
Warehouse Pick Path Optimization Algorithm Analysis

Ryan Key Anurag Dasgupta
 Edinboro University of Pennsylvania Edinboro University of Pennsylvania

 rk096065@scots.edinboro.edu adasgupta@edinboro.edu

ABSTRACT
Warehouse operational costs are heavily influenced by the
efficiency in which workers are able to traverse the
warehouse and gather items on orders around the
warehouse that must be shipped to customers; this action
accounts for over 50% of warehouse operations expenses.
The act of traversing the warehouse is greatly optimized
by following a designated pick path; however, algorithms
for pick path generation are complex and heavily
unexplored by the industry. Generating pick paths
involves solving two common place graph theory
problems: the shortest path problem and the traveling
salesperson problem. We will analyze algorithms used for
solving both of these problems and discuss the feasibility
of generating pick paths through the use of the algorithms.
We also introduce a simplified implementation to
illustrate the viability of the described approaches.

KEY WORDS
Warehouse Pick Path Optimization, Traveling
Salesperson Problem, Shortest Path, Algorithm
Comparison

1. Introduction

A common goal of nearly all businesses is to reduce man-
hours and increase the overall profit margin of the
business. In warehouse related businesses, optimizing the
efficiency of order picking can lend itself to great
reductions in the time it takes orders to ship out, as well
as, improving the overall effectiveness of its workers. Of
all costs associated with warehouse operations, 55-65% of
the operational funds are allocated towards order picking
[1] [2], showing the importance of optimizing this phase
of the warehouse process.
To better understand the problem at hand, we will now
describe a common scenario in a warehouse and show
how order picking fits into the mix. First, a warehouse is
comprised of 3 primary components: receiving, storage,
and shipping [2], Receiving is responsible for checking
things into the warehouse; this is the entryway for all
items into the warehouse stock. Once items have been
received, they must be put away and stored. Storage can
be of any form, although large shelving units, gaylords,
and/or pallets are traditional options. The storage area of a
warehouse is quite important and should be well
organized to create an advantageous environment for
order pickers. The final area, shipping, is similar to
receiving. This is the exit for all items leaving the
warehouse; any items ordered by customers of the
warehouse must pass through this area before arriving at

the customer’s location [2]; a customer of the warehouse
could be larger entities such as the operation of a large
franchise storage warehouse, or a single customer that is
ordering products from an online store.
After understanding the layout of a warehouse, we must
look at the tasks performed by a warehouse. Nearly all
activities at a warehouse are centered on receiving orders
from customers. As an order comes into the warehouse,
an individual in the warehouse becomes responsible for
the order; this is the order picker. The order picker is
responsible for gathering all items on the order from
around the warehouse, also known as picking, and then
placing them in the shipping area. Once in shipping, the
order will be packaged in a box or pallet and shipped to
the customer. The picking process can be time consuming
and by far is the biggest operational expense of any
warehouse [2].
Picking items for orders is the most costly part of the
process, because order pickers must traverse the
warehouse layout to find all items on the order, starting
and ending in the shipping area; this is a pick path. For
example, an order picker will print an order from the
shipping area with 10 items on it. If there is a 20,000
square foot warehouse, it can be expected to have at least
500 unique storage locations throughout the warehouse
defining where items are stored. This means, the order
picker must determine an efficient route through the 500
locations to get to the 10 locations identified on the order,
where any location can be travelled to from any other
location; we know this because any practical warehouse
layout will not create any isolated, or pendant, storage
area. After the order picker has found all 10 items in the
warehouse, they must then bring the items back to the
shipping area so the order can be shipped and the order
picking process can be started fresh.
Now to analysis this problem in terms of graph theory,
finding a pick path involves solving two of the most
common problems in graph theory; the Travelling
Salesperson Problem (TSP) and the shortest path problem.
The TSP is the problem of finding the shortest tour
through n cities that visits every city exactly once, starting
and ending in the same city [3]. Where in the case of pick
path optimization, we want to visit every location on the
order exactly once, generally starting and ending in
shipping.
The shortest path/route problem comes in five varieties,
two of which pertain to the work accomplished by this
paper. The first being, finding the shortest path between
some vertex, x, and some other vertex in the graph, y [4].
Depending on the implementation and algorithms used to
optimize warehouse pick paths, this scenario will come

Int'l Conf. Foundations of Computer Science | FCS'15 | 63

into play such as, wanting to make it from some last
location on the order back to the single shipping location.
More often, it will be the case where the following
shortest path is sought: the shortest path between some
vertex and all others [4]. This is the shortest path most
often sought during optimized pick path generation, as
distances between the current vertex and all other
locations on an order commonly need to be found.
To summarize the TSP/Shortest Path problem
encountered when solving the pick path problem: we are
solving a TSP between all locations on an order; starting
and ending in the shipping area (which is also defined by
a vertex). Then as the TSP is being solved, at each
location we encounter the further difficulty of finding the
shortest paths between the current node and all remaining
locations on the order. This occurs because we are solving
a TSP which assumes a complete graph where all nodes
are connected with one edge between them; however, this
is not guaranteed to be the case in the warehouse layout.
We are guaranteed all locations will be reachable from
any location in the graph, so we must define the shortest
path to each of these vertices. After finding these shortest
paths, we can then treat the problem like a normal TSP,
where all edges defining the path between nodes are
treated as one edge with one minimum distance associated
with it.
Section 4 of this paper will focus on the algorithms and
enhancements that can be used to find optimal pick paths
by solving the TSP and shortest path problem. Section 5
will offer insight into an implementation for finding an
optimal pick path.

2. Related Work

There have been hundreds of papers published and dozens
of algorithms developed around solving the shortest path
problem alone, as a large number of mathematical
optimization problems are mathematically equivalent to
the shortest path problem [4]. In the same respect, the
TSP has been analyzed by dozens of professions,
researched to no end, and proved to be a member of the
NP-Complete problem set, with numerous heuristics
developed that present polynomial time solutions within a
fair degree of accuracy [3].
In contrast, there has been limited research completed
around warehouse efficiency, and more specifically pick
path optimization. There is some degree of research
related to the business operations of warehouses [2];
however, there is almost no research related to the
algorithms required to solve the problems of optimizing
warehouse operations. This is the gap in research we have
aimed to fill throughout the course of this paper.

3. Contribution

With an astonishing amount of research in solving
shortest path problems and the travelling salesperson
problem, we aim to explore popular algorithms for

solving these problems, taking a closer look at how each
algorithm works and the practicality of generating optimal
pick paths with these algorithms. We will look at the role
of each algorithm in solving the warehouse pick path
optimization problem and evaluate the characteristics of
the algorithm. We will look at the timing complexity of
these algorithms, as well as, the flaws and potential
concerns for implementing each algorithm.
We also introduce a basic implementation used for
solving the warehouse pick path problem. In this regard,
we focus on the components of the implementation and
the improvements that should be made before using the
algorithm to generate optimized pick paths.

4. Algorithms

There are a plethora of shortest path and TSP algorithms
available, this section will focus on a handful of popular
algorithms used for solving these problems. We describe
each algorithm and the way in which it works. We then
make mention of its time complexity, closeness to the
optimum solution, and give a brief analysis on whether
the algorithm is practical for usage in generating
optimized pick paths.

4.1 Shortest Path Algorithms
This section will focus on algorithms used to find the
shortest path between some vertex and all others in the
graph; algorithm enhancements will also be considered.

4.1.1 Dijkstra’s
Dijkstra’s algorithm is used to find the shortest distance
between some starting vertex and all other vertices in the
graph [5]. Dijkstra’s algorithm is quite popular for its
performance, with a worst case performance of

, where E = number of edges and V = number
of vertices [3]. The algorithm is also easy to alter so that
Dijkstra’s will not only return the distance of the shortest
path to each vertex, but also the path to traverse.
In pick path optimization, Dijkstra’s is quite useful as it
can be used at each location to find the shortest distance
between this location and all remaining locations on the
order. This is quite practical and is often exactly what we
need to solve in the process of generating an optimal pick
path in the midst of solving the TSP portion of the
problem.
Section 4.1.3 further elaborates on enhancements that can
be made to improve Dijkstra’s algorithm.

4.1.2 Floyd’s
Floyd’s algorithm is used to find the all-pairs shortest
paths, meaning that in one run Floyd’s can find the
shortest path between all vertices on a graph [3]. This can
be seen as extremely advantageous to Dijkstra’s in finding
pick paths, because the algorithm can be run once before
solving the TSP end of the problem. By running the
algorithm once, and storing the result to be referenced
throughout the solving of the TSP, we are able to greatly

64 Int'l Conf. Foundations of Computer Science | FCS'15 |

reduce the time spent determining the distance between
the current location and all other locations on the order;
however, we do not believe Floyd’s will always be more
efficient than running Dijkstra’s at each location while
solving the TSP, considering its worst case performance
is [5].

4.1.3 Dijkstra Enhancements
The reliability, popularity, and speed of Dijkstra’s makes
it a heavily implemented and researched algorithm,
especially in the realm of map routing and GPS
programming. Under this umbrella, there have been
numerous algorithm enhancements suggested [6]. These
enhancements can be used to potentially greatly reduce
the time it takes Dijsktra’s to run.

4.1.3.1 Subgraph Partitioning
One of the most reasonable enhancements for pick path
optimization is the idea of partitioning a graph into a
subgraph, where the subgraph contains a limited number
of unused/untraversed vertices [7]. For example, if a GPS
were determining an optimal route from Washington, DC
to New York City, it would not need to consider any
vertices in California or Florida, as it is unreasonable to
traverse that part of the graph when travelling from DC to
NYC. This has a practical application to the pick path
problem, as there is no need to look at the south side of
the warehouse if no locations on an order pertain to that
portion of the warehouse.
The holdup with the subgraph concept is the fact that
there must be an algorithm run to determine what
subgraph should be looked at and then form that subgraph
[8]. This can be a costly operation and it can be difficult
to predict what vertices should be dropped when
developing a subgraph of the warehouse per order. It
seems that in most circumstances, it would be more costly
to determine what subgraph to send through Dijkstra’s
rather than simply running Dijkstra’s algorithm on the
entire graph.

4.1.3.2 Bidriectional Search
Bidirectional search is an extension of Dijkstra’s
algorithm specifically targeting a two-node shortest path
problem, when a starting vertex and target vertex are
explicitly given [9]. When given these two points it is
possible to create a mapping for the set of nodes and the
set of edges such that Dijkstra’s algorithm can be adapted
to start running from the start vertex and the target vertex
simultaneously, where each thread will meet in the middle
of the path, reducing the time taken to find the shortest
path between two points using Dijkstra’s [9].
Bidirectional search initially seems like a practical
enhancement for solving the pick path problem, although
after considering the problem this is not the case.
Dijkstra’s algorithm is run in order to determine the
shortest distance between the current location node and
all other locations on the order. The pick path problem
does not typically involve finding the shortest path
between the current vertex and one other location vertex

in the graph, except if there is only one location on the
order. It may be the case that some warehouses would
find it advantageous to implement this Dijkstra’s
enhancement for this special case but, in general, order
pickers are able to efficiently find their own path to orders
with less than three locations on them [2]. This
enhancement is not recommended for use in pick path
generation algorithms.

4.2 Travelling Salesperson Algorithms
This section will focus on algorithms used to find an exact
optimized solution to the TSP, as well as, approximation
algorithms that offer solutions within some guaranteed
degree of closeness to the optimal solution.

4.2.1 Exhaustive Search
The exhaustive search algorithm offers the only
implementation that can produce the guaranteed shortest
tour to the TSP every time. This algorithm searches
through all permutations of tours, computing the distance
travelled by each; if a new shortest tour is found it is
stored as such until all possible tours have been checked
[3]. Exhaustive search will always produce the shortest
path because it is looking at every possible tour that could
be taken. This is ideal in terms of a guaranteed shortest
path; however, the performance of the algorithm is quite
awful; having a time complexity of [3] [4]. This is
not a recommended approach for generating optimized
pick paths.

4.2.2 Nearest-Neighbor
The nearest-neighbor algorithm is a very simple algorithm
to understand and implement. The algorithm starts at
some random city, travelling to the city closest to the
current city, until all cities have been visited. Once at the
final city, come home. This algorithm cannot guarantee
any degree of accuracy as to how close it will be to the
optimum solution [3]. For this reason alone, we do not
recommend using this when generating optimal pick
paths.

4.2.3 Multifragment-heuristic
The multifragment-heuristic algorithm works by looking
at the edges of the graph, rather than vertices. The
algorithm approaches the problem by creating a
minimally weighted set of edges that makes each vertex
in the graph of degree 2 [3].
The algorithm is as follows: first sort the set of edges by
their weights and set the shortest distance set of edges to
empty. Then, for the number of cities in the graph, add the
shortest edge left in the set to the shortest distance set of
edges, provided the addition of this edge does not make
any vertex greater than of degree 2. After the loop has
been completed, the shortest distance set of edges will
contain the approximate shortest distance [3] [5].
This algorithm generally creates a more optimal result
than the nearest-neighbor algorithm, but it also does not
guarantee any degree of accuracy [3]. For this reason, this

Int'l Conf. Foundations of Computer Science | FCS'15 | 65

algorithm is also not an ideal implementation for the pick
path problem.

4.2.4 Ant Colony Optimization
For solving the TSP, there are a number of different ant
colony solution algorithms available, many of which are
based on genetic algorithms. These algorithms are
modeled after the natural ability of an ant colony to find
the shortest path to their food source [10]. When ants
arrive at decision points in their travels, they have no
knowledge of what lies ahead of them or what distance
must be travelled based on their decision. Since the choice
is random, it can be expected that when presented with
two directional choices (both ending at the same point),
half the ants will go right and the other half will go left.
Eventually, ants will be travelling to-and-from this
location so ants will be choosing direction when headed
both directions to-and-from the food source. As the ants
travel, they release pheromones. After the ants have been
travelling for a short time, the pheromone will accumulate
on both paths; eventually the shorter path will have a
much higher accumulation and this will begin to attract all
the new ants to this path. Ants are able to discover the
shortest paths between their food sources by measuring
the amount of pheromone deposited on each decision path
[10] [12].
One proposed Ant Colony algorithm for solving the TSP
is the Ant Colony System (ACS) [10]. The algorithm’s
primary feature is the use of agents as ants. These ants
work in a threaded, parallel fashion, simultaneously
searching for a good solution to the TSP. The ants
communicate on a global level, as well as, indirect
communication through pheromone release on the edges.
Each ant acts independently searching for a solution,
using pheromones as a form of memory and making
iterative improvements on its path selection. In the end it
is proposed that the shortest path can be found by
examining the pheromones left on each edge and selecting
the maximal pheromone-weighted edges in order to form
an optimal solution [10].
Dorigo presents numerous results of ACS tests in relation
to other top-notch TSP algorithms [10]. Moreover, ACS
presents accurate results for both small and large
problems. The algorithm was able to produce the
optimum tour in all tours with less than 100 cities in a
minimal number of runs. For larger travelling salesperson
problems (198 to 1577 cities), ACS was able to generate
optimal paths within 3.5% error from the optimum [10].
This solution is recommended in terms of accuracy;
however, it is not a practical implementation for many
due to its degree of difficulty.

4.2.5 Twice Around the Tree
The twice-around-the-tree algorithm is a minimum
spanning tree-based algorithm [3]. These types of
algorithms leverage the connection between Hamiltonian
circuits and spanning trees, where a Hamiltonian circuit
minus one edge produces a spanning tree [3].

The algorithm works by first constructing a minimum
spanning tree of the graph. Then, starting at some random
node, perform a walk around the spanning tree that was
constructed (using a Depth First Search) and keeping
track of vertices passed through. Then search the list of
vertices that was generated; delete all repeats of nodes so
that each vertex only appears once, except the start/end
vertex. The start/end vertex should appear at both the
beginning and end of the list. This produces a
Hamiltonian circuit that is an approximation for the
shortest path between all nodes [3].
This algorithm can be performed in polynomial time,
although its exact timing depends on the implementation
of the first step, where a minimum spanning tree is
constructed. An MST can be constructed using any
popular algorithm such as Prim’s or Kruskal’s [3] [4].
Another benefit of this approach is that, it is guaranteed
that accuracy of the shortest tour generated by this
algorithm is at most twice as long as the optimum tour.
This algorithm is recommended based on its guaranteed
upper bound and the fact that the algorithm is performed
in polynomial time.

4.2.6 Christofides’ Algorithm
Christofides’ algorithm works similarly to the twice-
around-the-tree algorithm as it also works with minimum
spanning trees. Christofides’ utilizes more advanced
implementations of graph theory to form a guaranteed
lower cost tour than the previously discussed algorithms
[3] [4] [5] [11].
Christofides’ first creates a minimal spanning tree, T,
using some known algorithm. Then create a set of all odd
degree vertices, V. Then find a perfect matching, P, with
the minimum weight of the graph over the vertices in V.
This will create a set of minimally weighted edges
without any common vertices from V. Then, add the
edges from P and T to form a multigraph, M. A
multigraph is simply a graph that allows parallel edges.
Now form an Euler circuit from M, call it E. This will
produce a circuit that visits every edge once. Now,
remove edges that visit nodes more than once. This will
create a Hamiltonian circuit, which as we previously
defined is a solution to the TSP [3] [5] [11].
Christofides’ algorithm can be performed in polynomial
time and produces a minimal tour that is guaranteed to be
within 1.5 times the optimum tour [11].
This algorithm is highly recommended for
implementation in finding an optimal pick path.

5. Code

Throughout the research of this paper, a small case study
project was developed to show that the algorithms
described could be implemented to create a usable pick
path generator. The application is a C# Windows Form
application that provides the basic implementation to
create a warehouse layout in the form of a graph, save it,

66 Int'l Conf. Foundations of Computer Science | FCS'15 |

and then use it to generate an optimal pick path based on a
handful of algorithms described above.
The initial step to use this application is the process of
converting a warehouse layout into a graph. We will use
Figure 5.1 as an example throughout this section. First we
must define the components of this layout. All whitespace
in the layout represents aisles in the warehouse that can be
traversed to travel around the warehouse from location to
location. The large rectangular gray square in the bottom
of the layout is the shipping area of the warehouse. As
described in Section 1, this is typically the start and end
point of the pick path. All remaining gray squares are
storage locations in the warehouse such as shelving units
or pallets. It is also important to note, distances are
associated with each aisle and the shelving units; this
comes into play as we move through the transformation of
the layout into a graph.

Figure 5.1: Warehouse Layout

After we have our layout defined, we can begin the
process of turning this into a graph that can have
traditional TSP and shortest path algorithms applied. The
first step in this transformation is to create vertices at the
intersection of all aisles, we do this because each aisle is
an edge and the edges meet at intersections. Then draw
each aisle as an edge.
Now, it is time to assign weights, of a uniform unit, to
each edge. These weights represent the distance from the
middle of one aisle intersection to the center of the
neighboring aisle intersection. After assigning weights, it
is time to randomly and uniquely assign each vertex an
ID. This is done so that the user is able to interact with the
Windows Form application, because the vertex ID
correlates to an application vertex name. With that said,
the application presents nodes to the user in the naming
convention of “v1” to “vMax#Vertices”, so for the sake of
simplicity, we will name our layout graph vertices as
such. After completing the process defined above, a graph

similar to Figure 5.2 is developed. Note we must also
select a vertex to represent the shipping area at this time.

Figure 5.2 Warehouse Layout Graph

It can be seen that the red dots represent our vertices; the
blue represents the identities of our vertices. We see we
have a total of 36 vertices in our layout. Next, create all of
the edges and place the weight along each edge in green.
It is recommended that a thorough comparison of Figure
5.1 and Figure 5.2 be done to clearly see the figures
represent the same warehouse layout. The entire reason
for drawing this graph layout is to prepare all metadata
that is collected by the application; planning and creating
this image representation helps to reduce data entry errors
and greatly reduce the time taken to turn the layout into a
graph theory applicable problem. After our graph and its
metadata are complete, we can begin using the
application.
At this point it is important to note that this graph is a
representation of the warehouse layout that will allow us
to traverse from any aisle intersection to any other aisle
intersection in the warehouse. This is different from the
pick path problem, as the pick path problem travels from
storage location to storage location. We eliminated the
location vertices from our graph, as the same algorithms
and processes apply to a graph going from aisle
intersection to aisle intersection as a graph traversing
location to location. This is true, because locations are
found in our storage units. Our storage units are
represented by the edges in our graph (see Figure 5.2).
This means if we want to work with locations, rather than
aisle intersections, we turn one aisle edge into multiple
location edges. For example, if (from Figure 5.2) the

Int'l Conf. Foundations of Computer Science | FCS'15 | 67

storage unit between v18 and v27 contained 5 locations,
we would add 5 vertices to the one edge of length 24.
These 5 locations would then be joined by smaller-
portioned edges whose sum would add up to the original
length of 24. This shows that by performing our analysis
on the graph of aisle intersections, we are able to create
simplified tests with fewer vertices without loss of
generality for locations. As an example of a complete
location graph see Figure 5.3; it shows pink dots that
represent each location. It is easy to see that this graph has
the same properties as Figure 5.2.

Figure 5.3 Layout Graph with Location Vertices

Now we must enter the graph from Figure 5.2 into the C#
application. After launching the application, we first enter
the number of vertices and select “Create Graph”, see
Figure 5.4.

Figure 5.4 Create Graph with Number of Vertices

After selecting “Create Graph”, the application
dynamically generates a form that is essentially an
adjacency matrix. Each cell of the matrix has two input
cells, we enter the distance between the vertices in the
first input cell, ignoring the second. To fill this adjacency
matrix form, we translate the metadata from our drawn
layout graph in Figure 5.2 to the adjacency matrix,
entering the distance weight for each edge as in Figure
5.5.

Figure 5.5 Fill Adjacency Matrix

After entering all of the metadata from the graph, we need
to “Save Graph” so we can use this graph to solve the
pick path problem from another form. After saving the
graph, go back to the form from Figure 5.4 and select
“Load Graph”, select the graph that was just created and
saved from the prior step. Now, enter the vertex that is the
shipping area and the list of all vertices to visit as seen in
Figure 5.6.

Figure 5.6 Find a Tour

After entering all information, select “TSP Find Shortest
Path”. This generates an optimized pick path for the
specified vertices using Dijkstra’s algorithm to find the
closest neighboring vertex to each current vertex as we
traverse the graph. The application uses the nearest-
neighbor approach for solving the TSP end of the pick
path problem, and Dijkstra’s algorithm to find the shortest
paths.
After the optimal tour has been found using the above
algorithms, it is displayed to the user. It is important to
note that this form starts counting vertices at 0, rather than
1 so all vertex names are decremented by a constant of 1.
As Figure 5.7 shows, the form displays the vertices in the
order in which they should be traversed, showing the
exact path to get to each location as well as the path
distance. All of these components make it easy to piece
the tour together and present a usable path to the end
users.

68 Int'l Conf. Foundations of Computer Science | FCS'15 |

Figure 5.7 Pick Path Tour

This application shows the feasibility of using the
algorithms described in Section 4 to generate optimized
pick paths using simple vertex and edge data structures.
This application does not; however, implement a
recommended TSP algorithm, as the nearest-neighbor
approach does not guarantee any degree of accuracy in
regard to the optimum tour [3]. With a TSP algorithm
guaranteeing an upper bound, this application would be
far more reliable and recommended for use.
In short, we are able to demonstrate the practicality of
using advanced TSP and shortest path algorithms for
solving the optimized pick path, although further
implementation is required to guarantee any degree of
accuracy.

6. Future Work

It is our goal to implement an optimized pick path finder
that implements a TSP solution with a guaranteed upper
bound to the optimum tour. This will involve reworking
the vertex and edge data structures, as well as storing
them in a more optimal data structure than a list;
preferably using a data structure that closely lends itself to
finding a minimal spanning tree based on the fact that
many upper bound TSP solutions first find a MST before
solving the TSP. This will make it more efficient to
implement algorithms such as Christofides’ or twice-
around-the-tree.

7. Conclusion

In conclusion, pick path optimization is a component of
warehouse operations with much room for improvement
in efficiency. To optimize the creation of pick paths,
further research must be done in heuristics for solving the
travelling salesperson problem with tight upper bound
guarantees. The algorithms analyzed in this paper are
capable of generating pick paths, although to guarantee
any degree of accuracy to the optimum pick path tour,
more advanced and complicated algorithms must be
implemented such as Christofides’ or twice-around-the-
tree. With the implementation of these algorithms,
optimal pick paths can be reliably generated and used for
directing order pickers.

References

[1] Theys, C., Braysy, O., Dullaert, W., Raa, B., 2010.
Using a TSP heuristic for routing order pickers in
warehouses. European Journal of Operational
Research 200 (3), 755–763.

[2] Bartholdi, J.J., Hackman, S.T., 2006. Warehouse and
Distribution Science. Release 0.96.

[3] A. Levitin, The design and analysis of algorithms 3rd

Edition (Upper Saddle River, NY: Addison-Wesley,
2012).

[4] N. Deo, Graph theory with applications to
engineering and computer science (Englewood
Cliffs, NJ: Prentice-Hall, 1974).

[5] T. Cormen, C. Leiserson, R. Rivest, & C. Stein,
Introduction to algorithms (Cambridge, MA: MIT
Press, 1990).

[6] F. Zhan, “Three Fastest Shortest Path Algorithms on
Real Road Networks: Data Structures and
Procedures,” Journal of Geographic Information and
Decision Analysis, Vol.1, No.1, pp. 69-82, 1998.

[7] Q. Song, X. Wang. Partitioning Graphs to Speed Up
Point-to-Point Shortest Path Computations. Decision
and Control and European Control Conference
(CDC-ECC), 2011 50th IEEE Conference on. IEEE,
2011.

[8] R. Möhring, H. Schilling, B. Schütz, D. Wagner, and
T. Willhalm. Partitioning graphs to speed up
Dĳkstra’s algorithm. 4th International Workshop on
Efficient and Experimental Algorithms (WEA), pages
189–202, 2005.

[9] Pohl. I. Bi-directional search. In B. Meltzer and D.
Michie (Eds.). Machine Intelligence 6 (American
Elsevier. New York. 1971) 127-140.

[10] Dorigo, M., & Gambardella, L. M. (1997). Ant
colony system: A cooperative learning approach to
the traveling salesman problem. IEEE Transactions
on Evolutionary Computation, 1 (1), 53-66.

[11] CHRISTOFIDES, N. 1976. Worst-case analysis of a
new heuristic for the traveling salesman problem.
Symposium on New Directions and Recent Results in
Algorithms and Complexity, J. F. Traub, ed.
Academic Press, Orlando, Fla., p. 441.

[12] F. Chen, H. Wang, C. Qi, and Y. Xie, “An ant colony
optimization routing algorithm for two order pickers
with congestion consideration,” Computers &
Industrial Engineering, vol. 66, no. 1, pp. 77–85,
2013.

Int'l Conf. Foundations of Computer Science | FCS'15 | 69

