Int'l Conf. Embedded Systems and Applications | ESA'12 | 141

142 Int'l Conf. Embedded Systems and Applications | ESA'12 |

PIC 32 MICROCONTROLLER BASED sEMG ACQUISITION

SYSTEM AND PROCESSING USING WAVELET TRANSFORMS

Chandrasekhar Potluri, Member , IEEE, Madhavi Anugolu, Member, IEEE, Alex Jensen, Girish Sriram,

Shiwei Liu, Steve Chiu, Member, IEEE, Alex Urfer.

Abstract – In this paper, an embedded system platform is used for

signal acquisition and processing. On a healthy male subject, the

motor unit of the ring finger is marked. The surface

Electromyographic (sEMG) signals and their corresponding skeletal

muscle force signals are acquired using a PIC 32 microcontroller at

a sampling rate of 2000 samples per second. The filtration is

achieved by using a Wavelet transform Daubechies 44 filter at 5

levels of decomposition for sEMG and a Chebyshev Type-II filter for

skeletal muscle force signals. The data is acquired through the

Universal Asynchronous Receiver/Transmitter (UART) model of the

PIC 33MX360F512L embedded test bed and is compared to data

acquiredwith standard sEMG Delsys® Bagnoli 16 acquisition

system.

Keywords: sEMG, Wavelet Transforms, Real-time Data Acquisition,

I. INTRODUCTION

The functioning human body is one of the most intricate

systems available. Similarly, surface Electromyography

(sEMG) signals are quite complex and challenging to analyze.

Currently more than 2 million Americans have an amputation,

and the number of amputees is increasing by approximately

185,000 per year [1]. Research related to upper extremity

prostheses over the recent past has been focused on increasing

function of the user coupled with reducing the psychological

and emotional aftermath of dealing with limb loss. A robotic

prosthetic hand should be autonomous, have a high level of

functionality, comfort and be easy to use [2]. From [3, 4] it is

clear that electromyography (EMG) signals have sereved as a

strong model for prosthetic function. The EMG signal is a

natural means of communication and can be recorded at the

surface of the limb, which is known as surface EMG (sEMG).

Chandrasekhar Potluri is with Measurement and Control Engineering

Research Center (MCERC), School of Engineering, Idaho State University,

Pocatello, Idaho 83209, USA (email : potlchan@isu.edu).

Madhavi Anugolu is with MCERC, School of Engineering, Idaho State

University, Pocatello, Idaho 83209, USA (email : anugmadh@isu.edu).

Alex Jensen is with MCERC, School of Engineering, Idaho State

University, Pocatello, Idaho 83209, USA (email: jensalex@isu.edu).

Girish Sriram is with MCERC, School of Engineering, Idaho State

University, Pocatello, Idaho 83209, USA (email: srirgiri@isu.edu).

Shiwei Liu is with MCERC, School of Engineering, Idaho State

University, Pocatello, Idaho 83209, USA (email: liushiw@isu.edu).

Steve Chiu is with Department of Electrical Engineering and Computer

Science, MCERC, Idaho State University, Pocatello, Idaho 83201 USA

(email: chiustev@isu.edu).

Alex Urfer is with Dept. of Physical and Occupational Therapy, Idaho

State University, Pocatello, Idaho 83209, USA (e-mail: urfealex@isu.edu).

The sEMG is the result of the electrical activity during

skeletal muscle contraction. It ranges between -5 and +5 mV.

The sEMG signals are widely used for the position and force

control of the hand prosthesis [5, 6]. Since the skeletal muscle

force and the sEMG signals are directly proportional, an

increase in force production results in increased sEMG

activity. Therefore, the latter is used as a control input to

realize force and motion control of a prosthetic hand. This

makes the precise interpretation of the sEMG signal an

essential task.

In the present research environment, embedded systems

have become pervasive and as research advances, more and

more functions of analog circuits are being realized by

microcontrollers, Analog to Digital Converters (ADCs) and

Digital to Analog Converters (DACs). In a modern control

system, data acquisition, processing and control functions are

performed by embedded systems. A well-designed embedded

control which deals with widely varying operating conditions

can realize excellent system performance. The embedded

system should be designed carefully in order to have a robust,

precise, fast and consistent performance.

In our previous work [7-9], we implemented a real-time

embedded control system to control the force and motion of a

prosthetic hand. The present work is a step ahead in the same

direction where the authors explore the PIC 32

microcontroller as an embedded platform to simultaneously

acquire the sEMG and skeletal muscle force. sEMG sensors

are placed on the ring finger motor point of the dominant

hand of a healthy subject and the subject is asked to squeeze a

stress ball which has a force sensing resistor attached to it.

The data is simultaneously captured using the PIC 32

embedded platform with MATLAB®/SIMULINK® real-time

workshop (RTW) and regular NI LabVIEW™ data

acquisition. Both sEMG and force data is captured at 2000

Hz. The sEMG signal is filtered using four different types of

filters nonlinear Bayesian filters: Exponential, Poisson, and

Half-Gaussian filter and wavelet transforms Daubechies 44

filter. The corresponding skeletal muscle force is filtered by a

Chebyshev type-II filter [8]. Among these different types of

filters the wavelet Daubechies 44 filter is giving the best

results [10-15].

This paper is organized as follows: the present section is

followed by the „Experimental Set-Up,‟ then the „Signal Pre-

Processing,‟ „Methodolgy‟, „Results and Discussion,‟ are

presented. The paper is concluded with the section of

„Conclusion and Future Work.‟

Int'l Conf. Embedded Systems and Applications | ESA'12 | 143

II. EXPERIMENTAL SET-UP

Using a muscle stimulator (Richmar HV 1100) the motor

point for the ring finger of the dominant hand of a healthy

male subject is identified. Prior to affixing the sEMG sensors,

the skin surface of the subject was prepared according to

International Society of Electrophysiology and Kinesiology

(ISEK) protocols. Different sets of experiments were

conducted with DE 2.1 and DE 3.1 DELSYS® Bagnoli sEMG

sensors. One sensor was placed on top of the motor point

location and two sensors were placed next to the motor point.

The subject was asked to squeeze the stress ball with the ring

finger which has a 0.5 inch force sensing resistor from

Interlink™ Electronics mounted on it. The sEMG and skeletal

muscle force signals were acquired using the 16-channel

DELSYS® Bagnoli sEMG and NI ELVIS™ respectively.

Using a PIC 32 embedded platform. A similar experimental

set-up was designed where the sEMG and the force data was

acquired. In both the cases, data was captured at a sampling

frequency of 2000Hz. Fig. 1 and 2 show the two experimental

set-ups.

Fig. 1. Experimental Set-Up with NI ELVIS and DELSYS® EMG System.

III. SIGNAL PRE-PROCESSING

From the authors‟ previous research [16] shows that the

Bayesian based filtering method yields the most suitable

sEMG signals. These nonlinear filters extract a signal by

significantly reduces the noise. The latent driving signal 𝑥

results in the EMG which can be computed using an

instantaneous conditional probability𝑃(𝐸𝑀𝐺│𝑥), [17].

Research work in [16] describes the EMG signal as an

amplitude-modulated zero mean Gaussian noise sequence.

This estimation algorithm uses the model of the conditional

probability of the rectified EMG signal 𝑒𝑚𝑔 = |𝐸𝑀𝐺|, [17].

Equation (1) gives an “Exponential Measurement Model”

for the rectified EMG signal [17].

𝑃 𝑒𝑚𝑔 𝑥 =
exp (

−𝑒𝑚𝑔

𝑥
)

𝑥
. (1)

Equation (2) gives a “Poisson Measurement Model” for

the rectified EMG signal [15].

𝑃 𝑒𝑚𝑔 𝑥 ≈ 𝑥𝑛 𝑒𝑥𝑝 −𝑥

𝑛 !
. (2)

In equation (2) 𝑛 is the number of events. Equation (3)

presents the “Half-Gaussian measurement model” for the

rectified EMG signal [17].

 𝑃 𝑒𝑚𝑔 𝑥 =
2∗exp (−

𝑒𝑚𝑔 2

2𝑥2)

√(2𝜋𝑥2)
. (3)

The model for the conditional probability of the rectified

EMG is a filtered random process with a random rate. The

likelihood function for the rate evolves in time according to a

Fokker–Planck partial differential equation [16]. The discrete

time Fokker–Planck Equation is given by Equation (4).

𝑝(𝑥, 𝑡−) ≈ 𝛼 ∗ 𝑝(𝑥 − 𝜀, 𝑡 − 1) + (1 − 2 ∗ 𝛼) ∗ 𝑝(𝑥, 𝑡 − 1) +
𝛼 ∗ 𝑝(𝑥 + 𝜀, 𝑡 − 1) + 𝛽 + (1 − 𝛽) ∗ 𝑝(𝑥, 𝑡 − 1) (4)

In Equation (4) 𝛼 and 𝛽 are two free parameters, where 𝛼 is

the expected rate of gradual drift and 𝛽 is the expected rate of

sudden shift in the signal [17]. The latent driving signal 𝑥 is

discretized into bins of 𝜀. These free parameters of the

nonlinear Half-Gaussian filter model are optimized by a

simple elitism based Genetic Algorithm (GA). GA is an

optimization algorithm which is based on observing nature

and its corresponding processes to imitate solving complex

problems, most often optimization or estimation problems,

[18-20]. A wavelet transform is used with a Daubechies

mother wavelet (filter). The order of the wavelet is chosen as

44 at 8 levels of decomposition [21]. Continuous wavelet

transform of a signal is computed by [21],

1/2

'

0

(,) ()CWT t s t t dt

(), ()s t t
 (4)

The inner product of the signal 𝑠(𝑡) and 𝜓 𝜖𝐿2(ℛ)\ 0 is the

mother wavelet function. It must satisfy the following

condition:

0 ≺ 𝐶𝜓 = 2𝜋 Ψ (𝜉)
∞

−∞

𝑑𝜉

 𝜁
≺ +∞ (5)

 Skeletal muscle force signal from FSR is filtered utilizing

a Chebyshev type II low pass filter with a 550 Hz pass band

frequency.

IV. METHODOLGY

The acquisition and transmission of the sEMG signals are

done by using Analog Input (ADC Module) and the UART

module of the PIC 32. The outputs from the DELSYS®

Bagnoli system are connected to the analog input channels of

the PIC 32 micro controller. In this work the signal from the

144 Int'l Conf. Embedded Systems and Applications | ESA'12 |

motor unit (middle sensor) is acquired and pre-processed. A

C code is generated by a dsPIC block set for the PIC32 from

SIMULINK®. The dsPIC block set generates a „.hex‟ file, and

this file is imported by MPLAB® to program the PIC32. The

sEMG and the corresponding skeletal muscle force data is

read by using analog Input module. There is an internal

analog to digital converter (ADC) in the PIC 32. It has a 10-

bit resolution so that it can differentiate up to 1024 different

voltages, usually in the range of 0 to 3.3 volts, and it gives

3mV resolution. The signals from the microcontroller are

transmitted to the PC through the UART module in the PIC32

using serial communication. In this design, a virtual „com

port‟ is created to feed the data via USB cable to the

computer. The signals from the ports are read by MATLAB®

.Fig 2 depicts the acquisition system using the PIC 32 micro

controller

Fig. 2. Experimental Set-Up with PIC 32 Embedded Platforms and

DELSYS® EMG System.

V. RESULTS AND DISCUSSION

Surface Elecromyography (sEMG) and the corresponding

skeletal muscle force data was acquired from the

microcontroller through UART channel 2 of the

PIC32MX360F512L by a virtual com port via USB at 57600

baud rate. The data from the microcontroller was converted

into uint16 data before it was transmitted through the UART.

The PIC32 microcontroller is running at 80 million

instructions per second (MIPS) with its phase lock loop (PLL)

activated. It was running at an external clock frequency of 8

MHz with internal scaling enabled. Fig. 3a shows the sEMG

signal acquired by the proposed acquisition system using DE

2.1 electrodes. Fig3b. shows the filtered sEMG signal using a

wavelet transform Daubechies 44 filter. Fig. 4a and 4b shows

the raw EMG and wavelet transform based Daubechies 44

filtered sEMG signals at 5 levels of decomposition acquired

by the proposed acquisition system using DE 3.1 electrodes.

Fig. 3. 3a. Unfiltered sEMG Signal from the Proposed Acquisition System

Using DE 2.1 Electrodes, 3b. Filtered sEMG signal with Wavelet Daubechies

44 Filter.

Fig. 4. 4a. Unfiltered sEMG Signal from the Proposed Acquisition System

Using DE 3.1 Electrodes, 4b. Filtered sEMG signal with Wavelet Daubechies

44 Filter

The following experiment was repeated several times to check

the consistency and the accuracy of the proposed acquisition

system. Fig. 5 and 6 show the validation for the proposed

acquisition system for repeated experiments using DE 2.1 and

DE 3.1 electrodes.

Fig. 5. 5a. Unfiltered sEMG Signal from the Proposed Acquisition System

Using DE 2.1 Electrodes, 4b. Filtered sEMG signal with Wavelet Daubechies

44 Filter.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

0

0.5

1

A
m

p
li

tu
d

e

3a. Unfiltered sEMG Signal

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

0

0.5

1

Time (30 Secs)

3b. Filtered sEMG Signal with Wavlet Daubechies 44 Filter

0 0.5 1 1.5 2 2.5 3 3.5

x 10
4

0

0.5

1

A
m

p
li

tu
d

e

4a. Unfiltered sEMG Signal

0 0.5 1 1.5 2 2.5 3 3.5

x 10
4

0.6

0.8

1

Time (30 Secs)

4b. Filtered sEMG Signal with Wavelet Doubechies 44 Filter

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

0

0.5

1

A
m

p
li

tu
d

e

5a. Unfiltered sEMG Signal

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

0

0.5

1

Time (30 Secs)

5b. Filtered sEMG Signal with Wavelet Doubechies 44 Filter

Int'l Conf. Embedded Systems and Applications | ESA'12 | 145

Fig. 6. 6a. Unfiltered sEMG Signal from the Proposed Acquisition System

Using DE 3.1 Electrodes, 6b. Filtered sEMG signal with Wavelet Daubechies

44 Filter.

Fig. 7. 7a. Unfiltered sEMG Signal from the Standard Acquisition System,

7b. Filtered sEMG signal with Wavelet Daubechies 44 Filter, 7c. Filtered

Skeletal Muscle Signal from Chebyshev Type II Filter.

The sEMG signals and the corresponding skeletal muscle

force acquired from the standard acquisition system are given

in Fig. 7a, 7b and 7c. Since the sEMG is a random signal

corrupted with noise it is hard to achieve the same correlation

every time. This proposed acquisition and filtering system is

working better than the Half-Gaussian filtering that was

previously developed by the authors [22].

VI. CONCLUSION AND FUTURE WORK

In this paper, a real-time sEMG acquisition and processing

system was designed for the control of a prosthetic hand

prototype. The proposed design shows the same performance

when compared with the standard EMG acquisition system.

The DE 2.1 electrodes are giving good results when compared

to the DE 3.1 electrodes of the Delsys® Bangnoli 16 system.

This proposed acquisition system miniaturizes the size and

helps the transmission of the data from the microcontroller to

the computer. This helps the user to compare the accuracy,

precision and real-time performance of the acquisition system.

For future work, we are planning to implement a real-time

online model-based force estimation along with controller

design for position and force control, based on this embedded

platform [22]. It will also be interesting to do the wavelet

Daubechies 44 filtration online instead of post processing.

Finally, we expand this sEMG acquisition to all the five

fingers of the prosthetic hand prototype.

ACKNOWLEDGMENT

This research was sponsored by the US Department of the

Army, under the award number W81XWH-10-1-0128

awarded and administered by the U.S. Army Medical

Research Acquisition Activity, 820 Chandler Street, Fort

Detrick MD 21702-5014. The information does not

necessarily reflect the position or the policy of the

Government, and no official endorsement should be inferred.

For purposes of this article, information includes news

releases, articles, manuscripts, brochures, advertisements, still

and motion pictures, speeches, trade association proceedings,

etc. Further, the technical help from Dr. D. Subbaram Naidu

and Dr. Marco P. Schoen is greatly appreciated.

REFERENCES

[1] ACA News: National Limb Loss Awareness Month (2011)

 http://www.bocusa.org/aca-news-national-limb-loss-awareness-month

[2] Roth B., and Salisbury J. Zinn M., “ A new Actuation Approach for

Human Friendly Robot Design”, Int Robot Res., pp. 379-398, 2004.

[3] N. Dechev, W. L. Cleghorn, and S. Naumann, “Multiple finger, passive

adaptive grasp prosthetic hand,” Mechanism and Machine Theory, 36(2001),

pp. 1157-1173.

[4] H. Kawasaki, T. Komatsu, and K. Uchiyama, “Dexterous

Anthropomorphic Robot Hand With Distributed Tactile Sensor: Gifu Hand

II,” IEEE/ASME Transactions on Mechatronics, Vol. 7, No. 3, September

2002, pp. 296-303.
[5] M. Zecca, S. Micera, M. C. Carrozza, and P. Dario, “Control of

Multifunctional Prosthetic Hands by Processing the Electromyographic

Signal,” Critical Reviews™ in Biomedical Engineering, 30(4-6), 2002, pp.

459-485.
[6] C. Castellini and P. van der Smagt, “Surface EMG in advanced hand

prosthetics,” Biological Cybernetics, (2009) 100, pp. 35-47.
[7] C. Potluri, P. Kumar, J. Moliter, M. Anugolu, A. Jensen, K. Hart, and

S. Chiu, “Multi-Level Embedded Motor Control for Prosthesis,” International

Conference on Embedded Systems and Applications, ESA‟2010, Las Vegas,

Nevada, USA, July 12-15, 2010.
[8] C. Potluri, P. Kumar, M. Anugolu, S. Chiu, A. Urfer, M. P. Schoen,

and D. S. Naidu, “sEMG Based Fuzzy Control Strategy with ANFIS Path

Planning For Prosthetic Hand,” 3rd IEEE RAS & EMBS International

Conference on Biomedical Robotics and Biomechatronics, Tokyo, Sept 26-

30, 2010.

[9] C. Potluri, Y. Yihun, P. Kumar, J. Molitor, S. Chiu, D. S. Naidu, and S.

H. Mousavinezhad, “sEMG Based Real-Time Embedded Force Control

Strategy for a Prosthetic Hand Prototype” IEEE International Conference on

Electro/Information Technology, Mankato, Minnesota, USA, May 15-17,

2011.

[10] M. Anugolu, A. Sebastain, P. Kumar, M. P. Schoen, A. Urfer, and D.

S. Naidu, “Surface EMG Array Sensor Based Model Fusion Using Bayesian

Approaches for Prosthetic Hands,” 2009 ASME Dynamic Systems and

Control Conference, Hollywood, California, USA, Oct. 12-14, 2009.

[11] C. Potluri, P. Kumar, M. Anugolu, A. Urfer, S. Chiu, D. S. Naidu, and

M. P. Schoen, "Frequency Domain Surface EMG Sensor Fusion for

Estimating Finger Forces," 32nd Annual International Conference of the

IEEE Engineering in Medicine and Biology Society, Buenos Aires, Argentina,

Aug. 31 - Sept. 4, 2010.

[12] P. Kumar, A. Sebastian, C. Potluri, A. Urfer, D. S. Naidu, and M. P.

Schoen, “Towards Smart Prosthetic Hand: Adaptive Probability Based

Skeletal Muscle Fatigue Model,” 32nd Annual International Conference of

the IEEE Engineering in Medicine and Biology Society, Buenos Aires,

Argentina, Aug. 31 – Sept. 4, 2010.
[13] P. Kumar, C. Potluri, A. Sebastian, S. Chiu, A. Urfer, D. S. Naidu, and

M. P. Schoen, “An Adaptive Multi Sensor Data Fusion with Hybrid

Nonlinear ARX and Wiener-Hammerstein Models for Skeletal Muscle Force

Estimation,” The 14th World Scientific and Engineering Academy and

Society (WSEAS) International Conference on Systems, Corfu Island,

Greece, July 22-24, 2010.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

0

0.5

1
A

m
p

li
tu

d
e

6a. Unfiltered sEMG Signal

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

0.6

0.8

1

Time (30 Secs)

6b. Filtered sEMG Signal with Wavlet Daubechies Filter

0 2 4 6 8 10 12 14

x 10
4

0

0.5

1

7a. Unfiltered sEMG Siganl

0 2 4 6 8 10 12 14

x 10
4

0

0.5

1

A
m

p
li

tu
d

e

7b. Filtered sEMG Signal with Wavelet Daubechies 44 Filter

0 2 4 6 8 10 12 14

x 10
4

0

0.5

1

Time (30 Secs)

7c. Filtered Skeletal Muscle Force

146 Int'l Conf. Embedded Systems and Applications | ESA'12 |

[14] P. Kumar, C. Potluri, A. Sebastian, S. Chiu, A. Urfer, D. S. Naidu, and

M. P. Schoen, “Adaptive Multi Sensor Based Nonlinear Identification of

Skeletal Muscle Force,” WSEAS Transactions on Systems, Issue 10, Volume

9, October 2010, pp. 1051-1062, 2010.
[15] P. Kumar, C. Potluri, M. Anugolu, A. Sebastian, J. Creelman, A. Urfer,

S. Chiu, D. S. Naidu, and M. P. Schoen, “A Hybrid Adaptive Data Fusion

with Linear and Nonlinear Models for Skeletal Muscle Force Estimation,” 5th

Cairo International Conference on Biomedical Engineering, Cairo, Egypt,

Dec. 16-18, 2010.
[16] P. Kumar, C. Potluri, A. Sebastian, Y. Yihun, A. Ilyas, M. Anugolu, R.

Sharma, S. Chiu, J. Creelman, A. Urfer, D. S. Naidu, and M. P. Schoen, “A

Hybrid Adaptive Multi Sensor Data Fusion for Estimation of Skeletal Muscle

Force for Prosthetic Hand Control,” The 2011 International Conference on

Artificial Intelligence, ICAI’11, Las Vegas, Nevada, USA, July 18-21, 2011.

[17] T. D. Sanger, “Bayesian Filtering of Myoelectric Signals,” J

Neurophysiol, 97, 2007, pp. 1839–1845.

[18] M. B. I. Reaz, M. S. Hussain and F. Mohd-Yasin, “Techniques of

EMG signal analysis: detection, processing, classification and applications,”

Biol. Proced. Online, 2006, 8(1), pp. 11-35.
[19] E. Kral, L. Vasek, V. Dolinay, P. Varacha, “Usage of PSO Algorithm

for Parameter Identification of District Heating Network Simulation Model,”

The 14th World Scientific and Engineering Academy and Society (WSEAS)

International Conference on Systems, Corfu Island, Greece, July 22-24, 2010.
[20] A. Neubaur, “The Intrinsic System Model of the Simple Genetic

Algorithm with 𝛼-Selection, Uniform Crossover and Bitwise Mutation,” The

14th World Scientific and Engineering Academy and Society (WSEAS)

International Conference on Systems, Corfu Island, Greece, July 22-24, 2010.
[21] J. Rafiee, M.A. Rafiee, N.Prause and M.P.Schoen, “ Wavelet basis

functions in biomedical signal processing”, Expert systems with Applications,

2010.

[22] C. Potluri., M. Anugolu., P. Kumar, A. Fassih., Y. Yihun, S. chiu.,

Naidu DS, “ Real-time sEMG Acquition and Processing Using a PIC 32

Microcontroller”, ESA‟ 11- 9th Int‟l conference on Embedded Systems and

Applications, Las Vegas, Nevada, USA, July 18-21, 2011.
[23] C. Potluri, Y. Yihun, M. Anugolu, P. Kumar, S. Chiu, M. P. Schoen,

and D. S. Naidu, “Implementation of sEMG-Based Real-Time Embedded

Adaptive Finger Force Control for a Prosthetic Hand”, submitted to IEEE

CDC, 2011.
[24] C. Potluri, M. Anugolu, Y. Yihun, A. Jensen, S. Chiu, M. P. Schoen,

and D. S. Naidu, “Optimal Tracking of a sEMG based Force Model for a

Prosthetic Hand,” submitted to IEEE EMBS, 2011.

Int'l Conf. Embedded Systems and Applications | ESA'12 | 147

Optimal Real-Time Scheduling for Reconfigurable

Periodic Asynchronous OS Tasks with Minimizations of

Response Times

Hamza Gharsellaoui1, Mohamed Khalgui1,2, Samir Ben Ahmed3

1INSAT Institute - University of Carthago, Tunisia
2ITIA Institute - CNR Research Council, Italy

3FST Faculty - University of Tunis El Manar, Tunisia

ABSTRACT
In this paper, we present a sufficient real-time schedu-
lability algorithm for preemptable, asynchronous and
periodic reconfigurable task systems with arbitrary
relative deadlines, scheduled on a uniprocessor by an
optimal scheduling algorithm based on the EDF prin-
ciples and on the dynamic reconfiguration. A recon-
figuration scenario is assumed to be a dynamic auto-
matic operation allowing addition, removal or update
of operating system’s (OS) functional asynchronous
tasks. We propose an intelligent agent-based architec-
ture where a software agent is used to respect real-time
constraints. The agent dynamically provides precious
technical solutions for users when these constraints are
not verified in order to meet deadlines and to minimize
their response time. Also, we present and discuss the
results of experiments that compare the accuracy and
the performance of our algorithm with others.

1 INTRODUCTION

Today in academy and manufacturing industry, many
research works have been made dealing with real-time
scheduling of embedded control systems. The new
generations of these systems are adressing today new
criteria as flexibility and agility. To reduce their cost,
these systems have to be changed and adapted to
their environment without any disturbance. This pa-
per aims to study the reconfiguration of reconfigurable
systems to be supposed as sets of OS tasks such that
it’s implemented by a particular set at a particular
time. A disturbance is defined in this current paper
as any internal or external event allowing the addition
or removal of tasks to adapt the system’s behavior.
For this reason many reconfigurable embedded con-
trol systems have been developed in recent years. A
reconfiguration scenario means the addition, removal
or update of tasks in order to save the whole system
on the occurence of hardware/software faults, or also

to improve its performance when disturbances happen
at run time. Usually, these systems are modelled as
sets of periodic real-time tasks. Each task τi is char-
acterized according to [3], by an initial offset Si (a
release time), a worst-case execution time Ci, a rela-
tive deadline Di and a period Ti. In general, a task’s
relative deadline can be different from its period. A
task is synchronous if its release time is equal to 0.
Otherwise, it’s asynchronous. Reconfiguration poli-
cies are classically distinguished into two strategies:
static and dynamic reconfigurations. Static reconfig-
urations are applied off-line to modify the assumed
system before any system cold start [9], whereas dy-
namic reconfigurations can be divided into two cases:
manual reconfigurations applied by users [10] and au-
tomatic reconfigurations applied by intelligent agents
[11, 12]. This paper focuses on the dynamic reconfigu-
rations of assumed asynchronous real-time embedded
control systems that should meet deadlines defined ac-
cording to user requirements [13].
The organization of this original paper is as follows.
The next section formalizes some known concepts in
the EDF theory, section III analyzes the Background.
section IV presents the state of the art. In section V,
we define a new theoretical concepts. In section VI, we
define an intelligent agent-based architecture for the
system’s feasibility and in section VII we propose a
new algorithm for optimization of response time. Our
proposed architecture is implemented, simulated and
analyzed in section VIII. Finally, section IX concludes
this paper.

2 State of The Art

In the following, we only consider periodic tasks. Few
results have been proposed to deal with deadline as-
signment problem. In (Baruah, Buttazo, Gorinsky,
& Lipari, 1999), the authors propose to modify the
deadlines of a task set to minimize the output, seen as

148 Int'l Conf. Embedded Systems and Applications | ESA'12 |

secondary criteria of this work. In (Cervin, Lincoln,
& G., 2004), the deadlines are modified to guarantee
close-loop stability of a real-time control system. In
(Marinca, Minet, & George, 2004), a focus is done on
the deadline assignment problem in the distributed for
multimedia flows [15]. In the case of a variable speed
processor, reducing the frequency can create overloads
that can result in deadline miss. In the second case,
the task parameters must be adapted on-line to cope
with the overload. The idea is to adapt the periods of
the tasks when needed to reduce the processor utiliza-
tion. Other related papers are detailed in (Buttazzo
& al., 2004) in which, they introduce a novel schedul-
ing framework to propose a flexible workload manage-
ment at run time. They present the concept of elas-
tic scheduling (introduced in Buttazzo, G., Lipari,&
Abeni, 1998). In (Balbastre, & Ripoll, 2002), the au-
thors show how much a task can increase its compu-
tation time still meeting the system feasibility when
tasks are scheduled EDF. They consider the case of
only one task increasing its WCET [15].
Finally, we note that all these related works consider
synchronous OS tasks and we are not currently aware
of any existing result concerning the feasibility of re-
configuration with minimizing the response time of
asynchronous periodic real-time OS tasks in the litera-
ture, and we focus in this paper to determine schedu-
lability under optimal scheduling algorithm. So, we
note that the first and the only research work dealing
with asynchronous periodic real-time OS tasks is that
we propose in the current original work in which we
give solutions computed and presented by the intelli-
gent agent for users to respond to their requirements.

3 CONTRIBUTION 1: NEW
THEORETICAL PRELIMI-
NARIES

This section aims to define a new theoretical pre-
liminaries for a set of asynchronous real time tasks
scheduling under EDF based on the concepts defined
in [7, 8], which compute a feasible schedule for a set
of synchronous real time tasks scheduling under EDF.
These new theoretical preliminaries will be used in the
following two contributions. Our main contribution is
the optimal schedulability algorithm of uniprocessor
periodic real-time tasks implementing reconfigurable
systems. By applying a preemptive scheduling, the as-
sumed system is characterized by periodic tasks such
that each one is defined by a tuple (Si;Ci;Di;Ti).
Running Example:
Let us suppose a real-time embedded system V olvo
to be initially implemented by 5 characterized tasks.
These tasks are feasible because the processor utiliza-

tion factor U = 0.87 ≤ 1. These tasks should meet all
required deadlines defined in user requirements and we
have Feasibility(CurrentV olvo(t)) ≡ True.
We suppose that a reconfiguration scenario is ap-
plied at t1 time units to add 3 new tasks C; G; H .
The new processor utilization becomes U = 1.454
> 1 time units. Therefore the system is unfeasible.
Feasibility(CurrentV olvo(t)) ≡ False.

Task Ti Ci Di U100 Uasy UOPT

A 10 2 10 20% 20% 4.7%
B 20 2 5 10% 40% 4%
D 50 6 50 12% 12% 1.6%
E 100 8 100 8% 8% 5.6%
F 2000 7 100 7% 7% 9%

C 50 1 2 2% 50% 1%
G 2000 8 100 8% 8% 18.6%
H 2000 8 2000 8% 0.4% 18.6%

Table 1: Volvo Case Study

In table 1, U100 represents the task utilization when
scheduled in a static schedule with a period of 100ms,
and Uasy represents the utilization when tasks are
scheduled with their minimal value between their pe-
riod and deadline in the case of asynchronous tasks.
The optimal results given by our approach are pre-
sented in Uopt column.

Formalization
By considering asynchronous real-time tasks, the
schedulability analysis should be done in the Hyper-
Period hp =[0, 2*LCM+maxk(Ak,1)], where LCM is
the well-known Least Common Multiple and (Ak,1) is
the earliest start time (arrival time) of each task τk

[11]. Let n = n1 + n2 be the number of a mixed work-
load with periodic asynchronous tasks in CurrentΓ(t).
The reconfiguration of the system CurrentΓ(t) means
the modification of its implementation that will be as
follows at t time units: CurrentΓ(t) = ξnew ∪ ξold

Where ξold is a subset of n1 old periodic tasks which
are asynchronous and not affected by the reconfig-
uration scenario (e.g. they implement the system
before the time t), and ξnew is a subset of n2 new
asynchronous tasks in the system. To estimate the
amount of work more priority than a certain under
EDF, we propose one function of job arrival with
deadline, one function of workload with deadline and
finally, we propose the function of major job arrival
with deadline for periodic asynchronous tasks.

3.1 New function of job arrival with
deadline:

We propose new functions of job arrival which inte-
grate the deadlines by the following levels:

Int'l Conf. Embedded Systems and Applications | ESA'12 | 149

• In the instance level:

Sk,n(t1, t2, d) = Ck,n.q[t1≤Ak,n<t2] .q[Dk,n≤d]

= Sk,n(t1, t2).q[Dk,n≤d]

Where Sk,n(t1, t2, d) is the amount of job with lower
deadline or equal to d brought by the instance τk,n

meanwhile of time [t1, t2[, and q[α] = 1 if the predicat
α = true.

• In the task level we propose:

Sk(t1, t2, d) =
∑

n∈ℵ Ck,n.q[t1≤Ak,n<t2] .q[Dk,n≤d]

Where Sk(t1, t2, d) is the amount of job with lower
deadline or equal to d brought by all the instances of
τk meanwhile of time [t1, t2[.

• For a set of tasks Γ we propose:

SCurrentΓ(t)(t1, t2, d) =
∑

i`τiinCurrentΓ(t) Si(t1, t2, d)
Where SCurrentΓ(t)(t1, t2, d) is the amount of job with
lower deadline or equal to d brought by all the in-
stances of tasks that composed CurrentΓ(t) mean-
while of time [t1, t2[.

3.2 New function of workload with
deadline:

In the study of the EDF policy, it is necessary to us to
know at the certain moments the workload in wait of
treatment of which the execution must be ended be-
fore a certain deadline. So, we propose one function
of workload with deadline:

• In the instance level:

Wk,n(t, d) = Sk,n(Ak,1, t, d)−
∫ t

Ak,1
Πk,n(u, d)du (a)

Where Πk,n(t, d) = Πk,n(t).q[Dk,n≤d]. Wk,n(t, d) is
the amount of job with lower deadline to d brought
by the instance τk,n which again is to be executed at
the moment t. If Ak,1 = 0, we restreint to the case of
synchronous tasks.

• In the task level:

Wk(t, d) = Sk(Ak,1, t, d) −
∫ t

Ak,1
Πk(u, d)du =∑

n∈ℵ Wk,n(t, d)
Where Wk(t, d) is the amount of job with lower dead-
line to d brought by all the instances of τk which again
is to be executed at the moment t.

• For a set of tasks Γ:

for the CurrentΓ(t) = ξnew ∪ ξold, we propose:
WCurrentΓ(t)(t, d) =

∑
i`τiinCurrentΓ(t) Wi(t, d) =

SCurrentΓ(t)(Ak,1, t, d)−
∫ t

Ak,1
ΠΓ(u, d)du

Where WCurrentΓ(t)(t, d) is the amount of job with
lower deadline to d brought by all the instances of
tasks that composed CurrentΓ(t) which again is to be
executed at the moment t.

4 CONTRIBUTION 2: AGENT-
BASED REAL-TIME RE-
CONFIGURABLE MODEL

this section aims to propose an intelligent Agent-based
architecture which is able to propose technical solu-
tions for users after any dynamic reconfiguration sce-
nario.

4.1 Agent’s Principal

Let Γ be the set of all possible tasks that can imple-
ment the system, and let us denote by CurrentΓ(t) the
current set of periodic asynchronous tasks implement-
ing the system at t time units. These tasks should
meet all required deadlines defined in user require-
ments. By considering a feasible System Γ before the
application of the reconfiguration scenario, each one of
the tasks of ξold is feasible, e.g. the execution of each
instance is finished before the corresponding deadline.
In this case, we note that Feasibility(CurrentΓ(t)) ≡
True.
An embedded system can be dynamically reconfigured
at run-time by changing its implementation to delete
old or to add new real-time tasks. We denote in this
research by ξnew a list of new asynchronous tasks to be
added to CurrentΓ(t) after a particular reconfigura-
tion scenario. In this case, the intelligent agent should
check the system’s feasibility that can be affected when
tasks violate corresponding deadlines, and should be
able to propose technical solutions for users.

4.2 First Case: Minimizing the re-
sponse time of periodic tasks

In this case, the objective is to reduce the periodic
response times as much as possible, still guaranteeing
that all periodic tasks complete within their deadlines.

• Solution 1: Removal of Tasks (1)

We define in this solution a perfect admission con-
troller as a new heuristic, which is defined as an ad-
mission control scheme in which we always admit a
task if and only if it can be scheduled. Such a control
policy can be implemented as follows. Whenever a
task arrives, the agent computes the processor utiliza-
tion of each task τi and generates the feasible superset
Ωfeasible which defines the different feasible subsets of
tasks in achieving good periodic responsiveness where
U(t) =

∑n
i=1

Ci

min(Ti,Di)
is enforced.

Ωfeasible = {τ ⊆ CurrentΓ/Feasibility(τ) = True}
Each subset τ corresponds to a possible implementa-
tion of the system such that:

150 Int'l Conf. Embedded Systems and Applications | ESA'12 |

τ = ξnew ∪ ξold,
Στi ∈Asynchronous−tasks

Ci

min(Ti,Di)
≤ 1 [6]

In this case we remove all tasks of ξnew, we stock them
in a list and we begin by using an acceptance test, e.g,
periodic tasks ∈ ξnew that would cause U(t) to exceed
this bound are not accepted for processing. There are
two possible cases:

• First case: if the arrival task is hard, then it
will be accepted and we will randomly remove
another soft task from the [1.. n1 + j − 1] previ-
ous tasks to be rejected and still guaranteeing a
feasible system,

• Second case: if the arrival task is soft, it will
be dropped (rejected) immediately

The agent computes the processor utilization
Ci

min(Ti,Di)
of each task τi and generates the feasible

superset Ωfeasible which defines the different feasible
subsets of tasks.
The agent suggests all possible combinations of tasks
for users who have the ability to choose the best com-
bination that satisfies functional requirements.
Running Example:
The agent should react to propose useful solutions for
users in order to re-obtain the system’s feasibility. In
our V olvo system, the agent proposes the task C to
be removed to re-obtain the system’s feasibility. The
processor utilization factor (U) becomes equal to 0.954
after removing the task C, and the task set becomes
schedulable (feasible).

4.3 Second Case: Meeting deadlines of
periodic tasks

• Solution 1: Modification of Periods (2)

The agent proceeds as a second solution to change the
periods of tasks of ξnew and ξold. To obtain a feasible
system, the following formula should be satisfied:∑n1−j

i=1
Ci

min(Ti,Di)
+

∑n2+n1
i=n1−j+1

Ci

(min(Ti,Di)+θi)
= 1

Where j ∈ [0, n1];
−→

∑n2+n1
i=n1−j+1

Ci

(min(Ti,Di)+θi)
= 1−

∑n1−j
i=1

Ci

min(Ti,Di)

Let βj be (min(Ti, Di) + θi),
−→ 1

βj

∑n2+n1
i=n1−j+1 Ci = 1−

∑n1−j
i=1

Ci

min(Ti,Di)

−→ βj = d
∑n2+n1

i=n1−j+1 Ci

1−
∑n1−j

i=1
Ci

min(Ti,Di)

e = constante

The new period of Γ tasks is therefore deduced from
βj .
running example

The agent should react to propose useful solutions
for users in order to re-obtain the system’s feasibility.
In our V olvo system, the agent computes the constant
values βj (j ∈ [0; 5]) corresponding respectively as fol-
lows: β0 = 43, β1 = 77, until β5 = 42 time units where
Lold = � and ξnew = {A; B; D; E; F ; C; G; H}.
The processor utilization factor (U) becomes equal to
0.942 after updating the tasks C, G and H by the new
value of period equal to 43 and the task set becomes
schedulable (feasible).

• Solution 2: Modification of Worst Case
Execution Times (3)

The agent proceeds now as a third solution to modify
the Worst case Execution Times (WCET) of tasks of
ξnew and ξold. To obtain a feasible system, the follow-
ing formula should be satisfied:

∑n1−j
i=1

Ci

min(Ti,Di)
+

∑n2+n1
i=n1−j+1

Ci+αi

min(Ti,Di)
= 1

−→
∑n2+n1

i=n1−j+1
Ci+αi

min(Ti,Di)
= 1−

∑n1−j
i=1

Ci

min(Ti,Di)

−→
∑n2+n1

i=n1−j+1
αi

min(Ti,Di)
= 1 −

∑n1−j
i=1

Ci

min(Ti,Di)
−∑n2+n1

i=n1−j+1
Ci

min(Ti,Di)

−→
∑n2+n1

i=n1−j+1
αi

min(Ti,Di)
= 1−

∑n2+n1
i=1

Ci

min(Ti,Di)

Let γj be the following constant: γj = αi =
Constante,

−→ γj = d
1−

∑n2+n1
i=1

Ci
min(Ti,Di)∑n2+n1

i=n1−j+1
1

min(Ti,Di)

e = constante

The new WCET of Γ tasks is therefore deduced from
γj .
running example
The agent should react to propose useful solutions for
users in order to re-obtain the system’s feasibility. In
our V olvo system, the agent computes the constant
values γj , (j ∈ [0; 5]) corresponding respectively to
the new values of the Worst Case Execution Times
(WCET). Here γ= -44, and the minimum value of
WCET in the Volvo system is equal to 1, so γ= -44
+ (Minimum WCET = 1) = -43 ≤ 0. Therefore,
the agent deduces that modifications of Worst Case
Execution Times (WCET) can not solve the problem.

5 CONTRIBUTION 3: OPTI-
MIZATION OF RESPONSE
TIME

this section aims to present the principle of response
time minimization. For this reason, we present the
function of major job arrival with deadline in the fol-
lowing paragraph.

Int'l Conf. Embedded Systems and Applications | ESA'12 | 151

5.1 New function of major job arrival
with deadline:

In the background, we defined the function of job
arrival with deadline. Now and in order to analyze
the feasibility, we shall have to quantify, the maximal
amount of job of term less than or equal to one cer-
tain date was engendered on an interval of time, it is
the function of major job arrival with deadline. This
function applied to the task τk, noted Ŝk(.), limits the
function of major job arrival with deadline of the task
τk, on everything interval of time of duration ∆t:
Sk(Ak,j , Ak,j + ∆t, Ak,j + d) ≤ Ŝk(∆t, d), ∀Ak,j

(the beginning of the interval in which the function is
estimated) ≥ 0, ∀∆t ≥ 0, ∀d ≥ 0.
We assume now the case where Dk,n = Ak,n + D̄k

∀k, n. We consider an interval of time [Ak,j , Ak,j+∆t[.
We know that most high time of execution of an in-
stance is Ck. Let us determine the maximum num-
ber of instances in an interval of time of the type
[Ak,j , Ak,j + ∆t[.
We note Ak,n0 the first instance of τk, after Ak,j

and Ak,n1 the last one before Ak,j + ∆t with n =
n1 − n0 + 1 the number of instances in this interval
[Ak,j , Ak,j + ∆t[.
There are two conditions so that the job of an instance
τk,i is counted, it is necessary that:
1. Ak,i < Ak,j + ∆t : the maximum number of in-
stances is most big n which verifies: Ak,n0 + (n −
1).Tk < Ak,j + ∆t. Where Ak,n0 ∈ [Ak,j , Ak,j + Tk[.
If Ak,n0 = Ak,j , we have n maximum and we obtain
the following expression:
n < ∆t

Tk
+ 1. (b)

The biggest integer n which satisfies (b) is n =
⌈

∆t
Tk

⌉
2. Dk,i < Ak,j + d : the respect for this condition
involves that the deadline of τk,n1 will have to verify:
Dk,n1 = Ak,n1 + D̄k ≤ Ak,j + d
As Ak,n1 ≥ Ak,n0 + (n − 1).Tk, we have Ak,n0 +
(n− 1).Tk + D̄k ≤ Ak,j + d
Where Ak,n0 ∈ [Ak,j , Ak,j + Tk[. If Ak,n0 = Ak,j , we
have n maximum and we obtain the following expres-
sion:
n ≤ d−D̄k

Tk
+ 1. (c)

The biggest integer n which satisfies (c) is n =⌊
d−D̄k

Tk

⌋
+ 1. (d)

An implicit condition is that n ≥ 0, notice in (d) that
as D̄k can be arbitrarily big, n can be negative. The
biggest n which verifies three conditions ((b), (c) and
(d)) is finally:

n = min
(⌈

∆t
Tk

⌉
,
⌊

d−D̄k

Tk

⌋
+ 1

)+

Where a+ = max(0, a). We obtain finally the function
of major job arrival with following deadline for τk:

Ŝk(∆t, d) = min
(⌈

∆t
Tk

⌉
,
⌊

d−D̄k

Tk

⌋
+ 1

)+

. Ck (e)

5.2 Calculation of response time bor-
ders under EDF

The value of the biggest possible period of interfer-
ence of the system noted L is common to all the
tasks. This maximal period occurs after the simulta-
neous provision of an instance of all the tasks: L =
min{∆t > 0/ ˆS1..m(0,∆t) = ∆t} (f)
With ˆS1..m(0, t) = ˆS1..m(0, t,+∞) is the function of
major job arrival who adds the job of all the instances
whatever are their deadlines. In the case of periodic
tasks, as it was studied before, we have:

ˆS1..m(∆t) =
∑m

i=1

⌈
∆t
Ti

⌉
.Ci

Now, according to the previous three solutions calcu-
lated by the Intelligent Agent (Solution 1, Solution 2,
and Solution 3), we define:
• L1 according to Solution 1, by the following expres-
sion:
L1 = min{∆t > 0/Ŝ1..m1(0,∆t) = ∆t},
where Ŝ1..m1(0,∆t) =

∑m1
i=1

⌈
∆t
Ti

⌉
.Ci and m1 ≤ m re-

sulting from the removal tasks generated by the first
solution (Solution 1).
• L2 according to Solution 2, by the following expres-
sion:
L2 = min{∆t > 0/Ŝ1..m(0,∆t) = ∆t},
where Ŝ1..m(0,∆t) =

∑m
i=1

⌈
∆t
βi

⌉
.Ci and βi resulting

from the new periods generated by the second solution
(Solution 2).
• L3 according to Solution 3, by the following expres-
sion:
L3 = min{∆t > 0/Ŝ1..m(0,∆t) = ∆t},
where Ŝ1..m(0,∆t) =

∑m
i=1

⌈
∆t
Ti

⌉
.γi and γi resulting

from the new worst case execution times generated by
the third solution (Solution 3).
L1 is thus (respectively L2 and L3), the limit when n
aims towards the infinity, of the suite
L0

1 =
∑m1

i=1 Ci , Ln
1 =

∑m1
i=1

⌈
Ln−1

1
Ti

⌉
.Ci

(respectively

L0
2 =

∑m
i=1 Ci , Ln

2 =
∑m

i=1

⌈
Ln−1

2
βi

⌉
.Ci and

L0
3 =

∑m
i=1 γi , Ln

3 =
∑m

i=1

⌈
Ln−1

3
Ti

⌉
.γi) (g)

The obtaining of L1 (respectively L2 and L3), allows
us to build the set D1

k (respectively D2
k and D3

k) de-
fined by (e) For every value of d ∈ D1

k (respectively
D2

k and D3
k), it is now necessary to calculate the end

of the corresponding period of interference E0,1(d)
(respectively E0,2(d) and E0,3(d)).
According to (f) and (c):
E0,1(d) is the limit when n aims towards the infinity
of the suite:
E0

0,1(d) = ε, En
0,1(d) =∑m1

i=1

(
min

(⌈
En−1

0,1
Ti

⌉
,
⌊

d−D̄i

Ti

⌋
+ 1

))+

.Ci,

152 Int'l Conf. Embedded Systems and Applications | ESA'12 |

E0,2(d) is the limit when n aims towards the infin-
ity of the suite:
E0

0,2(d) = ε, En
0,2(d) =∑m

i=1

(
min

(⌈
En−1

0,2
βi

⌉
,
⌊

d−D̄i

βi

⌋
+ 1

))+

.Ci and

E0,3(d) is the limit when n aims towards the infinity
of the suite:
E0

0,3(d) = ε, En
0,3(d) =∑m

i=1

(
min

(⌈
En−1

0,1
Ti

⌉
,
⌊

d−D̄i

Ti

⌋
+ 1

))+

.γi

Where ε is a positive and unimportant but necessary
real value to affect the convergence. For every value of
d ∈ D1

k (respectively D2
k and D3

k), the corresponding
response time is:
Rk,1 = (E0,1(d)− (d− D̄k)),
the biggest value is the border of the response time
(R{k,1}max).
Rk,2 = (E0,2(d)− (d− D̄k)),
the biggest value is the border of the response time
(R{k,2}max).
Rk,3 = (E0,3(d)− (d− D̄k)),
the biggest value is the border of the response time
(R{k,3}max).
We define now, Rk optimal noted Ropt

k according to
the previous three solutions calculated by the intelli-
gent Agent (Solution 1, Solution 2, and Solution 3) by
the following expression:
Ropt

k = min(Rk,1, Rk,2, Rk,3) (the minimum of the
three values) (h).
So, the calculation of Ropt

k allows us to obtain and to
calculate the minimizations of response times values
and to get the optimum of these values.

5.3 Algorithm

Begin Algorithm
Code1 Removal Tasks() U ←− 0;

• For each partition β ⊆ ξold ∪ ξnew

– i= 1;

∗ U+ = Ci/min(Ti, Di);

– If U ≤ 1

∗ Then display(β);
save (m1);

else display i+1;

Code2 Modify Periods Deadlines()

• Compute(βj);

• Compute(γj);

• For min(Ti, Di) ∈ ξnew ∪ ξold,

– Display parameters();

Code3 generate parameters(m1, βi, γi);

• Compute(Rk,1);

• Compute(Rk,2);

• Compute(Rk,3);

• Generate(Ropt
k);

End Algorithm

6 EXPERIMENTAL ANALY-
SIS AND DISCUSSION

In this section, in order to check the suggested con-
figurations of tasks allowing the system’s feasibility
and the response time minimization, we simulate the
agent’s behavior on a Blackberry Bold 9700 presented
by [14] and on a Volvo system presented by [16]. The
Blackberry Bold 9700 is assumed to be initially com-
posed of 50 tasks and dynamically reconfigured at run-
time to add 30 new ones in which a task can be a
missed call, a received message, or a skype call.
In this paper, any real-time reconfiguration and re-
sponse time minimization is based on the real-time
embedded control system reconfiguration. Moreover,
in order to meet all real-time constraints, both initial
WCETs Ci, the relative deadline Di and also peri-
ods Ti of each task are reconfigured by the intelligent
agent RT-Reconfiguration. The goal is to minimize
the response time of the whole system and to meet
their relative deadlines. The very important observa-
tion was obtained by the comparison of our proposed
approach against the others from the literature about
the current values. We tested the feasibility of the
same task sets Blackberry Bold 9700, and V olvo by
another algorithms, so that we can compare the re-
sults directly.

6.1 Discussion and Evaluation

The test greatly reduces the processor utilization fac-
tor U =

∑n
i=1

Ci

min(Ti,Di)
in comparison to the original

processor utilization factor, so the combination of both
three solutions in order to obtain the optimisation of
the response time by calculating Lopt leads to an im-
proved algorithm for the analysis of asynchronous sys-
tems. So, we can therefore confirm that this method
is nowadays very advantageous given the fast response
time and the performance of the RT-Reconfiguration
tool. By applying the three solutions of this tool RT-
Reconfiguration, we can conclude also, that our ap-
proach can allow more reactive and also more efficient
feasible systems. This advantage was increased and
proved clearly with the Blackberry Bold 9700 system
proposed by [14] and by the volvo case study proposed
by [5].

Int'l Conf. Embedded Systems and Applications | ESA'12 | 153

7 CONCLUSION AND FU-
TURE WORKS

In this paper, we propose a new theory for the mini-
mization of the response time of periodic asynchronous
constrained deadline real-time tasks with EDF algo-
rithm that can be applied to uniprocessor systems and
proved it correct. As future work, we are planning to
extend our study to the case of FPP scheduling policy
and to sporadic task sets with a large size systems
(the number of tasks is equal to 200 and it can be
more) and, we plan also to apply these contributions
to other complex reconfigurable systems that we have
chosen to not cover in this paper. In addition, we
would like to consider its use in distributed systems.

REFERENCES
[1] M. L. Dertouzos. Control robotics: The procedural
control of physical processes. Information Processing,
1974.

[2] L. N. L. M. F. Singhoff, J. Legrand, ”Cheddar: a
Flexible Real Time Scheduling Framework”, in ACM
SIGAda Ada Letters, volume 24, number 4, pages 1-8.
Edited by ACM Press, ISSN: 1094-36-41, 2004.

[3] C. Liu and J. Layland, Scheduling algorithms for
multi-programming in a hard-real-time environment,
in Journal of the ACM, 20(1):46-61, 1973.

[4] J. Y.-T. Leung and M. L. Merrill, A note on
preemptive scheduling of periodic, real-time tasks,
Information Processing Letters, 11 (1980), pp: 115-
118.

[5] K. Hnninen and T. Riutta. Optimal Design. Mas-
ters thesis, Mlardalens Hgskola, Dept of Computer
Science and Engineering, 2003.

[6] STANKOVIC J., SPURI M., RAMAMRITHAM
K., BUTTAZZO C., Deadline Scheduling for Real-
Time Systems, Kluwer Academic Publishers, Norwell,
USA, 1998.

[7] www.loria.fr/nnavet/cours/DEA2004-2005/slide1.pdf

[8] www.loria.fr/nnavet/cours/DEA2004-2005/slide2.pdf

[9] C. Angelov, K. Sierszecki, and N. Marian, Design
models for reusable and reconfigurable state machines,
in: L.T. Yang et al., Eds., Proc. of Embedded Ubiq-
uitous Comput., pp. 152-163, 2005.

[10] M. N. Rooker, C. Sunder, T. Strasser, A. Zoitl,
O. Hummer, and G.Ebenhofer, Zero downtime recon-
figuration of distributed automation systems: The
”CEDAC approach, in: Proc. 3rd Int. Conf. Indust.
Appl.Holonic Multi-Agent Syst., Regensburg, Sept.
2007, pp. 326-337.

[11] M. Khalgui, O. Mosbahi, Z. W. Li, and H.-
M. Hanisch, Reconfigurable multi-agent embedded
control systems: From modelling to implementation,
IEEE Trans. Comput., vol. 60, no. 4, pp. 538-551,
Apr. 2011.

[12] Y. Al-Safi and V. Vyatkin, An ontology-based
reconfiguration agent for intelligent mechatronic sys-
tems, in: Proc. 4th Int. Conf. Hol. Multi- Agent
Syst. Manuf., Regensburg, Germany, 2007, vol. 4659,
pp. 114-126.

[13] S. Baruah and J. Goossens, Scheduling real-time
tasks: Algorithms and complexity, in: Joseph Y-T
Leung (ed)., Handbook of Scheduling: Algorithms,
Models, and Performance Analysis, 2004.

[14] X. Wang, M. Khalgui, and Z. W. Li, Dynamic low
power reconfigurations of real-time embedded systems,
in: Proc. 1st Pervas. Embedded Comput. Commu.
Syst. Mar. 2011, Algarve, Portugal.

[15] L. GEORGE, P. COURBIN, ”Reconfiguration
of Uniprocessor Sporadic Real-Time Systems: The
Sensitivity Approach”, book chapter in IGI-Global
Knowledge on Reconfigurable Embedded Control Sys-
tems: Applications for Flexibility and Agility. Ed:
Khalgui & Hanisch. ISBN 978-1-60960-086-0, 2011.
Published by Information Science, USA.

154 Int'l Conf. Embedded Systems and Applications | ESA'12 |

Measuring and Evaluating the Power Consumption and

Performance Enhancement on Embedded

Multiprocessor Architectures

Éricles Rodrigues Sousa and Luís Geraldo Pedroso Meloni

School of Electrical and Computer Engineering

University of Campinas, Campinas, São Paulo, Brazil

e-mail: {ericles, meloni}@decom.fee.unicamp.br

Abstract - Nowadays MPSoCs (Multiprocessors system-on-

chip) have been employed in embedded systems which

require high computing complexity and power consumption

savings. For multiprocessor architectures a metric for

measuring the speedup provided by different cores is one of

the main characteristics which can be verified. Besides,

showing the performance enhancements reached by

hardware and software partitioning, this paper also

presents a study about the power consumption achieved by

a reconfigurable multicore architecture. Therefore, in

order to conduct the current case study, it was conceived a

scenario based on motion estimation vector used by

H.264/AVC encoder, which is an efficient algorithm used

by many standards for video compressing.

Keywords: MPSoC, Embedded Systems, Speedup, Power

Consumption

1 Introduction

 The benefits of the MPSoCs (Multiprocessors System-

on-Chip) pose several challenges to system designers for

exploring the potential of these architectures in order to

compute efficiently high complex algorithms.

 Nowadays, applications for mobile devices demand

reconfigurability, high-performance, low-consumption and

low-cost solutions. And in order to embedded systems

attend efficiently these requirements several studies are

being conducted.

 In [1] the authors present an asymmetric MPSoC

simulator environment, which can be used for the

architecture exploration and optimization. [2] makes an

approach concerning different aspects, including general

architectural choices and their impact on programmability,

the requirements of particular application domains, as well

as programming models. In [3] the authors consider the

inter-processors communication and synchronization as one

of the key problems of NoC (network-on-chip)

communication. They propose two different models to

improve the communication performance. And [4] provides

an overview of the main MPSoC design challenges.

 Also, some applications such as, multimedia and

wireless communications, which demand high complex

processing have been solving their constraints of low

latency and high throughput exploring the potential

provided by embedded multiprocessors systems [4][5].

 These architectures consist of specialized cores

around general purpose processors dedicated to execute

sequential tasks. And the intensive tasks like, loop

programs are generally executed on specialized cores, also

called co-processors or accelerators.

 MPSoCs are characterized as a set of different

processing elements (PEs) working together into the same

silicon and they can communicate through a bus, shared

memory or NoC (network-on-chip). Generally, PEs are

based on ASICs (Application Specific Integrated Circuits),

FPGAs (Field Programmable Gate Arrays), DSPs (Digital

Signal Processors), among others [6].

 In this context, it is possible to find several devices.

For example, the newest cell-phones and smart-phones has

around 4 to 8 dedicated processing elements to control the

user interface, manager the protocols of communications,

perform graphics processing, digital signal processing,

coding and decoding voice, image and video, among others

[4]. Figure 1 presents a typical structure of smart-phones.

Figure 1 – Typical structure for smart-phones,

reproduced from [7]

Int'l Conf. Embedded Systems and Applications | ESA'12 | 155

 The illustration above is a real example of MPSoC

architecture, which explores the efficiency available by

many dedicated cores working together. Therefore,

considering the possibility to compute in parallel a set of

instructions between different PEs, this study is evaluating

the energy consumption and the speedup performance on

embedded multiprocessors architectures.

 The main contribution of this paper can be

summarized as follows:

 From simulations, it presents the feasibility to off-

load a critical path to a dedicated processor;

 It shows a trade-off between power consumption

and speedup performance applied on embedded

multiprocessor architectures.

 For a better exposition, this work is organized into

five sections. Section II presents the architecture model that

promotes synergy environment between different PEs and

describes the methodology applied to evaluate the

efficiency of the architecture. Section III describes the case

study. Section IV, presents the achieved results and finally,

Section V lists some considerations and main conclusions.

2 System Architecture

 In order to simulate the cooperation between hardware

and software for embedded systems, a computing

architecture based on the model discussed in [8] was

investigated.

 However, there are other similar architectures that

could be evaluated. For instance, it is possible to employ a

embedded processors available on FPGAs to create a good

scenario to split code between hardware and software.

Though, generally they do not provide a high performance

and have as bottlenecks the power consumption and the

amount of area required due to these cores are based on

configurable logic.

 Concerning the amount of area spent to embedded

these processors, the benchmark provided by Altera [9]

allow us conclude that the processor NIOS consumes more

than 46% of area when optimized for speed and aimed to be

embedded into a cheap FPGA like, Cyclone III

EP3C5E144C8N.

 The communication model used for the evaluated

architecture consists of a shared memory between the

Central Control Unit and Co-processing units which are

constituted by one digital signal processor (DSP) and by

one reconfigurable hardware able to accelerate the critical

tasks. Because, different constraints like, energy and cost,

the communication model applied allows full independence

of the processes. Furthermore, from an AMC

(Asynchronous Memory Controller), usually embedded on

modern processors, a high throughput with minimal latency

and jitter may be achieved.

 Theoretical values show that running the DSP at 133

MHz and using a bus of 16-bit, values of up to 2,128 Gbps

can be reached. It means, a higher rate offered by the most

common peripheral devices available for communication

such as, SPI and USB 2.0 [8].

2.1 Hardware/Software Co-design

 Hardware and software co-design offer the possibility

to improve the performance of a particular application.

Accelerators, when properly designed, significantly

enhance the system performance. However, the application

to be partitioned must be carefully analyzed in order to

promote an overall improvement [11][12].

 Thus, to achieve a good partitioning that will yield

significant results of optimization it is necessary to first

identify what are the critical points of the application and

which paths will provide a performance improvement when

executed in parallel.

 On the other hand, there are many applications written

sequentially. Certainly, it is a great advantage to run these

codes into parallel manner. However, it is not a trivial task

to do, mainly when the codes have a tight data dependency

between many variables. Therefore, several researches have

been developed in order to optimize and reduce the data

dependency looking for a better way to split a code.

 In addition, there are different techniques to identify

the bottlenecks of a system. For processor simulators, it is

possible to use the statistical profile tools, which are

provided by different manufacturers. Indeed, these tools are

only one of the many ways that may be considered for this

purpose. More holistic analysis are required in order to

identify which processes are overloading the CPU and the

data dependency between the several variables and

processes. Besides, it should guarantee that by splitting a

code the channel of communication will have enough

bandwidth in order to do not compromise the system

performance.

 Furthermore, another issue to be considered is the fact

that many core embedded on a chip usually work at

different frequencies rates. Thus, the latency to synchronize

these processes should be considered.

2.2 Measuring the performance

enhancement

 FPGAs have been used for reconfigurable and parallel

computing systems [13]. This work shows the feasibility of

a complex algorithm being processed in parallel. Thus, it

was analyzed the performance enhancement using a

reconfigurable hardware in conjunction with a DSP, instead

of a dedicated processor based on software embedded into

the FPGA. Therefore, optimized codes were conceived for

all processors and the performance for the co-processor was

evaluated, considering different aspects, such as:

 Time for parallel processing;

156 Int'l Conf. Embedded Systems and Applications | ESA'12 |

 Mechanisms to connect the cores and the

communication latency;

 Time to synchronize the process, which include

acknowledgment, interrupt service request, among

others control signals.

 The time for parallel processing, besides being related

to the frequency of operation, is also related to the

complexity of the circuit. For instance, long paths in a

circuit design will limit the maximum frequency allowed to

run the device. In this way, a common practice to avoid

these problems is to specify the time constraints before

hardware synthesis and to insert flip-flops between different

modules. Although this technique increases the latency, it

generally allows a higher device operation frequency.

 For modern software processors as DSP or ARM, the

synchronism with other devices can be made easily through

interrupt services requests [18]. Although, these

mechanisms allow low latency and can be generated

periodically from a timer or from a external pins activated

by a external device, depending interrupt mapping, the

interrupt service routine have to handle multiple interrupt

status bits to determine the source of the event and it has

also to storage data for context change. Thus, even quickly

recognized by the software processor, the latency to attend

interrupt requests shall take several clock cycles and it must

be taken into consideration for a complete evaluation.

2.3 Measuring the power consumption

 This section will briefly mention some possible

strategies applied to manage the energy consumption and

some characteristics considered on estimation of the total

power consumption.

 The energy consumption is an important topic which

has been investigated during decades. Nowadays, there are

different strategies to mitigate the power spent by

processors. For instance, modern devices can operate in

different modes such as, full-on, active, sleep, deep sleep or

hibernate [14].

 For software processors the transition between a

stopped state to a running mode can be done easily from a

programmed or external wake-up signal. Thus, the ability to

manage the operating transition between different states is a

feasible option for optimizing energy consumption. Also,

power can be saved by switching from high to low

frequencies. Although, these transitions need a time to be

done, this paper will not consider this characteristic in

analysis, since these values are generally very short.

 The methodologies for estimating the consumption are

based on [14][15], which provides an accurately estimation,

since the hardware and software modules are connected by

bus as described previously. For software module, power

consumption has been estimated based on data for voltage

supply, core frequency and junction temperature estimate.

 Regarding the hardware module the power

consumption can be analyzed in several ways. As described

by [6], at lower abstraction levels like transistors, gates,

among others, the simulations are the most common

approach used for it. It is possible estimate the power

consumption from an accurately specification of the logic

cells, memory banks, clock sources and IOs, which can be

obtained by estimation or synthesis from hardware

description language.

 Therefore, this paper considers the description of the

amount of resources to measure the power consumption of

the hardware module and the total of energy spent by the

architecture will be the sum of the energy dedicated to each

processor element based on hardware or software.

3 Case Study

 This case study uses the SAD (Sum of Absolute

Difference) algorithm, which is a computational procedure

widely applied to encoding digital images in order to

determine the motion estimation (ME) vector of a given

picture. Despite being a relatively simple algorithm, it

demands high processing load due to be applied to all

frames. As illustrated by Figure 2, the inner loop of search

algorithm contains a SAD operation computed in parallel.

The operation consists of a subtraction, an absolute value,

and the addition of the resulting value with the previously

computed value.

Figure 2 – Sum of absolute difference algorithm

computed in parallel

 The difference between these images corresponds to

the movement of elements of the current frame (c) that

follows a reference frame (r). In order to determine the

difference and to eliminate the redundancy between frames

during the encoding motion estimation (ME) vectors are

used.

 As some studies has showed, the ME module

consumes more than 35% of the processing time for the

x264 encoder, which is one of the most efficient encoders

implementation, being able to run around 45 times faster

Int'l Conf. Embedded Systems and Applications | ESA'12 | 157

8X8 16X8 16x16 32X16 32X32 64X32 64X64

0.00E+000

5.00E-004

1.00E-003

1.50E-003

2.00E-003

2.50E-003

3.00E-003

3.50E-003

SAD

Ti
m

e
(s

)

8X8 16X8 16x16 32X16 32X32 64X32 64X64

0
4
8

12
16
20
24
28
32
36
40
44
48
52
56
60
64
68
72

1:1
2:1
3:1
4:1
5:1

SAD

Sp
ee

du
p

 Ratio

than the H.264/AVC reference software of the standard

[16][17].

 The algorithm used in this study as reference for

performance analysis is the same presented in [13], but

optimized for the Blackfin ADSP-BF533 processor [18].

The code was also developed based on [19], which

calculates the entire block of motion estimation for the

H.264/AVC standard. This code was ported to the Blackfin

by using the same programming language. However, some

sections of code were rewritten in order to optimize the

performance for this particular digital signal processor.

 The optimization techniques used consist basically in

replacing memory pointers by storing data vectors in

internal memory (L1) which allows higher access speed.

These changes improved the performance for the algorithm

calculation as shown in next Section.

4 Results

 Once the snippets performed by different modules of

the architecture were defined, it was possible compare

some metrics that show the feasibility to decentralize the

loop programs to a dedicated hardware.

 Concerning the software processor, as mentioned

before, we have considered an optimized code written in

language C and executed by Blackfin ADSP-BF533

simulator. To measure the performance enhancement for

this processor, a specific function was used to count the

clock cycles [20], taking in account all factor concerning

the architecture such as, memory access, latency, etc.

Figure 3 – Performance results for the software processor

computing the SAD algorithm

 The first analyses show that before split the code, the

time spent by software processor is really high. For the

worst case, when the processor is running at 100 MHz it

achieves almost 3 ms to perform one macro block 64x64

per frame. The all values obtained to compute the algorithm

is depicted by Figure 3.

 Table I presents the relationship between the

frequencies which control the bus (SCLK) and the core of

the DSP (CCLK). These values correspond how much

faster is the core in relation to the frequency of the bus

which connect the software and hardware processors. They

will be used in the next evaluations for considering the

times involved in each operation as described in Section II.

Table I: Ratio between clock of the

core and the clock of the bus

 Ratio

CCLK/SCLK
CCLK

(MHz)
SCLK

(MHz)

1:1 100 100

2:1 200 100

3:1 400 133

4:1 500 125

5:1 600 120

 Based on estimations, Figure 4 illustrates how much

faster was the parallel processing provided by a given

reconfigurable hardware, instead the serial execution

provided by software processor.

Figure 4 – Performance enhancement according

to the core clock and system clock ratio

 These results show that the parallel processing is more

efficient to compute the SAD algorithm. However, the

speedup tends to achieve a stability and stop to increase as

described by Amdahl's law.

 In our case, this fact occurs mainly because the

mechanism for core communication is not running as faster

as the complexity increases. Therefore, when the amount of

158 Int'l Conf. Embedded Systems and Applications | ESA'12 |

1:1 2:1 3:1 4:1 5:1 Average
0

50

100

150

200

250

300

350

400

450

500
PDD_EXT
PDD_INT

Freq. Ratio between CCLK and SCLK

Po
we

r C
on

su
m

pt
io

n
(m

W
) 1:1 2:1 3:1 4:1 5:1 Average

0

100

200

300

400

500

600

700

Frequency Ratio

Po
we

r C
on

su
m

pt
io

n
(m

W
)

data transmitted between the processors start to increase in

a fast way, the speedup start to decrease as well.

 For performance analysis it was considered the time

needed to synchronize the processors. Thus, it was

evaluated the characteristics of the Blackfin processors

[18], when a given signal is configured as inputs.

Therefore, it was possible to estimated and take into

account the potential latency between the core and system

clocks.

 Thus, assuming that a signal is using edge sensitive

interrupts, it will take at least 5 SCLK cycles to register the

interrupt. Approximately 10 CCLK cycles to go to vector

the interrupt service routine and push the appropriate

registers to the stack save state, and around 3 CCLK cycles

add to 2 SCLK cycles to load the register and then changes

the output of the port pin. It means, the process will result

in at least 20 cycles of latency only for detecting and

recognizing the interrupt generated by one external signal.

 Also, the approach for performance measurements

often considers the amounts of instructions for execution of

a specific task. This metric is so-called MIPS (Millions of

Instructions per Second). Therefore, considering that the

software processor is capable of performing both

operations, addition and multiplication in one single clock

cycle, from decentralizing the loop program to a dedicated

circuit, the capacity of expansion in MIPS for this PE

grows exponentially as the complexity of the code

increases. Thus, it is able to execute more than 570 MIPS,

when SAD 64x64 is off-loaded.

 Concerning the power efficiency, Figure 5 shows the

consumption by the internal and external modules of the

software processor.

Figure 5 – Software processor energy consumption

 The internal module is basically composed by the core

and the external module consists of an external bus unit

interface and one DMA controller. In this case, due to the

internal frequency of the processor which increases from

100 MHz to 600 MHz, the curve regarding this unit is

higher than the external unit controlled by SCLK, which is

configured as shown by Table I.

 The higher consumption for the software processor

was about 450 mW, when the core is running at 600 MHz

and the SCLK at 120 MHz. It means, when the device is

configured with the ratio 5:1. In average the total needed by

the internal module is more than 250 mW and by the

external module is around 100 mW, resulting in the

consumption of 350 mW.

 After evaluated the consumption for this PE based on

software, Figure 6 shows the estimated energy needed to

run the both processor elements. It is well know that

reconfigurable hardware should spent a large amount of

energy. Thus, in order to mitigate these issues, this

evaluation is considering a FPGA Igloo AGL125 [21]

running at 100 MHz due to it is a low-cost and low-power

device able to compute parallel codes.

 Since the average consumption is around 580 mW, the

power spent by the both processors is really small when

compared with the performance achieved.

Figure 6 – Overall power consumption

 These results emphasize the potential of the embedded

MPSoC architecture for high-performance computing and

provide an efficient energy saving.

5 Conclusions

 Concerning the advent of embedded multicore

architectures, this paper described a typical and modern

scenario for these systems and from simulations it presented

the feasibility to decentralize a critical path to a dedicated

circuit able to run the code in parallel.

 Besides, this study presented the trade-off between

energy consumption and performance enhancement,

illustrating the potential of the embedded MPSoC

architectures. Also, it was possible to verify that the

Int'l Conf. Embedded Systems and Applications | ESA'12 | 159

communication path between the PEs is a crucial point

when a large amount of data needs to be transmitted. Thus,

the current bus system is a bottleneck to handle a high

amount of cores.

 Therefore, Networks-on-Chip (NoC) applying the

concepts of invasive computing [22] tend to solve these

limitations although it tends to increase the power

consumption.

6 References

[1] Ventroux, N., et al. "SESAM: an MPSoC Simulation

Envirnment for Dynamic Application Processing".In: 10
th

IEEE International Conference on Computer and

Information Technology (CIT 2010), 2010.

[1] Leupers, R., et al. “Cool MPSoC Programming”. In:

Design, Automation & Test in Europe Conference &

Exhibition (DATE), 2010.

[2] Chen, C., et al. "Communication Synchronous

Scheme for MPSoC". In: International Conference on Anti-

Counterfeiting Security and Identification in

Communication (ASID), 2010.

[3] Martin, G. ”Overview of the MPSoC Design

Challenge”. 43
rd

 ACM/IEEE Design Automation

Conference, 2006.

[4] Wolf, W. “Embedded Computer Architectures in the

MPSoC Age”. In: 32
nd

 International Symposium on

Computer Architecture, 2005.

[5] Hübner, M. and Becker, J. “Multiprocessor

System-on-Chip: Hardware Design and Tool Integration”.

Springer, 1
st
 ed., 2011.

[6] Kissler, D. "Power-Efficient Tightly-Coupled

Processor Arrays for Digital Signal Processing" PhD.

Thesis from University of Erlangen-Nuremberg, 2011.

[7] Sousa, E. R and Meloni, L. G. P. “An Analytical

Model Proposed for Evaluating Efficiency of Partitioning

Code in Hybrid Architectures Based on DSP and FPGA”.

13
th

 International Conference on High Performance

Computing and Communications (HPCC), Canada, 2011.

[8] Altera Corporation. “Nios II Performance

Benchmarks”. Available on: www.altera.com

/literature/ds/ds_nios2_perf.pdf

[9] Brogioli, M., et al. “Hardware/Software Co-design

Methodology and DSP/FPGA Partitioning: A Case Study

for Meeting Real-Time Processing Deadlines in 3.5G

Mobile Receivers”, 49
th

 IEEE International Midwest

Symposium on Circuits and Systems, Puerto Rico, 2006.

[10] Rinnerthaler, F. F., et al. “Boosting the Performance

of Embedded Vision Systems Using a DSP/FPGA Co-

processor System”, IEEE International Conference on

Systems, Man and Cybernetics, pp. 1142–1146, 2007.

[11] Kumar, A. et al. ”Mapping Algorithms for NoC-based

Heterogeneous MPSoC Platforms”. 12
th

 Euromicro

Conference on Digital System Design, Architectures,

Methods and Tools, 2009.

[12] Meyer-Baese, U. “Digital Signal Processing with

Field Programmable Gate Arrays”, 2
nd

 Edition, Springer,

October 2003.

[13] Analog Devices. “Estimating Power for ADSP-

BF531/BF532/BF533 Blackfin Processors”. December,

2007.

[14] Actel. “Power Calculators for Igloo”. Available on:

http://www.actel.com/techdocs/calculators.aspx. Accessed

on: July, 2012.

[15] Tung, D. and Yang, G. "H.264/AVC Video Encoder

Realization and Acceleration on TI DM642 DSP", 2009.

[16] Fraunhofer Institute. “H.264/AVC Reference

Software Encoder”, Available on:

http://iphome.hhi.de/suehring/tml/, 2011.

[17] Analog Devices, Inc. “ADSP-BF533–Hardware

Reference”. 2009.

[18] Intel Inc. "Absolute-Difference Motion Estimation for

Intel Pentium 4 Processors", available on:

http://software.intel.com/en-us/articles/absolute-difference-

motion-estimation-for-intel-pentiumr-4-processors/, 2011.

[19] Analog devices, Inc. “Cycle Counting and Profiling ”,

July, 2007. Available on: http://www.analog.com

/static/imported-files/application_notes/EE-332%20.pdf.

[20] Actel. “IGLOO Low-Power Flash FPGAs Datasheet”.

Available on: https://www.actel.com/products/igloo/

docs.aspx

[21] Teich, J., et al. “Invasive Computing - A novel

Parallel Computing Paradigm”. 47
th

 Design Automation

Conference (DAC), The USA, 2010.

160 Int'l Conf. Embedded Systems and Applications | ESA'12 |

OEDF: Optimal Earliest Deadline First Preemptively

Scheduling for Real-Time Reconfigurable Sporadic

Tasks

Hamza Gharsellaoui1, Mohamed Khalgui1,2, Samir Ben Ahmed3

1INSAT Institute - University of Carthago, Tunisia
2ITIA Institute - CNR Research Council, Italy

3FST Faculty - University of Tunis El Manar, Tunisia

ABSTRACT
This paper deals with the problem of scheduling the
mixed workload of both uniprocessor on-line spo-
radic and off-line periodic tasks in a hard reconfig-
urable real-time environment by an optimal EDF-
based scheduling algorithm. Two forms of automatic
reconfigurations which are assumed to be applied at
run-time: Addition-Removal of tasks or just modifi-
cations of their temporal parameters: WCET and/or
deadlines. Nevertheless, when such a scenario is ap-
plied to save the system at the occurrence of hardware-
software faults, or to improve its performance, some
real-time properties can be violated at run-time. We
define an Intelligent Agent that automatically checks
the system’s feasibility after any reconfiguration sce-
nario to verify if all tasks meet the required deadlines.
Indeed, if the system is unfeasible, then the Intelligent
Agent dynamically provides precious technical solu-
tions for users to send sporadic tasks to idle times, by
modifying the deadlines of tasks, the worst case exe-
cution times (WCETs), the activation time, by toler-
ating some non critical tasks m among n according to
the (m,n) firm and a reasonable cost, or in the worst
case by removing some soft tasks according to pred-
ifined heuristic. We implement the agent to support
these services in order to demonstrate the effectiveness
and the excellent performance of the new optimal al-
gorithm in normal and overload conditions.

1 INTRODUCTION

Nowadays, due to the growing class of portable sys-
tems, such as personal computing and communica-
tion devices, embedded and real-time systems con-
tain new complex software which are increasing by
the time. This complexity is growing because many
available software development models don’t take into
account the specific needs of embedded and systems
development. The software engineering principles for

embedded system should address specific constraints
such as hard timing constraints, limited memory and
power use, predefined hardware platform technology,
and hardware costs. On the other hand, the new gen-
erations of embedded control systems are adressing
new criteria such as flexibility and agility [7]. For these
reasons, there is a need to develop tools, methodolo-
gies in embedded software engineering and dynamic
reconfigurable embedded control systems as an inde-
pendent discipline. Each system is a subset of tasks.
Each task is caracterized by its worst case execution
times (WCETs) Ci, an offset (starting time) ai, a pe-
riod Ti and a deadline Di. The general goal of this
paper is to be reassured that any reconfiguration sce-
nario changing the implementation of the embedded
system does not violate real-time constraints: i.e. the
system is feasible and meets real-time constraints even
if we change its implementation and to correctly allow
the minimization of the response time of this system
after any reconfiguration scenario [7]. To obtain this
optimization (minimization of response time), we pro-
pose an intelligent agent-based architecture in which
a software agent is deployed to dynamically adapt the
system to its environment by applying reconfiguration
scenarios. A reconfiguration scenario means the addi-
tion, removal or update of tasks in order to save the
whole system on the occurrence of hardware/software
faults, or also to improve its performance when ran-
dom disturbances happen at run time. Sporadic task
is described by minimum interarrival time Pi which
is assumed to be equal to its relative deadline Di,
and a worst-case execution time (WCET) Ci. A ran-
dom disturbance is defined in the current paper as
any random internal or external event allowing the
addition of tasks that we assume sporadic or removal
of sporadic/periodic tasks to adapt the system’s be-
havior. Indeed, a hard real-time system typically has
a mixture of off-line and on-line workloads and as-
sumed to be feasible before any reconfiguration sce-
nario. The off-line requests support the normal func-

Int'l Conf. Embedded Systems and Applications | ESA'12 | 161

tions of the system while the on-line requests are spo-
radic tasks to handle external events such as operator
commands and recovery actions which are usually un-
predictable. For this reason and in this original work,
we propose a new optimal scheduling algorithm based
on the dynamic priorities scheduling Earliest Dead-
line First (EDF) algorithm principles and on the dy-
namic reconfiguration in order to obtain the feasibil-
ity of the system at run time, meeting real-time con-
straints and for the optimization of response time of
this system. Indeed, many real-time systems rely on
the EDF scheduling algorithm. This algorithm has
been shown to be optimal under many different con-
ditions. For example, for independent, preemptable
tasks, on a uni-processor, EDF is optimal in the sense
that if any algorithm can find a schedule where all
tasks meet their deadlines, then EDF can meet the
deadlines [3]. This algorithm assumes that sporadic
tasks span no more than one hyperperiod of the peri-
odic tasks hp =[0, 2*LCM+maxk(ak,1)], where LCM
is the well-known Least Common Multiple of all task
periods and (ak,1) is the earliest activation time of
each task τk. The problem is to find which solution
proposed by the agent that reduces the response time.
To obtain these results, the intelligent agent calcu-
lates the residual time Ri before and after each ad-
dition scenario and calculates the minimum of those
proposed solutions in order to obtain Respk optimal
noted Respopt

k . Where Respopt
k is the minimum of the

response time of the current system under study given
by the following equation: Respopt

k = min(Respk,1,
Respk,2, Respk,3, Respk,4, Respk,5, Respk,6).
To calculate these previous values Respk,1, Respk,2,
Respk,3, Respk,4, Respk,5, and Respk,6, we proposed
a new theoretical concepts Ri, Si, si, fi and Li for
the case of real-time sporadic operating system (OS)
tasks. Where Ri is the residual time of task σi, Si de-
notes the first start time of task σi, si is the last start
time of task σi, fi denotes the estimated finishing time
of task σi, and Li denotes the laxity of task σi.
A tool RT-Reconfiguration is developed at INSAT in-
stitute in university of Carthago, Tunisia to support
all the services offered by the agent. The minimization
of the response time is evaluated after each reconfigu-
ration scenario to be offered by the agent.
The organization of the paper is as follows. Section 2
introduces the related work of the proposed approach
and gives the basic guarantee algorithm. In Section 3,
we present the new approach with deadline tolerance
for optimal scheduling theory. Section 4 presents the
performance study, showing how this work is a signifi-
cant extension to the state of the art of EDF schedul-
ing and discusses experimental results of the proposed
approach research. Section 5 summarizes the main
results and presents the conclusion of the proposed
approach and describes the intended future works.

2 BACKGROUND

We present related works dealing with reconfigura-
tions and real-time scheduling of embedded systems.
According to [7], each periodic task is described by an
initial offset ai (activation time), a worst-case execu-
tion time (WCET) Ci, a relative deadline Di and a
period Ti.
According to [2], each sporadic task is described by
minimum interarrival time Pi which is assumed to
be equal to its relative deadline Di, and a worst-case
execution time (WCET) Ci. Hence, a sporadic task
set will be denoted as follows: Sys2 = {σi(Ci, Di) },
i = 1 to m. Reconfiguration policies in the current
paper are classically distinguished into two strategies:
static and dynamic reconfigurations. Static recon-
figurations are applied off-line to modify the assumed
system before any system cold start, whereas dynamic
reconfigurations are dynamically applied at run time,
which can be further divided into two cases: man-
ual reconfigurations applied by users and automatic
reconfigurations applied by intelligent agents [7], [4].
This paper focuses on the dynamic reconfigurations of
assumed mixture of off-line and on-line workloads that
should meet deadlines defined according to user re-
quirements. The extension of the proposed algorithm
should be straightforward, when this assumption does
not hold and its running time is O(n + m) [11].
To illustrate the key point of the proposed dynami-
cally approach, we define a new real-time embedded
control system in the study ξ = Sys1

⋃
Sys2, where

Sys1 is a set of n periodic tasks, i.e., Sys1 = {τ1,
τ2,...,τn } and Sys2 is a set of m active sporadic tasks
σi ordered by increasing deadline in a linked list, i.e.,
Sys2 = {σ1,σ2,...,σm}. σ1 being the task with the
shortest absolute deadline.

2.1 STATE OF THE ART

Nowadays, several interesting studies have been pub-
lished to develop reconfigurable embedded control sys-
tems. In [5] Marian et al. propose a static reconfigu-
ration technique for the reuse of tasks that implement
a broad range of systems. The work in [6] proposes
a methodology based on the human intervention to
dynamically reconfigure tasks of considered systems.
In [8], an ontology-based agent is proposed by Vyatkin
et al. to perform systems reconfigurations according
to user requirements and also the environments evo-
lution. Window-constrained scheduling is proposed
in [9], which is based on an algorithm named dy-
namic window-constrained scheduling (DWCS). The
research work in [10] provides a window-constrained-
based method to determine how much a task can

162 Int'l Conf. Embedded Systems and Applications | ESA'12 |

increase its computation time, without missing its
deadline under EDF scheduling. In [10], a window-
constrained execution time can be assumed for recon-
figurable tasks in n among m windows of jobs. In the
current paper, a window constrained schedule is used
to separate old and new tasks that assumed sporadic.
Old and new tasks are located in different windows to
schedule the system with a minimum response time.
In [4], a window constrained schedule is used to sched-
ule the system with a low power consumption.
In the following, we only consider periodic and spo-
radic tasks. Few results have been proposed to deal
with deadline assignment problem. Baruah, Buttazo
and Gorinsky in [7] propose to modify the deadlines
of a task set to minimize the output, seen as sec-
ondary criteria of this work. So, we note that the
optimal scheduling algorithm based on the EDF prin-
ciples and on the dynamic reconfiguration is that we
propose in the current original work in which we give
solutions computed and presented by the intelligent
agent for users to respond to their requirements.

Running Example:

To illustrate the key point of the proposed dynamic
reconfiguration approach, we consider ξ = Sys1

⋃
Sys2 a set of 5 characterized tasks, shown in Table
1 as a motivational example. Sys1 = τA, τB , and
Sys2 = σC , σD, and σE . τA and τB are periodic
tasks and all the rest (σC , σD, and σE) are sporadic
tasks. Each task can be executed immediately after
its arrival and must be finished by its deadline. First,
at t time unit, Sys1 is feasible because the processor
utilization factor U = 0.30 ≤ 1. We suppose after,
that a reconfiguration scenario is applied at t1 time
units to add 3 new sporadic tasks σC , σD, and σE .
The new processor utilization becomes U = 1.21 > 1
time units. Therefore the system is unfeasible.

Task ai Di Ti = P ∗
i Ci

A 0 10 10 2
B 0 20 20 2
C 5 15 - 5
D 5 8 - 4
E 11 12 - 1

Table 1: The characteristics of the 5 tasks
used to illustrate the motivation for dynamic

reconfiguration approach

∗ Pi is the inter-arrival time.

Our optimal earliest deadline first (OEDF) algorithm
is based on the following Guarantee Algorithm which
is presented by Buttazo and Stankovic in [2]. Indeed,

OEDF algorithm is an extended and ameliorate ver-
sion of Guarantee Algorithm that usually guarantee
the system’s feasibility.

2.2 Guarantee Algorithm

The dynamic, on-line, guarantee test in terms of resid-
ual time, which is a convenient parameter to deal with
both normal and overload conditions is presented here.
Algorithm GUARANTEE(ξ; σa)
begin t = get current time();
R0 = 0;
d0 = t;
Insert σa in the ordered task linked list;
ξ`= ξ

⋃
σa;

k = position of σa in the task set ξ ;̀
for each task σi`such that i ≥ k do {
Ri = Ri−1 + (di - di−1) - ci;
if (Ri < 0) then return (”Not Guaranteed”);
}
return (”Guaranteed”);
end

3 NEW APPROACH WITH
DEADLINE TOLERANCE

In this section we will present some preliminaries con-
cepts and we will describe our contribution after.
In [2], Buttazo and Stankovic present the Guarantie
Algorithm without the notion of deadline tolerance,
and then we will extend the algorithm in our new pro-
posed approach by including tolerance indicator and
task rejection policy. For this reason, and in order to
more explain these notions we will present some pre-
liminaries.

3.1 PRELIMINARIES

ξ denotes a set of active sporadic tasks σi ordered by
increasing deadline in a linked list, σ1 being the task
with the shortest absolute deadline.
ai denotes the arrival time of task σi, i.e., the time
at which the task is activated and becomes ready to
execute. Ci denotes the maximum computation time
of task σi, i.e., the worst case execution time (WCET)
needed for the processor to execute task σi,k without
interruption.
ci denotes the dynamic computation time of task σi,
i.e., the remaining worst case execution time needed
for the processor, at the current time, to complete task
σi,k without interruption.
di denotes the absolute deadline of task τi, i.e., the
time before which the task should complete its execu-
tion, without causing any damage to the system.
Di denotes the relative deadline of task σi, i.e., the

Int'l Conf. Embedded Systems and Applications | ESA'12 | 163

time interval between the arrival time and the abso-
lute deadline. Si denotes the first start time of task
σi, i.e., the time at which task σi gains the processor
for the first time. si denotes the last start time of task
σi, i.e., the last time, before the current time, at which
task σi gained the processor.
fi denotes the estimated finishing time of task σi, i.e.,
the time according to the current schedule at which
task σi should complete its execution and leave the
system.
Li denotes the laxity of task σi, i.e., the maximum
time task σi can be delayed before its execution be-
gins.
Ri denotes the residual time of task σi, i.e., the length
of time between the finishing time of σi and its abso-
lute deadline. Baruah et al. [1] present a necessary
and sufficient feasibility test for synchronous systems
with pseudo-polynomial complexity. The other known
method is to use response time analysis, which consists
of computing the worst-case response time (WCRT)
of all tasks in a system and ensuring that each tasks
WCRT is less than its relative deadline. To avoid these
problems, and to have a feasible system in this paper,
our proposed tool RT-Reconfiguration can be used.
For this reason, we present the following relationships
among the parameters defined above:
di = ai + Di (1)
Li = di - ai - Ci (2)
Ri = di - fi (3)
f1 = t + c1; fi = fi−1 + ci ∀ i > 1 (4)
The basic properties stated by the following lemmas
and theorems are used to derive an efficient O(n+m)
algorithm for analyzing the schedulability of the spo-
radic task set whenever a new task arrives in the sys-
tems.
Lemma 1 Given a set ξ = {σ1, σ2, ..., σn} of ac-
tive sporadic tasks ordered by increasing deadline in a
linked list, the residual time Ri of each task σi at time
t can be computed by the following recursive formula:

R1 = d1 - t - c1 (5)
Ri = Ri−1 + (di − di−1) - ci. (6) [2]

Proof. By the residual time definition (equation 3)
we have:

Ri = di - fi.

By the assumption on set ξ, at time t, the task σ1 in
execution and cannot be preempted by other tasks in
the set ξ, hence its estimated finishing time is given
by the current time plus its remaining execution time:

f1 = t + c1

and, by equation (3), we have:

R1 = d1 - f1 = d1 - t - c1.

For any other task σi, with i > 1, each task σi will
start executing as soon as σi−1 completes, hence we
can write:

fi = fi−1 + ci (7)

and, by equation (3), we have:

Ri = di - fi = di - fi−1 - ci =
di - (di−1 - Ri−1) - ci = Ri−1 + (di - di−1) - ci

and the lemma follows.

Lemma 2 A task σi is guaranteed to complete within
its deadline if and only if Ri ≥ 0 [2].

Theorem 3 A set ξ = {σi, i = 1 to m} of m ac-
tive sporadic tasks ordered by increasing deadline is
feasibly schedulable if and only if Ri ≥ 0 for all σi ∈
ξ, [2].
In our model, we assume that the minimum interar-
rival time Pi of each sporadic task is equal to its
relative deadline Di, thus a sporadic task σi can
be completely characterized by specifying its worst
case execution time Ci and its relative deadline Di.
Hence, a sporadic task set will be denoted as follows:
ξ = {σi(Ci, Di)}, i = 1 to m.

3.2 CONTRIBUTION: AN ALGO-
RITHM FOR FEASIBILITY
TESTING WITH RESPECT TO
SPORADIC TASK SYSTEMS

In the current paper, we suppose that each system ξ
can be automatically and repeatedly reconfigured. ξ is
initially considered as ξ(0) and after the ith reconfigu-
ration ξ turns into ξ(i), where i ∈ ℵ(∗)

+ . We define V P1

and V P2 two virtual processors to virtually execute
old and new sporadic tasks, implementing the system
after the ith reconfiguration scenario. In ξ(i), all old
tasks from ξ(i−1) are executed by the newly updated
V P

(i)
1 and the added sporadic tasks are executed by

V P
(i)
2 . The proposed intelligent agent is trying to

minimize the response time Respopt
k of ξ after each

reconfiguration scenario.

For example, after the first addition scenario, ξ(0)

turns into ξ(1). ξ(1) is automatically decomposed into
V P

(1)
1 and V P

(1)
2 for old and new tasks with the pro-

cessor utilization factors UV P
(1)
1 and UV P

(1)
2 respec-

tively.

Formalization
We assume in this work a system ξ to be composed
of a mixture of n periodic and m sporadic tasks. An
assumed system ξ(i−1) = {τ1, τ2,...,τn} turns after a

164 Int'l Conf. Embedded Systems and Applications | ESA'12 |

reconfiguration scenario to ξ(i) = {τ1, τ2,...,τn σn+1,
σn+2,...,σm} by considering that m-n new sporadic
tasks are added to ξ(i−1). After each addition, the
tasks are logically divided into two subsets. One con-
tains the so called new sporadic tasks which are added
to the system, and the rest of tasks taken from ξ(i−1)

are considered as old tasks to form the second subset.
After any addition scenario, the response time can
be increased and/or some old/new tasks miss their
deadlines. When a reconfiguration scenario is au-
tomatically applied at run-time, the proposed agent
logically decomposes the physical processor of ξ(i) into
two virtual processors V P

(i)
1 and V P

(i)
2 with different

utilization factors UV P
(i)
1 and UV P

(i)
2 to adapt the

system to its environment with a minimum response
time. For more explaining, after any reconfiguration
scenario and in order to keep only two virtual proces-
sors in the system ξ, the proposed intelligent agent
automatically merges V P

(i−1)
1 and V P

(i−1)
2 into V P

(i)
1

and creates also a new V P2 named V P
(i)
2 , to adapt

old and new tasks, respectively. The V P
(i)
2 is assumed

to be a located logical pool in idle periods of V P
(i)
1 .

For example, we have 2 initial tasks τ1 and τ2 in an
assumed system sys1 with ξ(0) = {τ1, τ2}. First, we
add {σ3, σ4 and σ5} to ξ(0) that automatically turns
into ξ(1) = {τ1, τ2, σ3, σ4 and σ5}. In ξ(1), subset
{τ1, τ2} is considered as old tasks to be executed by
V P

(1)
1 , whereas subset {σ3, σ4 and σ5} is considered

as new sporadic tasks to be executed by V P
(1)
2 . V P

(1)
2

is located in idle periods of V P
(1)
1 . We propose there-

after, the arrival of new sporadic tasks σ6 and σ7 to
be added to ξ(1) that evolves into ξ(2) = {τ1, τ2, σ3,
σ4, σ5, σ6 and σ7}. V P

(1)
1 and V P

(1)
2 are automat-

iclly merged into V P
(2)
1 where subset {τ1, τ2, σ3, σ4

and σ5} is considered as old tasks to be executed by
this virtual processor. In this case, subset {σ6, σ7} is
executed by the second newly created virtual processor
V P

(2)
2 which is located in idle periods of V P

(2)
1 .

After each addition scenario, the proposed intelli-
gent agent proposes to modify the virtual processors,
to modify the deadlines of old and new tasks, the
WCETs and the activation time of some tasks or to
remove some soft tasks as following:
• Solution 1: Moving some arrival tasks to be sched-
uled in idle times. (idle times are caused when some
tasks complete before its worst case execution time)
(S1)

• Solution 2: maximize the di (S2)
By applying equation (3) that notices:
Ri = di - fi, we have:
Ri = di - t - Ci.

Or, to obtain a feasible system after a reconfiguration
scenario, the following formula must be enforced:
Ri ≥ 0.
By this result we can write: dinew - t - Ci ≥ 0, where
dinew = di + θi.
So, di + θi - t - Ci ≥ 0 ⇒

θi ≥ t + Ci - di.

• Solution 3: minimize the ci (S3)
By applying equation (3) that notices:
Ri = di - fi, we have:
Ri = di - t - Ci.
Or, to obtain a feasible system after a reconfiguration
scenario, the following formula must be enforced:
Ri ≥ 0.
By this result we can write: di - t - Cinew ≥ 0, where
Cinew = Ci + βi.
So, di - t - Ci - βi ≥ 0 ⇒ di - t - Ci ≥ βi

⇒ βi ≤ di - t - Ci

• Solution 4: Enforcing the starting time to come
back: ai → ainew → (ainew = ai + ∆t) (S4)

By applying equation (1) that notices:
di = ai + Di, we have:
Ri = ai + Di - t - Ci.
Or, to obtain a feasible system after a reconfiguration
scenario, the following formula must be enforced:
Ri ≥ 0 ⇒ ai + Di - t - Ci ≥ 0.

By this result we can write:

ainew + Di - t - Ci ≥ 0, where ainew = ai + ∆t.
So, we obtain: ai + ∆t + Di - t - Ci ≥ 0.

⇒ ∆t ≥ t + Ci - ai - Di.

• Solution 5: Tolerate some non critical Tasks m
among n (m,n) firm (for a reasonable cost) (S5)
ξ = {τi(Ci, Di,mi, Ii), i = 1 to n}.
mi = 1, it tolerates missing deadline,
mi = 0, it doesn’t tolerate missing deadline,
Ii = H, Hard task,
Ii = S, Soft task,

• Solution 6: Removal of some non critical tasks
(to be rejected) (S6)
ξ = {τi(Ci, Di,mi, Ii), i = 1 to n}.
mi = 1, it tolerates missing deadline,
mi = 0, it doesn’t tolerate missing deadline,
Ii = H, Hard task,
mi = S, Soft task,
For every solution the corresponding response time is:
Respk,1 = the response time calculated by the first

Int'l Conf. Embedded Systems and Applications | ESA'12 | 165

solution,
Respk,2 = the response time calculated by the second
solution,
Respk,3 = the response time calculated by the third
solution,
Respk,4 = the response time calculated by the fourth
solution,
Respk,5 = the response time calculated by the fifth
solution,
Respk,6 = the response time calculated by the sixth
solution,
We define now, Respk optimal noted Respopt

k accord-
ing to the previous three solutions calculated by the
intelligent Agent (Solution 1, Solution 2, Solution 3,
Solution 4, Solution 5 and Solution 6) by the following
expression:
Respopt

k = min(Respk,1, Respk,2, Respk,3, Respk,4,
Respk,5, and Respk,6) (the minimum of the six val-
ues). So, the calculation of Respopt

k allows us to obtain
and to calculate the minimizations of response times
values and to get the optimum of these values.

3.3 The General OEDF Scheduling
Strategy

When dealing with the deadline tolerance factor mi,
each task has to be computed with respect to the
deadline tolerance factor mi.

Algorithm GUARANTEE(ξ; σa)
begin t = get current time();
R0 = 0;
d0 = t;
Insert σa in the ordered task list;
ξ`= ξ

⋃
σa;

k = position of σa in the task set ξ ;̀
for each task σi`such that i ≥ k do {
Ri = Ri−1 + (di - di−1) - ci;
if (Ri ≥ 0) then {
return (”Guaranteed”);
}
else return
(”You can try by using solution 1, or,
You can try by using solution 2, or,
You can try by using solution 3, or,
You can try by using solution 4, or,
You can try by using solution 5, or,
You can try by using solution 6 !”);
}

• Compute(Respk,1);

• Compute(Respk,2);

• Compute(Respk,3);

• Compute(Respk,4);

• Compute(Respk,5);

• Compute(Respk,6);

• Generate(Respopt
k);

end

This algorithm assumes that sporadic tasks span no
more than one hyperperiod of the periodic tasks hp
=[0, 2*LCM+maxk(ak,1)], where LCM is the well-
known Least Common Multiple of all task periods
and (ak,1) is the earliest activation time of each task
τk [7]. We use their technique for acceptance test.
The extension of the proposed algorithm should be
straightforward, when this assumption does not hold
and its running time is O(n + m) [11]. So, Intu-
itively, we expect that our algorithm performs better
than the Buttazo and Stankovic one. We show the
results of our optimal proposed algorithm by means
of experimental result’s evaluation.

4 EXPERIMENTAL RESULTS

In order to evaluate our optimal OEDF algorithm, we
consider the following experiments.

4.1 Simulations

To quantify the benefits of the proposed approach
(OEDF algorithm) over the predictive system shut-
down (PSS) approach, over the MIN algorithm, the
OPASTS algorithm and over the HPASTS algorithm.
We performed a number of simulations to compare
the response time and the utilization processor under
the four strategies. The PSS technique assumes the
complete knowledge of the idle periods while the MIN
algorithm assumes the complete knowledge of the ar-
rivals of sporadic tasks. For more details about the
both four techniques, you can see [12].

Figure 1: Processor Utilization

166 Int'l Conf. Embedded Systems and Applications | ESA'12 |

The OEDF scheduling result is shown in figure 1.

4.2 Discussion

In experiments, if the resulting U(t) > 1, we set U(t) to
be 1. We varied the average processor utilization from
the light workload (10 tasks) to heavy workload (100
tasks) generated randomly. We observe that our ap-
proach, by the solutions of the OEDF algorithm gives
us the minimum bound for response time and utiliza-
tion factor. This observation was proven by the re-
sults given by OEDF algorithm which are lower (bet-
ter) than these of the solutions given by the predic-
tive system shutdown approach, the MIN algorithm,
the OPASTS algorithm and the HPASTS algorithm.
Also, we observe that, when we have no knowledge of
the arrival of sporadic tasks, our proposed algorithm
is optimal and gives better results than others for a
big number of arrival sporadic tasks and in overload
conditions, but in a small number of tasks or light
workload, OEDF algorithm is optimal but not strictly
since it gives results close to that of the solutions of
MIN, OPASTS and HPASTS algorithms, but it is ef-
ficient and effective.

5 CONCLUSION AND FU-
TURE WORKS

This paper deals with reconfigurable systems to be im-
plemented by an hybrid system composed of a mixture
of periodic and sporadic tasks that should meet real
time constraints. In this paper, we propose an optimal
scheduling algorithm based on the EDF principles and
on the dynamic reconfiguration for the minimization of
the response time of sporadic and periodic constrained
deadline real-time tasks on uniprocessor systems and
proven it correct. Finally, our important future work
is the generalization of our contributions for the Re-
configurable real-time embedded systems.

References

[1] S. Baruah, G. Koren, B. Mishra, A. Raghu-
nathan, L. Rosier, and D. Shasha, ”On-line
Scheduling in the Presence of Overload,” Proc. of
IEEE Symposium on Foundations of Computer
Science, San Juan, Puerto Rico, October 2-4,
1991.

[2] G. Buttazzo, and J. Stankovic, ”RED: Robust
Earliest Deadline Scheduling” 3rd Int. Work-
shop On Responsive Computing Systems, Austin,
1993.

[3] M. Dertouzos, ”Control Robotics: The Procedu-
ral Control of Physical Processes,” Proceedings of
the IFIP Congress, 1974.

[4] X. Wang, M. Khalgui, and Z. W. Li, Dynamic
low power reconfigurations of real-time embedded
systems, in: Proc. 1st Pervas. Embedded Com-
put. Commu. Syst. Mar. 2011, Algarve, Portugal.

[5] C. Angelov, K. Sierszecki, and N. Marian, ”De-
sign models for reusable and reconfigurable state
machines,” in: L.T. Yang et al., Eds., Proc.
of Embedded Ubiquitous Comput., pp. 152-163,
2005.

[6] M. N. Rooker, C. Sunder, T. Strasser, A. Zoitl, O.
Hummer, and G. Ebenhofer, ”Zero downtime re-
configuration of distributed automation systems:
The CEDAC approach,” in: Proc. 3rd Int. Conf.
Indust. Appl. Holonic Multi-Agent Syst., Regens-
burg, Sept. 2007, pp. 326-337.

[7] H. Gharsellaoui, M. Khalgui, A. Gharbi and
S. Ben Ahmed ”Feasible Automatic Reconfig-
urations of Real-Time OS Tasks”, book chap-
ter in Handbook of Research on Industrial In-
formatics and Manufacturing Intelligence: Inno-
vations and Solutions Ed: Mohammad Ayoub
Khan & ABDUL QUAIYUM ANSARI. ISBN13:
9781466602946, 2012. Published by IGI-Global
Knowledge, USA.

[8] Y. Al-Safi and V. Vyatkin, ”An ontology-based
reconfiguration agent for intelligent mechatronic
systems,” in: Proc. 4th Int. Conf. Hol. Multi-
Agent Syst. Manuf., Regensburg, Germany, 2007,
vol. 4659, pp. 114-126.

[9] R. West and K. Schwan, ”Dynamic window-
constrained scheduling for multimedia applica-
tions,” in: Proc. IEEE 6th Int. Conf. Multi. Com-
put. Syst., Jun. 1999.

[10] P. Balbastre, I. Ripoll, and A. Crespo, ”Schedu-
lability analysis of window-constrained execution
time tasks for real-time control,” in: Proc. 14th
Euromicro Conf. Real- Time Syst., 2002.

[11] T. Tia, J. W.-S. Liu, J. Sun, ad R. Ha ”A linear-
time optimal acceptance test for scheduling of
hard real-time tasks”. Technical report, Depart-
ment of Computer Science, University of illinois
at Urbana-Champaign, Urbana-Champaign, E,
1994.

[12] Mani B. Srivastava, Miodrag Potkonjak, Inki
Hong, ”On-Line Scheduling of Hard Real-Time
Tasks on Variable Voltage Processor”, Interna-
tional Conference on Computer-Aided Design
(ICCAD ’98), San Jose, California, United States
of America, 1998.

Int'l Conf. Embedded Systems and Applications | ESA'12 | 167

Aperiodic OS Tasks Scheduling for Hard-Real-Time

Reconfigurable Uniprocessor Systems

Tarek Amari3, Hamza Gharsellaoui1, Mohamed Khalgui1,2, Samir Ben Ahmed1,3

1Laboratory of Computing for the Industrial Systems (LISI), INSAT Institute, Tunisia
2ITIA Institute - CNR Research Council, Italy

3FST Faculty - University of Tunis El Manar, Tunisia

abstract The scheduling of tasks is an essential
requirement in most real-time and embedded systems,
but invariably leads to unwanted CPU overheads.
This paper presents real-time scheduling techniques
for reducing the response time of aperiodic tasks
scheduled with real-time periodic tasks on uniproces-
sor systems. Two problems are addressed in this pa-
per: (i) the scheduling of aperiodic when they arrive in
order to obtain a feasible system , and (ii) the schedul-
ing of periodic and aperiodic tasks to minimize their
response time. In order to improve the responsiveness
to both types of problems, efficient hybrid approach
is proposed based on the combination of the Polling
Server (PS) and the Background Server (BS). The ef-
fectiveness and the performance of the designed ap-
proach is evaluated through simulation studies.

1 INTRODUCTION

Real-time systems are used to control physical pro-
cesses that range in complexity from automobile igni-
tion systems to controllers for flight systems and nu-
clear power plants. In these systems, the correctness
of system functions depends upon not only the results
of computation but also on the times at which results
are produced. A real-time task is generally placed into
one of four categories based upon its arrival pattern
and its deadline. If meeting a given task’s deadline
is critical to the system’s operation, then the task’s
deadline is considered to be hard. If it is desirable
to meet a task’s deadline but occasionally missing the
deadline can be tolerated, then the deadline is consid-
ered to be soft. Tasks with regular arrival times are
called periodic tasks. A common use of periodic tasks
is to process sensor data and update the current state
of the real-time system on a regular basis. Periodic
tasks, typically used in control and signal-processing
applications, have hard deadlines. Tasks with irregu-
lar arrival times are aperiodic tasks. Aperiodic tasks
are used to handle the processing requirements of ran-
dom events such as operator requests. An aperiodic

task typically has a soft deadline. Aperiodic tasks that
have hard deadlines are called sporadic tasks. We as-
sume that each task has a known worst-case execution
time. In summary, we have Hard and soft deadline pe-
riodic tasks. A periodic task has a regular interarrival
time equal to its period and a deadline that coincides
with the end of its current period. Periodic tasks usu-
ally have hard deadlines, but in some applications the
deadlines can be soft. Soft deadline aperiodic tasks.
An aperiodic task is a stream of jobs arriving at irregu-
lar intervals. Soft deadline aperiodic tasks typically re-
quire a fast average response time. Sporadic tasks. A
sporadic task is an aperiodic task with a hard deadline
and a minimum interarrival time (Mok 1983). Note
that without a minimum interarrival time restriction,
it is impossible to guarantee that a sporadic task’s
deadline would always be met. To meet the timing
constraints of the system, a scheduler must coordi-
nate the use of all system resources using a set of well-
understood real-time scheduling algorithms that meet
the following objectives: Guarantee that tasks with
hard timing constraints will always meet their dead-
lines. Attain a high degree of schedulable utilization
for hard deadline tasks (periodic and sporadic tasks).
Schedulable utilization is the degree of resource uti-
lization at or below which all hard deadlines can be
guaranteed. The schedulable utilization attainable by
an algorithm is a measure of the algorithm’s utility:
the higher the schedulable utilization, the more appli-
cable the algorithm is for a range of real-time systems.
Provide fast average response times for tasks with soft
deadlines (aperiodic tasks). Ensure scheduling stabil-
ity under transient overload. In some applications,
such as radar tracking, an overload situation can de-
velop in which the computation requirements of the
system exceed the schedulable resource utilization. A
scheduler is said to be stable if during overload it can
guarantee the deadlines of critical tasks even though
it is impossible to meet all task deadlines. The qual-
ity of a scheduling algorithm for real-time systems is
judged by how well the algorithm meets these objec-

168 Int'l Conf. Embedded Systems and Applications | ESA'12 |

tives. This article develops advanced hybrid approach
to schedule aperiodic tasks. For soft deadline aperi-
odic tasks, the goal is to provide fast average response
times. For hard deadlines aperiodic tasks (sporadic
tasks), the goal is to guarantee that their deadlines
will always be met. The new hybrid approach pre-
sented here meet both of these goals and are still able
to guarantee the deadlines of hard deadline periodic
tasks. Each periodic task τi is characterized according
to [2], by an initial offset Si (a release time), a worst-
case execution time Ci, a relative deadline Di and a
period Ti. Each aperiodic task τi is characterized by
a worst-case execution time Ci and a relative deadline
Di. A task is synchronous if its release time is equal
to 0. Otherwise, it’s asynchronous. We assume in this
work that all the tasks are independent, periodic and
aperiodic. A tool named RT-Reconfiguration is devel-
oped in our research laboratory at INSAT university
to support this new proposed approach. The organi-
zation of this original paper is as follows. The next
section formalizes some known concepts in the real-
time scheduling theory, section III presents the state
of the art. In section IV, we define a new theoretical
approach. In section V, our proposed approach is im-
plemented, simulated and analyzed. Finally, section
VI presents a summary and conclusions of this paper.

2 SYSTEM MODEL

We present the following well-known concepts in the
theory of aperiodic real-time scheduling [2]:

• An aperiodic task τi (Ci;Di) is an infinite col-
lection of jobs that have their request times
constrained by a Worst Case Execution Time
(WCET) Ci and a relative deadline Di,

• Deadline: The time when a task must be finished
executing.

• Worst Case Execution Time (WCET): The
longest possible execution time for a task on a
particular type of system.

• Response time: The time it takes a task to fin-
ish execution. Measured from release time to
execution completes, including preemptions.

• Preemptive scheduling: an executing task may
be interrupted at any instant in time and have
its execution resumed later.

• Release/ready time: The time a task is ready to
run and just waits for the scheduler to activate
it.

• A busy period is defined as a time interval [a, b)
such that there is no idle time in [a, b) (the pro-

cessor is fully busy) and such that both a and b
are idle times,

• U =
∑n

i=1
Ci

Ti
is the processor utilization fac-

tor. In the case of synchronous and asyn-
chronous, independent and periodic tasks. U =∑n

i=1
Ci

min(Ti,Di)
≤ 1 is a sufficient condition but

not necessary for the EDF-based scheduling of
real time tasks.

• A hard real-time task is never allowed to miss a
deadline because that can lead to complete fail-
ure of the system. A hard real-time task can be
safety-critical and this means that if a deadline
is missed it can lead to catastrophically conse-
quences which can harm persons or the environ-
ment.

• A soft real-time task is a task when a deadline is
allowed to be missed, while there is no complete
failure of the system it can lead to decreased
performance.

• Polling Server is a periodic task whose purpose
is to service aperiodic requests with a period TS ,
a computation time CS (capacity) and scheduled
in the same way as periodic tasks.

• Background Server schedules aperiodic tasks
in background (when no periodic task is run-
ning) and schedule of periodic tasks is not
changed.

3 STATE OF THE ART

A real-time system often has both periodic and ape-
riodic tasks. Lehoczky, Sha, and Strosnider (1987) in
[3] developed the Deferrable Server algorithm, which
is compatible with the rate monotonic scheduling al-
gorithm and provides a greatly improved average re-
sponse time for soft deadline aperiodic tasks over
polling or background service algorithms while still
guaranteeing the deadlines of periodic tasks. The
scheduling problem for aperiodic tasks is very dif-
ferent from the scheduling problem for periodic tasks.
Scheduling algorithms for aperiodic tasks must be able
to guarantee the deadlines for hard deadline aperiodic
tasks and provide good average response times for soft
deadline aperiodic tasks even though the occurrences
of the aperiodic requests are nondeterministic. For
a detailed analysis of aperiodic servers see [4] and
[5]. The aperiodic scheduling algorithm must also ac-
complish these goals without compromising the hard
deadlines of the periodic tasks. For the aperiodic
scheduling, authors presented Slack stealing [8] and
aperiodic servers, such as the sporadic server [6] and
the deferrable server [7], allow aperiodic tasks to be

Int'l Conf. Embedded Systems and Applications | ESA'12 | 169

handled within a periodic task framework. Our ap-
proach try by allowing periodic tasks to be handled
with an aperiodic ones by an hybrid approach in the
same framework. To the author’s knowledge, no result
is available in the state of the art for scheduling both
periodic and aperiodic tasks, except that we propose
in our original work where an approach to deal with
complex timing constraints and with minimizing the
response time is proposed.

4 APERIODIC TASK SCHEDUL-
ING

The scheduling problem for aperiodic tasks is very dif-
ferent from that for periodic tasks. Scheduling algo-
rithms for aperiodic tasks must be able to guarantee
the deadlines for hard deadline aperiodic tasks and
provide good average response times for soft dead-
line aperiodic tasks even though the occurrence of the
aperiodic requests are nondeterminstic. The aperiodic
scheduling algorithm must also accomplish these goals
without compromising the hard deadlines of the peri-
odic tasks.

4.1 Contribution

One hybrid approach composed of the combination
of two common approaches for servicing aperiodic re-
quests are background processing and polling tasks.
Background servicing of aperiodic requests occurs
whenever the processor is idle (i.e., not executing any
periodic tasks and no periodic tasks pending). If the
load of the periodic task set is high, then utilization
left for background service is low, and background ser-
vice opportunities are relatively infrequent. Polling
consists of creating a periodic task for servicing aperi-
odic requests. At regular intervals, the polling task is
started and services any pending aperiodic requests.
However, if no aperiodic requests are pending, the
polling task suspends itself until its next period and
the time originally allocated for aperiodic service is not
preserved for aperiodic execution but is instead used
by periodic tasks. Note that if an aperiodic request
occurs just after the polling task has suspended, then
the aperiodic request must wait until the beginning of
the next polling task period or until background pro-
cessing resumes before being serviced. Even though
polling tasks and background processing can provide
time for servicing aperiodic requests, they have the
drawback that the average wait and response times
for these algorithms can be long, especially for back-
ground processing. Figure 2 illustrates the operation
of background and polling aperiodic service using the
periodic task set presented in the table of the same

picture (Figure 1).

4.2 Motivating Example

Let us suppose a real-time embedded system Sys1 to
be initially implemented by 2 characterized tasks as
shown in figure 1. These tasks are feasible because the
processor utilization factor U = 0.7 ≤ 1. These tasks
should meet all required deadlines defined in user re-
quirements and we have Feasibility(CurrentSys1(t))
≡ True.

Figure 1: The simulation with only Polling
Server

We suppose that a reconfiguration scenario is applied
at t1 and t2 time units with the arrival of 2 new
aperiodic tasks e1 at t1 = 7 and e2 at t2 = 11 time
units. Therefore the system is feasible by applying the
polling server to schedule the system but the response
time is equal to 17 and 33 for both e1 and e2 respec-
tively. Now by applying our new hybrid approach, the
response time of the second arrival aperiodic task is
decreased from 33 to 25 time units as we observe in
figure 2.

Figure 2: The simulation with Polling Server
and Background server

170 Int'l Conf. Embedded Systems and Applications | ESA'12 |

4.3 Formalization

By considering real-time operating system (OS) tasks
scheduling, let n = n1 + n2 be the number of
a mixed workload of periodic and aperiodic tasks
in CurrentΓ(t). The reconfiguration of the system
CurrentΓ(t) means the modification of its implemen-
tation that will be as follows at t time units:

CurrentΓ(t) = ξnew ∪ ξold

Where ξold is a subset of n1 old periodic tasks which
are periodic and not affected by the reconfiguration
scenario (e.g. they implement the system before the
time t), and ξnew is a subset of n2 new aperiodic tasks
in the system. We assume that an updated task is
considered as a new one at t time units. By consider-
ing a feasible System Sys before the application of the
reconfiguration scenario, each task of ξold is feasible,
e.g. the execution of each instance is finished before
the corresponding deadline

5 EXPERIMENTAL ANALY-
SIS AND DISCUSSION

In this section, in order to check the suggested con-
figurations of tasks allowing the system’s feasibility
and the response time minimization, we simulate the
agent’s behavior on several test sets in order to rate
the performance of the polling server and the back-
ground server in our hybrid scenario.

5.1 Simulation

We have conducted several test sets in order to rate the
performance of the polling server and the background
server in our hybrid scenario. We have set up a real-
time reconfiguration tool named RT-Reconfiguration
that allows us to randomly generate task sets, sched-
ule them according to the proposed hybrid method,
and displays the schedules for visual control. Our test
rows have been on each 1000 randomly generated task
sets, while the number of tasks is significantly higher.
We have scheduled task sets with the polling server
and the proposed hybrid method.

5.2 Discussion

In each of these examples, many aperiodic requests
occur at any moment of the time. The response time
performance of only polling service or only background
service for the aperiodic requests is poor. Since back-
ground service occurs when the resource is idle, with
the polling server, the response time performance for
the aperiodic requests is better than both single back-
ground service and single polling service for all re-
quests. For these examples, a polling server is cre-

ated with an execution time of 1 time unit and a pe-
riod of 5 time units. Also note that since any ape-
riodic request only needs half of the polling server’s
capacity, the remaining half is discarded because no
other aperiodic tasks are pending. Thus, these ex-
amples demonstrate how polling and background can
provide an improvement in aperiodic response time
performance over background service or polling one
and are always able to provide immediate service for
aperiodic requests. Finally, for both the polling server
and the background server in our hybrid scenario ap-
proach performs best and yield improved average re-
sponse times for aperiodic requests.

6 CONCLUSION AND FU-
TURE WORKS

In this paper, we propose a new theory for the mini-
mization of the response time of aperiodic real-time
tasks with the polling server and the background
server that can be applied to uniprocessor systems and
proved it correct. We showed that this theory is ca-
pable to reconfigure the whole system. Previous work
in this area has been described, several and best solu-
tion has been suggested. This hybrid solution is pri-
marily intended to reduce the processor demand and
the response time of each task set independent of the
number of tasks in a uniprocessor system. A tool is
developed and tested to support all these services. As
future work, we are planning to extend our study to
the case of distributed systems and, we plan also to ap-
ply this contribution to other complex reconfigurable
systems that we have chosen to not cover in this pa-
per.

References

[1] Dertouzos. M. L., (1974). Control robotics: The
procedural control of physical processes. Informa-
tion Processing.

[2] Layland J. and Liu C., (1973). Scheduling algo-
rithms for multi-programming in a hard-real-time
environment, in Journal of the ACM, 20(1):46-61.

[3] Lehoczky, J. P., L. Sha, and J. K. Stros-
nider. 1987. Enhanced Aperiodic Responsiveness
in Hard-Real-Time Environments. Proc. IEEE
Real-Time Systems Symposium, San Jose, CA,
pp. 261-270.

[4] Guillem B., (1998). Specification and Analysis
of Weakly Hard Real-Time Systems. PhD thesis,
Departament de Cincies Matematiques and In-
formatica. Universitat de les Illes Balears. Spain.
http://www.cs.york.ac.uk/-bernat.

Int'l Conf. Embedded Systems and Applications | ESA'12 | 171

[5] Burns A. and Guillem B., (1999). New results
on fixed priority aperiodic servers. In 20th IEEE
Real-Time Systems Symposium, RTSS, pages
6878, Phoenix. USA.

[6] Sprunt B., Sha L., and Lehoczky J, (1989). Ape-
riodic task scheduling for hard-real-time systems.
Real-Time Systems, 1(1):2760.

[7] Strosnider J. K., Lehoczky J. P., and Sha L.,

(1995). The deferrable server algorithm for en-
hanced aperiodic responsiveness in hard real-time
environments. IEEE Transactions on Computers,
44(1):7391.

[8] Thuel S. R. and Lehoczky J. P., (1994). Al-
gorithms for scheduling hard aperiodic tasks in
fixed-priority systems using slack stealing. In
Real-Time Systems Symposium, pages 2233, San
Juan, Puerto Rico.

172 Int'l Conf. Embedded Systems and Applications | ESA'12 |

