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Abstract - Current allocation of the spectral bands to only 
licensed users leads to inefficiencies in spectrum utilization. 
Designing realistic cognitive radios that are capable of 
sensing spectrum holes is the key to solve this problem and to 
increase the capacity of next-generation wireless networks. In 
this paper, we propose convolutional neural networks for 
predicting the spectrum holes from a data set obtained via 
USRP software-defined radios [1]. Preliminary results show 
performance improvements over the previously proposed 
methods. 
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1 Introduction 
  Radio spectrum is a resource that is licensed by the 
governments all over the world. The current system of 
spectrum allocation is based on the outdated methodology of 
static allocation, which leads to inefficiencies and spectrum 
under-utilization [2]-[4]. Cognitive radio is a new technology 
that aims to utilize the licensed bands in a dynamic manner 
when licensed (primary) users are not using it.  As opposed to 
traditional radios, which are hardware-based, cognitive radios 
are software-based and furthermore have the capability of 
sensing the wireless environment and adjusting to it.  In order 
not to harm the primary user of the licensed spectrum, the 
cognitive radio should detect the existence of primary and 
also sense their spectrum-usage patterns.          
 Our goal in this work is to study a neural network-based 
learning technique for cognitive radio networks. This includes 
both design of neural networks and practical implementation 
of the designs on real spectral data.   The spectrum data is 
collected by Universal Software Radio Peripheral (USRP), 
which is built by Ettus Research [1]. Previous works in 
literature use simulated data as opposed to the approach taken 
in this work [6]-[8].  

2 Design and Analysis 
 Data was collected on a Dell Vostro 3500 running 
Ubuntu 12.04 LTS with GNU Radio v3.6.2 installed. The 
radios used were Ettus Research USRP2 and USRP N210 
software defined radios (SDRs) attached over Gigabit 
Ethernet. The daughterboards used in these radios were Ettus 
model SBX-40. We used Ettus VERT900 antennas for each  
measurement. We use the default native (non-decimated) 

sample rate of 1MHz, and an FFT size of ¾ MHz. This was 
automatically trimmed by the usrp_spectrum_sense.py script 
(GNU Radio) to remove distortion at the edges of the FFT 
range. The script was modified so that the artificial DC 
components introduced by the USRP SDRs are automatically 
removed.  We store the current time, frequency of the current 
FFT bin, detected noise floor level, and bin signal level in a 
comma separated value (CSV) file. 

 

(a) Scatter plot of actual occupied states 

 

(b) K-means clustering 

Fig. 1: Twenty  hour period of data collection and its clustering 
using K-means where K=75 

       
Fig 2: Convolutional neural network structure 

 We used an energy detector with an SNR  threshold  τtr 
= 10dB for the training data in order to determine if a state is 
occupied or not.  In order to characterize the data initially, we 
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used unsupervised learning methods to  cluster the occupied 
bins. The data was recorded for 20 hours and K-means 
clustering was used to in order to identify the density of the 
occupied states (see Fig. 1). In addition, PCA (Principal 
Component Analysis) was performed on the signal strength in 
each frequency over the same measuring period.  PCA leads 
to two conclusions: (i) following Kaiser's rule 33 Principal 
Components (PCs) remain; (ii) 127 PCs are enough to 
account for 80% of the variance of this data.      
 One of the novelties of this work is interpreting the 
spectrum-hole data as a 2-dimensional image where one axis 
represents time and the other represents frequency. This 
interpretation motivates the use of Convolutional Neural 
Networks (CNNs) for predicting the primary users' spectrum 
usage pattern.  In Fig. 2, we display the utilized CNN 
structure composed of convolutional, subsampling, and MLP 
(multilayer perceptron) layers. The input layer is 321x33 
nodes.The first hidden layer performs convolution with 6 
feature maps with each feature map consisting of  315x27 
neurons. The second layer performs subsampling and local 
averaging. It consists of  6 feature maps with 105x9 neurons 
in each feature map. The second convolution layer  has 16 
feature maps, and is followed by another subsampling layer.  
Then, 16 feature maps with 33 length outputs (total 528 
outputs) are passed through a MLP network to reach 321 
outputs that predict the occupancy of each frequency bin 
during the next time interval.The final MLP has an input layer 
size of 528, a hidden layer of 127 and an output layer of 321. 
This hidden layer was chosen to reduce the number of 
weights. Training was performed with over 50,000 data 
images recorded over two 24-hour periods. A test set of  
20,000 data images was recorded on a separate day, as well as 
a smaller 500 sample validation set for visual interpretation.
 We use not only accuracy but also F2 score as 
performance metrics since  the cost of incorrectly identifying 
an occupied state is much higher than incorrectly identifying 
a free frequency. Note that F2= (5 x Precision x Recall) / (4 x 
Precision + Recall). The training data was separated into 
batch sizes of 5000 and the learning parameter was degraded 
by 0.6 per batch (value determined using exhaustive search). 
The bias term at the output layer was also optimized in order 
to increase the F2 score. We also display the effect of 
changing the SNR threshold of the training data while 
keeping the threshold for the test data at τte = 10dB in Fig. 3.  

3 Conclusions and Future Directions 
 The best results were achieved when we obtain the 
model with the same testing and training thresholds (τtr= τte= 
10 dB),  with a 0.6 degradation in learning parameter over 
batches and with a bias in the final layers set to 0.75. 
Comparing our initial results to the state of the art is difficult 
due to the nature of the data collected since the overall 
occupancy rate of our recorded data is very small compared to 
the assumptions made about simulated data sets [6], [7]. In 
[8], the authors vary the occupancy rate, and with the 
resolution and cross-referencing their plots, we estimate their 
accuracy as close to 0.97-0.98 for similar occupancy rates to 

               
(a) Accuracy vs  τtr 

                    
(b) Accuracy vs  τtr                                                           

Fig. 3 : Effect of threshold (τtr) on the performance 

ours. This implies [8] outperforms our scheme; however, a 
genetic learning algorithm was utilized in [8]  to  optimize the 
parameters. Without this modification their recorded accuracy 
is closer to the 0.93-0.95 that our base model was able to 
surpass. As part of future research, we will improve 
performance of our CNN-based algorithm by optimizing the 
initial learning parameter, batch size, and possibly using 
alternatives to gradient-descent algorithm. Utilizing genetic 
algorithms for optimizing initial parameters is another 
possible future direction. 
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