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ABSTRACT 
Warehouse operational costs are heavily influenced by the 
efficiency in which workers are able to traverse the 
warehouse and gather items on orders around the 
warehouse that must be shipped to customers; this action 
accounts for over 50% of warehouse operations expenses. 
The act of traversing the warehouse is greatly optimized 
by following a designated pick path; however, algorithms 
for pick path generation are complex and heavily 
unexplored by the industry. Generating pick paths 
involves solving two common place graph theory 
problems: the shortest path problem and the traveling 
salesperson problem. We will analyze algorithms used for 
solving both of these problems and discuss the feasibility 
of generating pick paths through the use of the algorithms. 
We also introduce a simplified implementation to 
illustrate the viability of the described approaches. 
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1. Introduction 

A common goal of nearly all businesses is to reduce man-
hours and increase the overall profit margin of the 
business. In warehouse related businesses, optimizing the 
efficiency of order picking can lend itself to great 
reductions in the time it takes orders to ship out, as well 
as, improving the overall effectiveness of its workers. Of 
all costs associated with warehouse operations, 55-65% of 
the operational funds are allocated towards order picking 
[1] [2], showing the importance of optimizing this phase 
of the warehouse process. 
To better understand the problem at hand, we will now 
describe a common scenario in a warehouse and show 
how order picking fits into the mix. First, a warehouse is 
comprised of 3 primary components: receiving, storage, 
and shipping [2], Receiving is responsible for checking 
things into the warehouse; this is the entryway for all 
items into the warehouse stock. Once items have been 
received, they must be put away and stored. Storage can 
be of any form, although large shelving units, gaylords, 
and/or pallets are traditional options. The storage area of a 
warehouse is quite important and should be well 
organized to create an advantageous environment for 
order pickers. The final area, shipping, is similar to 
receiving. This is the exit for all items leaving the 
warehouse; any items ordered by customers of the 
warehouse must pass through this area before arriving at 

the customer’s location [2]; a customer of the warehouse 
could be larger entities such as the operation of a large 
franchise storage warehouse, or a single customer that is 
ordering products from an online store. 
After understanding the layout of a warehouse, we must 
look at the tasks performed by a warehouse. Nearly all
activities at a warehouse are centered on receiving orders 
from customers. As an order comes into the warehouse, 
an individual in the warehouse becomes responsible for 
the order; this is the order picker. The order picker is 
responsible for gathering all items on the order from 
around the warehouse, also known as picking, and then 
placing them in the shipping area. Once in shipping, the 
order will be packaged in a box or pallet and shipped to 
the customer. The picking process can be time consuming 
and by far is the biggest operational expense of any 
warehouse [2].  
Picking items for orders is the most costly part of the 
process, because order pickers must traverse the 
warehouse layout to find all items on the order, starting 
and ending in the shipping area; this is a pick path. For 
example, an order picker will print an order from the 
shipping area with 10 items on it. If there is a 20,000 
square foot warehouse, it can be expected to have at least 
500 unique storage locations throughout the warehouse 
defining where items are stored. This means, the order 
picker must determine an efficient route through the 500 
locations to get to the 10 locations identified on the order, 
where any location can be travelled to from any other 
location; we know this because any practical warehouse 
layout will not create any isolated, or pendant, storage 
area. After the order picker has found all 10 items in the 
warehouse, they must then bring the items back to the 
shipping area so the order can be shipped and the order 
picking process can be started fresh. 
Now to analysis this problem in terms of graph theory, 
finding a pick path involves solving two of the most 
common problems in graph theory; the Travelling 
Salesperson Problem (TSP) and the shortest path problem. 
The TSP is the problem of finding the shortest tour 
through n cities that visits every city exactly once, starting 
and ending in the same city [3]. Where in the case of pick 
path optimization, we want to visit every location on the 
order exactly once, generally starting and ending in 
shipping.  
The shortest path/route problem comes in five varieties, 
two of which pertain to the work accomplished by this 
paper. The first being, finding the shortest path between 
some vertex, x, and some other vertex in the graph, y [4]. 
Depending on the implementation and algorithms used to 
optimize warehouse pick paths, this scenario will come 
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into play such as, wanting to make it from some last 
location on the order back to the single shipping location. 
More often, it will be the case where the following 
shortest path is sought: the shortest path between some 
vertex and all others [4]. This is the shortest path most 
often sought during optimized pick path generation, as 
distances between the current vertex and all other 
locations on an order commonly need to be found. 
To summarize the TSP/Shortest Path problem 
encountered when solving the pick path problem: we are 
solving a TSP between all locations on an order; starting 
and ending in the shipping area (which is also defined by 
a vertex). Then as the TSP is being solved, at each 
location we encounter the further difficulty of finding the 
shortest paths between the current node and all remaining 
locations on the order. This occurs because we are solving 
a TSP which assumes a complete graph where all nodes 
are connected with one edge between them; however, this 
is not guaranteed to be the case in the warehouse layout. 
We are guaranteed all locations will be reachable from 
any location in the graph, so we must define the shortest 
path to each of these vertices. After finding these shortest 
paths, we can then treat the problem like a normal TSP, 
where all edges defining the path between nodes are 
treated as one edge with one minimum distance associated 
with it. 
Section 4 of this paper will focus on the algorithms and 
enhancements that can be used to find optimal pick paths 
by solving the TSP and shortest path problem. Section 5 
will offer insight into an implementation for finding an 
optimal pick path. 
 
2. Related Work 

There have been hundreds of papers published and dozens 
of algorithms developed around solving the shortest path 
problem alone, as a large number of mathematical 
optimization problems are mathematically equivalent to 
the shortest path problem [4]. In the same respect, the 
TSP has been analyzed by dozens of professions, 
researched to no end, and proved to be a member of the 
NP-Complete problem set, with numerous heuristics 
developed that present polynomial time solutions within a 
fair degree of accuracy [3].  
In contrast, there has been limited research completed 
around warehouse efficiency, and more specifically pick 
path optimization. There is some degree of research 
related to the business operations of warehouses [2];
however, there is almost no research related to the 
algorithms required to solve the problems of optimizing 
warehouse operations. This is the gap in research we have 
aimed to fill throughout the course of this paper. 
 
3. Contribution 

With an astonishing amount of research in solving 
shortest path problems and the travelling salesperson 
problem, we aim to explore popular algorithms for 

solving these problems, taking a closer look at how each 
algorithm works and the practicality of generating optimal 
pick paths with these algorithms. We will look at the role 
of each algorithm in solving the warehouse pick path 
optimization problem and evaluate the characteristics of 
the algorithm. We will look at the timing complexity of 
these algorithms, as well as, the flaws and potential 
concerns for implementing each algorithm. 
We also introduce a basic implementation used for 
solving the warehouse pick path problem. In this regard, 
we focus on the components of the implementation and 
the improvements that should be made before using the 
algorithm to generate optimized pick paths. 

4. Algorithms 

There are a plethora of shortest path and TSP algorithms 
available, this section will focus on a handful of popular 
algorithms used for solving these problems. We describe 
each algorithm and the way in which it works. We then 
make mention of its time complexity, closeness to the 
optimum solution, and give a brief analysis on whether 
the algorithm is practical for usage in generating 
optimized pick paths. 

4.1 Shortest Path Algorithms 
This section will focus on algorithms used to find the 
shortest path between some vertex and all others in the 
graph; algorithm enhancements will also be considered.  

4.1.1 Dijkstra’s
Dijkstra’s algorithm is used to find the shortest distance 
between some starting vertex and all other vertices in the 
graph [5]. Dijkstra’s algorithm is quite popular for its 
performance, with a worst case performance of 

, where E = number of edges and V = number 
of vertices [3]. The algorithm is also easy to alter so that 
Dijkstra’s will not only return the distance of the shortest 
path to each vertex, but also the path to traverse.  
In pick path optimization, Dijkstra’s is quite useful as it 
can be used at each location to find the shortest distance 
between this location and all remaining locations on the 
order. This is quite practical and is often exactly what we 
need to solve in the process of generating an optimal pick 
path in the midst of solving the TSP portion of the 
problem.  
Section 4.1.3 further elaborates on enhancements that can 
be made to improve Dijkstra’s algorithm.

4.1.2 Floyd’s
Floyd’s algorithm is used to find the all-pairs shortest 
paths, meaning that in one run Floyd’s can find the 
shortest path between all vertices on a graph [3]. This can 
be seen as extremely advantageous to Dijkstra’s in finding 
pick paths, because the algorithm can be run once before 
solving the TSP end of the problem. By running the 
algorithm once, and storing the result to be referenced 
throughout the solving of the TSP, we are able to greatly 
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reduce the time spent determining the distance between 
the current location and all other locations on the order; 
however, we do not believe Floyd’s will always be more 
efficient than running Dijkstra’s at each location while 
solving the TSP, considering its worst case performance 
is [5]. 

4.1.3 Dijkstra Enhancements 
The reliability, popularity, and speed of Dijkstra’s makes 
it a heavily implemented and researched algorithm, 
especially in the realm of map routing and GPS 
programming. Under this umbrella, there have been 
numerous algorithm enhancements suggested [6]. These 
enhancements can be used to potentially greatly reduce 
the time it takes Dijsktra’s to run. 

4.1.3.1 Subgraph Partitioning 
One of the most reasonable enhancements for pick path 
optimization is the idea of partitioning a graph into a 
subgraph, where the subgraph contains a limited number 
of unused/untraversed vertices [7]. For example, if a GPS 
were determining an optimal route from Washington, DC 
to New York City, it would not need to consider any 
vertices in California or Florida, as it is unreasonable to 
traverse that part of the graph when travelling from DC to 
NYC. This has a practical application to the pick path 
problem, as there is no need to look at the south side of 
the warehouse if no locations on an order pertain to that 
portion of the warehouse.  
The holdup with the subgraph concept is the fact that 
there must be an algorithm run to determine what 
subgraph should be looked at and then form that subgraph 
[8]. This can be a costly operation and it  can be difficult 
to predict what vertices should be dropped when 
developing a subgraph of the warehouse per order. It 
seems that in most circumstances, it would be more costly 
to determine what subgraph to send through Dijkstra’s 
rather than simply running Dijkstra’s algorithm on the 
entire graph.   

4.1.3.2 Bidriectional Search 
Bidirectional search is an extension of Dijkstra’s
algorithm specifically targeting a two-node shortest path 
problem, when a starting vertex and target vertex are 
explicitly given [9]. When given these two points it is 
possible to create a mapping for the set of nodes and the 
set of edges such that Dijkstra’s algorithm can be adapted 
to start running from the start vertex and the target vertex 
simultaneously, where each thread will meet in the middle 
of the path, reducing the time taken to find the shortest 
path between two points using Dijkstra’s [9].
Bidirectional search initially seems like a practical 
enhancement for solving the pick path problem, although 
after considering the problem this is not the case. 
Dijkstra’s algorithm is run in order to determine the 
shortest distance between the current location node and 
all other locations on the order. The pick path problem 
does not typically involve finding the shortest path 
between the current vertex and one other location vertex 

in the graph, except if there is only one location on the 
order. It may be the case that some warehouses would 
find it advantageous to implement this Dijkstra’s 
enhancement for this special case but, in general, order 
pickers are able to efficiently find their own path to orders 
with less than three locations on them [2]. This 
enhancement is not recommended for use in pick path 
generation algorithms. 

4.2 Travelling Salesperson Algorithms 
This section will focus on algorithms used to find an exact 
optimized solution to the TSP, as well as, approximation 
algorithms that offer solutions within some guaranteed 
degree of closeness to the optimal solution. 

4.2.1 Exhaustive Search 
The exhaustive search algorithm offers the only 
implementation that can produce the guaranteed shortest 
tour to the TSP every time. This algorithm searches 
through all permutations of tours, computing the distance 
travelled by each; if a new shortest tour is found it is 
stored as such until all possible tours have been checked 
[3]. Exhaustive search will always produce the shortest 
path because it is looking at every possible tour that could 
be taken. This is ideal in terms of a guaranteed shortest 
path; however, the performance of the algorithm is quite 
awful; having a time complexity of  [3] [4]. This is 
not a recommended approach for generating optimized 
pick paths. 

4.2.2 Nearest-Neighbor 
The nearest-neighbor algorithm is a very simple algorithm 
to understand and implement. The algorithm starts at 
some random city, travelling to the city closest to the 
current city, until all cities have been visited. Once at the 
final city, come home. This algorithm cannot guarantee 
any degree of accuracy as to how close it will be to the 
optimum solution [3]. For this reason alone, we do not 
recommend using this when generating optimal pick 
paths. 

4.2.3 Multifragment-heuristic 
The multifragment-heuristic algorithm works by looking 
at the edges of the graph, rather than vertices. The 
algorithm approaches the problem by creating a 
minimally weighted set of edges that makes each vertex 
in the graph of degree 2 [3].  
The algorithm is as follows: first sort the set of edges by 
their weights and set the shortest distance set of edges to 
empty. Then, for the number of cities in the graph, add the 
shortest edge left in the set to the shortest distance set of 
edges, provided the addition of this edge does not make 
any vertex greater than of degree 2. After the loop has 
been completed, the shortest distance set of edges will 
contain the approximate shortest distance [3] [5]. 
This algorithm generally creates a more optimal result 
than the nearest-neighbor algorithm, but it also does not 
guarantee any degree of accuracy [3]. For this reason, this 
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algorithm is also not an ideal implementation for the pick 
path problem. 

4.2.4 Ant Colony Optimization  
For solving the TSP, there are a number of different ant 
colony solution algorithms available, many of which are 
based on genetic algorithms. These algorithms are 
modeled after the natural ability of an ant colony to find 
the shortest path to their food source [10]. When ants 
arrive at decision points in their travels, they have no 
knowledge of what lies ahead of them or what distance 
must be travelled based on their decision. Since the choice 
is random, it can be expected that when presented with 
two directional choices (both ending at the same point),
half the ants will go right and the other half will go left. 
Eventually, ants will be travelling to-and-from this 
location so ants will be choosing direction when headed 
both directions to-and-from the food source. As the ants 
travel, they release pheromones. After the ants have been 
travelling for a short time, the pheromone will accumulate 
on both paths; eventually the shorter path will have a 
much higher accumulation and this will begin to attract all
the new ants to this path. Ants are able to discover the 
shortest paths between their food sources by measuring 
the amount of pheromone deposited on each decision path 
[10] [12].
One proposed Ant Colony algorithm for solving the TSP 
is the Ant Colony System (ACS) [10]. The algorithm’s 
primary feature is the use of agents as ants. These ants 
work in a threaded, parallel fashion, simultaneously 
searching for a good solution to the TSP. The ants 
communicate on a global level, as well as, indirect 
communication through pheromone release on the edges. 
Each ant acts independently searching for a solution, 
using pheromones as a form of memory and making 
iterative improvements on its path selection. In the end it 
is proposed that the shortest path can be found by 
examining the pheromones left on each edge and selecting 
the maximal pheromone-weighted edges in order to form 
an optimal solution [10].  
Dorigo presents numerous results of ACS tests in relation 
to other top-notch TSP algorithms [10]. Moreover, ACS 
presents accurate results for both small and large 
problems. The algorithm was able to produce the 
optimum tour in all tours with less than 100 cities in a 
minimal number of runs. For larger travelling salesperson 
problems (198 to 1577 cities), ACS was able to generate 
optimal paths within 3.5% error from the optimum [10]. 
This solution is recommended in terms of accuracy; 
however, it is not a practical implementation for many 
due to its degree of difficulty. 

4.2.5 Twice Around the Tree 
The twice-around-the-tree algorithm is a minimum 
spanning tree-based algorithm [3]. These types of 
algorithms leverage the connection between Hamiltonian 
circuits and spanning trees, where a Hamiltonian circuit 
minus one edge produces a spanning tree [3].  

The algorithm works by first constructing a minimum 
spanning tree of the graph. Then, starting at some random 
node, perform a walk around the spanning tree that was 
constructed (using a Depth First Search) and keeping 
track of vertices passed through. Then search the list of 
vertices that was generated; delete all repeats of nodes so 
that each vertex only appears once, except the start/end 
vertex. The start/end vertex should appear at both the 
beginning and end of the list. This produces a 
Hamiltonian circuit that is an approximation for the 
shortest path between all nodes [3].  
This algorithm can be performed in polynomial time, 
although its exact timing depends on the implementation 
of the first step, where a minimum spanning tree is 
constructed. An MST can be constructed using any 
popular algorithm such as Prim’s or Kruskal’s [3] [4].   
Another benefit of this approach is that, it is guaranteed 
that accuracy of the shortest tour generated by this 
algorithm is at most twice as long as the optimum tour.  
This algorithm is recommended based on its guaranteed 
upper bound and the fact that the algorithm is performed 
in polynomial time. 

4.2.6 Christofides’ Algorithm 
Christofides’ algorithm works similarly to the twice-
around-the-tree algorithm as it also works with minimum 
spanning trees. Christofides’ utilizes more advanced 
implementations of graph theory to form a guaranteed 
lower cost tour than the previously discussed algorithms 
[3] [4] [5] [11]. 
Christofides’ first creates a minimal spanning tree, T, 
using some known algorithm. Then create a set of all odd 
degree vertices, V. Then find a perfect matching, P, with 
the minimum weight of the graph over the vertices in V.
This will create a set of minimally weighted edges 
without any common vertices from V. Then, add the 
edges from P and T to form a multigraph, M. A 
multigraph is simply a graph that allows parallel edges. 
Now form an Euler circuit from M, call it E. This will 
produce a circuit that visits every edge once. Now, 
remove edges that visit nodes more than once. This will 
create a Hamiltonian circuit, which as we previously 
defined is a solution to the TSP [3] [5] [11].
Christofides’ algorithm can be performed in polynomial 
time and produces a minimal tour that is guaranteed to be 
within 1.5 times the optimum tour [11].
This algorithm is highly recommended for 
implementation in finding an optimal pick path. 
 
5. Code 

Throughout the research of this paper, a small case study 
project was developed to show that the algorithms 
described could be implemented to create a usable pick 
path generator. The application is a C# Windows Form 
application that provides the basic implementation to 
create a warehouse layout in the form of a graph, save it, 
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and then use it to generate an optimal pick path based on a
handful of algorithms described above. 
The initial step to use this application is the process of 
converting a warehouse layout into a graph. We will use 
Figure 5.1 as an example throughout this section. First we 
must define the components of this layout. All whitespace 
in the layout represents aisles in the warehouse that can be 
traversed to travel around the warehouse from location to 
location. The large rectangular gray square in the bottom 
of the layout is the shipping area of the warehouse. As 
described in Section 1, this is typically the start and end 
point of the pick path. All remaining gray squares are 
storage locations in the warehouse such as shelving units 
or pallets. It is also important to note, distances are 
associated with each aisle and the shelving units; this 
comes into play as we move through the transformation of 
the layout into a graph. 

Figure 5.1: Warehouse Layout

After we have our layout defined, we can begin the 
process of turning this into a graph that can have 
traditional TSP and shortest path algorithms applied. The 
first step in this transformation is to create vertices at the 
intersection of all aisles, we do this because each aisle is 
an edge and the edges meet at intersections. Then draw 
each aisle as an edge. 
Now, it is time to assign weights, of a uniform unit, to 
each edge. These weights represent the distance from the 
middle of one aisle intersection to the center of the 
neighboring aisle intersection. After assigning weights, it 
is time to randomly and uniquely assign each vertex an 
ID. This is done so that the user is able to interact with the 
Windows Form application, because the vertex ID 
correlates to an application vertex name. With that said, 
the application presents nodes to the user in the naming 
convention of “v1” to “vMax#Vertices”, so for the sake of 
simplicity, we will name our layout graph vertices as 
such. After completing the process defined above, a graph 

similar to Figure 5.2 is developed. Note we must also 
select a vertex to represent the shipping area at this time. 

Figure 5.2 Warehouse Layout Graph

It can be seen that the red dots represent our vertices; the 
blue represents the identities of our vertices. We see we 
have a total of 36 vertices in our layout. Next, create all of 
the edges and place the weight along each edge in green. 
It is recommended that a thorough comparison of Figure 
5.1 and Figure 5.2 be done to clearly see the figures 
represent the same warehouse layout. The entire reason 
for drawing this graph layout is to prepare all metadata 
that is collected by the application; planning and creating 
this image representation helps to reduce data entry errors 
and greatly reduce the time taken to turn the layout into a 
graph theory applicable problem. After our graph and its 
metadata are complete, we can begin using the 
application. 
At this point it is important to note that this graph is a 
representation of the warehouse layout that will allow us 
to traverse from any aisle intersection to any other aisle 
intersection in the warehouse. This is different from the 
pick path problem, as the pick path problem travels from 
storage location to storage location. We eliminated the 
location vertices from our graph, as the same algorithms 
and processes apply to a graph going from aisle 
intersection to aisle intersection as a graph traversing 
location to location. This is true, because locations are 
found in our storage units. Our storage units are 
represented by the edges in our graph (see Figure 5.2). 
This means if we want to work with locations, rather than 
aisle intersections, we turn one aisle edge into multiple 
location edges. For example, if (from Figure 5.2) the 
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storage unit between v18 and v27 contained 5 locations, 
we would add 5 vertices to the one edge of length 24. 
These 5 locations would then be joined by smaller-
portioned edges whose sum would add up to the original 
length of 24. This shows that by performing our analysis 
on the graph of aisle intersections, we are able to create 
simplified tests with fewer vertices without loss of 
generality for locations. As an example of a complete 
location graph see Figure 5.3; it shows pink dots that 
represent each location. It is easy to see that this graph has 
the same properties as Figure 5.2.  

Figure 5.3 Layout Graph with Location Vertices 

Now we must enter the graph from Figure 5.2 into the C# 
application. After launching the application, we first enter 
the number of vertices and select “Create Graph”, see 
Figure 5.4. 

Figure 5.4 Create Graph with Number of Vertices 

After selecting “Create Graph”, the application 
dynamically generates a form that is essentially an 
adjacency matrix. Each cell of the matrix has two input 
cells, we enter the distance between the vertices in the 
first input cell, ignoring the second. To fill this adjacency 
matrix form, we translate the metadata from our drawn 
layout graph in Figure 5.2 to the adjacency matrix, 
entering the distance weight for each edge as in Figure 
5.5.

Figure 5.5 Fill Adjacency Matrix

After entering all of the metadata from the graph, we need 
to “Save Graph” so we can use this graph to solve the 
pick path problem from another form. After saving the 
graph, go back to the form from Figure 5.4 and select 
“Load Graph”, select the graph that was just created and 
saved from the prior step. Now, enter the vertex that is the 
shipping area and the list of all vertices to visit as seen in 
Figure 5.6.   

Figure 5.6 Find a Tour 

After entering all information, select “TSP Find Shortest 
Path”. This generates an optimized pick path for the 
specified vertices using Dijkstra’s algorithm to find the 
closest neighboring vertex to each current vertex as we 
traverse the graph. The application uses the nearest-
neighbor approach for solving the TSP end of the pick 
path problem, and Dijkstra’s algorithm to find the shortest 
paths.  
After the optimal tour has been found using the above 
algorithms, it is displayed to the user. It is important to 
note that this form starts counting vertices at 0, rather than 
1 so all vertex names are decremented by a constant of 1. 
As Figure 5.7 shows, the form displays the vertices in the 
order in which they should be traversed, showing the 
exact path to get to each location as well as the path 
distance. All of these components make it easy to piece 
the tour together and present a usable path to the end 
users. 
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Figure 5.7 Pick Path Tour 

This application shows the feasibility of using the 
algorithms described in Section 4 to generate optimized 
pick paths using simple vertex and edge data structures.
This application does not; however, implement a 
recommended TSP algorithm, as the nearest-neighbor 
approach does not guarantee any degree of accuracy in 
regard to the optimum tour [3]. With a TSP algorithm 
guaranteeing an upper bound, this application would be 
far more reliable and recommended for use. 
In short, we are able to demonstrate the practicality of 
using advanced TSP and shortest path algorithms for 
solving the optimized pick path, although further 
implementation is required to guarantee any degree of 
accuracy.  
 
6. Future Work 

It is our goal to implement an optimized pick path finder 
that implements a TSP solution with a guaranteed upper 
bound to the optimum tour. This will involve reworking 
the vertex and edge data structures, as well as storing 
them in a more optimal data structure than a list; 
preferably using a data structure that closely lends itself to 
finding a minimal spanning tree based on the fact that 
many upper bound TSP solutions first find a MST before 
solving the TSP. This will make it more efficient to 
implement algorithms such as Christofides’ or twice-
around-the-tree.  
 
7. Conclusion 

In conclusion, pick path optimization is a component of 
warehouse operations with much room for improvement 
in efficiency. To optimize the creation of pick paths, 
further research must be done in heuristics for solving the 
travelling salesperson problem with tight upper bound 
guarantees. The algorithms analyzed in this paper are 
capable of generating pick paths, although to guarantee 
any degree of accuracy to the optimum pick path tour, 
more advanced and complicated algorithms must be 
implemented such as Christofides’ or  twice-around-the-
tree. With the implementation of these algorithms, 
optimal pick paths can be reliably generated and used for 
directing order pickers.  
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