
	

Automated Feedback for Personalized Learning

David J. Coe, Ronald Bowman, and Jason Winningham
Department of Electrical and Computer Engineering

The University of Alabama in Huntsville, Huntsville, Alabama, USA

Abstract - Presented here is an automated grading
framework for text interface data structures programming
assignments. This framework provides rapid feedback to
students, consistency in marking of assignments, and
requires minimal time to set up and use. A test driver
processes test commands read from input files allowing the
framework to support systematic, thorough functional and
structural testing of student submissions. The framework
generates individualized grade reports summarizing test
results and a .csv file that summarizes student grades to
speed entry of the grades into our Learning Management
System. The automated grading framework has been
enhanced to include screening for memory leaks, a
common error for students learning to implement container
classes in C++. A grade preview mechanism has been
derived from the framework to give students personalized
feedback on specific defects in their code prior to the final
submission deadline, allowing students to prioritize
debugging efforts on the most critical functionality.

Keywords: Personalized learning, structured output
assignment, automated program grading, robo-grader,
grade preview

1 Motivation
The automated programming assignment grading

framework presented here emerged from my experiences
teaching introductory computer programming courses in
the Department of Electrical and Computer Engineering at
the University of Alabama in Huntsville. A driving force
behind the development of this framework was a change in
the electrical engineering degree requirements. Prior to
this change, only our computer engineering students were
required to complete the second course of our two-course
introductory programming sequence based on the texts by
Dale and Weems (see CPE 112 and CPE 212 in Table 1
below) [1-2]. After the program change, electrical
engineering students were required to take CPE 212 in
addition to CPE 112, doubling CPE 212 enrollments
without a corresponding increase in already scarce
resources such as graduate teaching assistants. An
immediate need for some form of automated grading
scheme had emerged.

The automated grading framework presented below
was thus developed to satisfy three basic objectives: (1) to
provide timely graded feedback to large numbers of
students, (2) to make marking of assignments consistent
regardless of who was assigned the task of grading, and (3)

to maximize the amount of time teaching assistants and
instructors had to answer students questions.

2 Systematic Testing Requirement
Given the increasing overall complexity of the

software assignments in CPE 212 as compared to those in
CPE 112, a personal goal of the instructor was to convey to
the students the importance of efficient but thorough
software testing. Lectures dedicated to software testing
introduced the concepts of functional and structural testing,
including examples of how to use the gcov tool to identify
untested lines of code. Despite these efforts, the quality of
code submissions from the typical CPE 212 student was
often insufficient to pass instructor-developed tests. In the
worst cases, student submissions would compile but fail on
every input file used by the instructor, frustrating both the
student and the instructor.

Informal surveying of enrolled students suggested
that those students who could benefit the most by utilizing
gcov never tried to use the tool to improve their test set
selection, despite the lecture time consumed illustrating its
use. So, in addition to the three basic objectives of rapid
feedback, consistent marking, and minimal time for setup
and use, the automated grading framework should provide
a means of demonstrating a systemic approach to testing
the container classes.

To explore another possible source of poor student
performance, that is, the students did not fully understand
all of the project requirements, the instructor produced
detailed handouts describing each method and attribute
along with sample inputs and outputs illustrating both the
desired functionality and desired error handling. It was
clear by the questions asked by students during office
hours, that many students never read the project handouts.
Detailed written descriptions of project specifications were
replaced by supplying students direct access to an
executable sample solution that would serve as the primary
description of the desired product’s specifications along
with a brief handout describing implementation hints,
submission instructions, and assignment constraints. By
replacing the written enumeration of requirements with an
executable sample solution, the instructor sought to
encourage students to explore the desired functionality by
developing their own tests for the sample solution that they
might subsequently apply to their own code. Again,
weaker students struggled as much with developing tests
for others code as they did for their own code.

	

CPE 112

Intro to Computer Programming in Engineering
CPE 212

Fundamentals of Software Engineering
C++ syntax and semantics
data types
expressions
input-output
selection statements
looping statements
void functions
value-returning functions
parameters and arguments
structures
arrays
top-down design

pointers
classes
inheritance
exceptions
polymorphism
abstract data types
sequence containers (stacks, queues, and lists)
binary trees (heaps and binary search trees)
recursion
graphs
generic programming
searching
sorting

Table 1 – Distribution of topics between CPE 112 and CPE 212

3 Structured Output Assignments

The key element that accelerated the development
and deployment of this automated grading framework
was the decision to use structured output assignments. A
structured output assignment can be created when the
instructor provides the test driver source code that
includes all output statements allowed in the assignment.
Students were allowed and encouraged to look at the test
driver code, but they were also cautioned to make no
modifications to the test driver, or any other source code
files supplied by the instructor, since clean copies of
those source files would be used when compiling and
grading their submission.

The test driver serves as a client of the container
class under development and, in some cases, as a client
of other classes developed for the assignment. Rather
than hardcoding all tests directly within the test driver
code itself, the test driver exercises student code by
reading the desired sequences of methods to be invoked
from a set of input files provided to the students. Each
input file contains a series of commands that prompts the
test driver to invoke class member functions in a specific
order, supplying any required data, and documenting the
results by writing to stdout for later capture. Prior to
executing any method of the class, the test driver writes
text to stdout to indicate the next class method to be
executed. This allows students to compare their own
outputs to the sequence of requested operations in the
input file to identify the point of failure.

Table 2 below shows a representative set of input
file symbols and their mapping to corresponding Stack
ADT methods. Figure 1 shows a sample use of these
symbols to create an input file. Test coverage analysis is
performed on the sample solution code to ensure that the

set of input files developed will provide rigorous testing.
With relatively minor modifications, the test driver and
input files can be repurposed for other sequence
containers such as queues and lists or even tree structures
such as binary search trees. Again, this helps to
minimize set up time, making more time available for
fielding student questions.

The test driver must also be robust to account for
the breadth of errors that may occur. For example, if the
Pop method for the Stack class is required to throw the
StackEmpty exception if the Stack object is already
empty at the time Pop is invoked, then the test driver
must trap and document that the StackEmpty exception
was successfully thrown or not thrown before it
continues processing test commands from the input file.
Unanticipated exceptions may also occur during
execution of student code as a result of segmentation
faults, divide by zero errors, and attempts to dereference
null pointers. As before, the test driver must trap and
document to the desired level of detail any spurious
exceptions before it attempts to complete processing of
the remaining test commands. For the automated
grading framework discussed here, the test driver file
provided to the students with each assignment makes
extensive use of the C++ try-catch construct.

Adjustments to the test driver and input files can
also allow students to practice developing both the
container code and their own client code that utilizes the
their container. In this situation, a subset of the input
files will exercise just the container code, ignoring all
student client code that may still be in the form of
function stubs created by the students for compilation.
The remaining subset of input files focus on exercising
the client code. So, students see both unit testing and
integration testing in action.

	

Symbol Description of Test Driver Response Method Triggered

Test file comment None.
Echo comment to stdout

c Invoke Stack ADT constructor Stack()
d Invoke destructor ~Stack()
p Print stack object contents to stdout

(Note: Provided by instructor in stack.h)
Print()

+ x Push item x read from input file onto stack Push(x)
- Pop top item from stack Pop()

Table 2 – Sample input file symbols and their corresponding Stack methods.

p01input1.txt – Sample tests for Stack ADT
c
+ 5
+ 2
p
-
p
d

Figure 1 – Sample test driver input file for a Stack ADT that creates a stack object, pushes two integers onto the stack, and
then prints the contents of the stack before and after popping the topmost value. Subsequently the stack object is

deallocated.

The critical advantage of this approach is that the
structured nature of the output greatly simplifies
evaluation of the correctness of container operation.
Since instructor provided test driver code generates all
assignment outputs, elaborate output parsing to account
for variations in spelling, capitalization, whitespace,
output sequencing, and the inclusion of residual
debugging outputs added by the students is eliminated,
greatly reducing development time. While the use of
structured output assignments is restrictive, the primary
focus of the second course is learning the new concepts
required to implement container classes in C++ under the
assumption that students have achieved some minimal
proficiency in writing information to stdout. What
follows below is a discussion of how structured output
assignments, test drivers, and input files are utilized
within the Automated Grading Framework.

4 Automated Grading Framework
The automated grading framework consists of a

series of four Linux shell scripts that when executed
sequentially (1) extracts and organizes files, (2) compiles
student submissions, (3) generates customized grading
reports for each student, and (4) optionally emails the
relevant grading report to each student. While the exact
details of these scripts will vary based upon the target
platform and Learning Management System used,

included below is an outline of the functionality included
in the Extract, Compile, Grade, and Email scripts.

For those seeking to replicate this framework, a
word of caution – always use a dummy account with
minimal execution privileges for grading student work in
case a submission contains malicious code – a virtual
machine may be of use to reduce the risk of data loss.

4.1 Extract Script
The extract script’s primary function is to

organize all of the required files and set appropriate files
permissions. Figure 2 below provides an overview of
tasks performed by the extraction script. First, the script
creates the directory structure with subdirectories for the
sample solution source code, the instructor provided test
files, student submissions, and separate subdirectories for
each possible grading outcome (no-compiles, score of 0,
score of 1, etc.). With the directory organization in
place, source code for the sample solution and all
instructor-provided input files are moved into their
respective subdirectories, and read-only permissions are
assigned to files that should not change as submissions
are graded. Next, the contents of the compressed file of
student submissions from Angel, our Learning
Management System (LMS), are extracted into the
previous-submissions subdirectory.

	

• Create directory structure
• Move instructor-provided source code and test files into respective subdirectories
• Set read-only permissions on key files
• Extract submissions archive file from LMS into previous-submissions directory
• Adjust submission directory names assigned by LMS
• For each student, move most recent submission to submissions directory

Figure 2 – Outline of extract script used in this Automated Grading Framework

• Build sample solution
• For each student submission

o Use dos2unix utility to strip incompatible characters from student files
o Add instructor-provided Makefile and source files to student directory
o Compile submission using the make utility and log build issues to build.txt
o If build fails, move student subdirectory to no-compile directory

Figure 3 – Outline of compile script used in this Automated Grading Framework

The Angel LMS includes copies of all
submissions a student has submitted to the online
assignment drop box – even if the last submission was
tagged for grading within Angel. So, if student X
submitted a preliminary version of their code prior to
their final code submission, then both submissions will
appear for student X within the compressed file. For
convenience, student submission subdirectories are
renamed with the student’s username prepended to the
directory name. The most recent submission from each
student is identified and moved into the submissions
directory leaving all older submissions within the
previous-submissions directory that will not be graded
under the assumption that the most complete and correct
submission will be the last submission made by the
student.

4.2 Compile Script
The compile script’s primary responsibility is to

compile the sample solution source code and each
student submission. If a student submission does not
compile, the student’s subdirectory is relocated to the no-
compile directory. Since many students utilize
computers running the Windows operating system, it is
important to use the dos2unix utility to remove any
characters that will impede compilation. Figure 3 above
is a step-by-step outline of the compilation script.

4.3 Grade Script
The grade script scores each assignment and sorts

them by score received into separate subdirectories.
Each test file that results in correct outputs with no
memory leaks counts as one point towards the final score
for the assignment. The grading script uses the Linux
utility sdiff to verify that the functional behavior of a
student submission matches that of the sample solution,
i.e. the detailed project specification, and any behavior
difference identified is treated as a failure. The leak
check feature of the valgrind utility is used to identify
any memory leaks encountered during processing of a
particular input file. Any memory leaks encountered are

also treated as a failure for that input file. The results of
these analyses are documented in a grade.txt file that
serves as the summary that will be returned to the
student. A more detailed outline of the grade script
appears in Figure 4 below.

It is important to note that the ulimit utility
restricts resources allocated for the execution of the
submission to contain incorrect behaviors, such as
infinite loops, that are not addressed by the exception
handling of the test driver code. The exit status may be
used to gain additional insight regarding unexpected
termination of the student code. After each assignment
grade is finalized in the grade.txt file, an entry is
appended to the assignment gradebook.csv file that
contains the student’s username and assignment score.
Importing this file directly into the Angel LMS places all
student scores into the online course grade book with no
manual entry required.

4.4 Email Script
The optional email script may be used to forward

each student’s grade.txt report to the student’s campus
email address.

5 Grade Preview
The preview script is a modified version of the

grade script that allows students on demand to see a
preview of the grade their code would receive if it were
submitted in its current state. The preview script points
out specific anomalous results that would cause a student
to loose points if left uncorrected. Prior to the preview
script in Fall 2008, the average score on the queue-based
assignment was 76.5%. In Spring 2014, the average
score on the corresponding assignment increased to
84.8%. This automated personalized feedback is also
accessible to students even when instructors and teaching
assistants are unavailable. The preview script has also
proven invaluable when the instructors and teaching
assistants are assisting students since it provides a quick
summary of issues.

	

• For each test file
o Execute sample solution saving output into a text file

• For each student whose program compiled
o Create student’s grade.txt and append student identifier
o Append build log contents to grade.txt
o Set score = 0
o For each test file

§ Execute student submission saving output in text file using ulimit on execution time, file sizes, etc.
§ If exit status not successful,

• Append appropriate description of result to grade.txt file for that input file (segmentation fault,
time exceeded, etc.)

• Continue to the next test file
§ Otherwise,

• Verify student outputs using sdiff to compare student outputs to sample solution outputs &
append results to grade.txt file.

• Verify no memory leaks by using valgrind & append memory leak analysis results to grade.txt
• If outputs match exactly and no memory leaks then increment score by one for that input file.

o Append overall score to grade.txt
o Append username and grade to gradebook csv file
o Echo grade.txt to stdout
o Update summary histogram variables

• For each student whose program did not compile
o Begin writing grade.txt file by adding student identifier
o Append build log build.txt contents to grade.txt
o Append grade of zero to grade.txt
o Append username and grade to gradebook csv file
o Update summary histogram variable

• Write summary statistics for assignment to stdout
o Frequency of occurrence of each score, including number of no compiles
o Total number of students submitting work
o Average score on the assignment

Figure 4 – Outline of grade script used in this Automated Grading Framework

• For each student whose program compiled
o Email grade.txt to that student

• For each student whose program did not compile
o Email grade.txt to that student

Figure 5 – Outline of email script used in this Automated Grading Framework

6 Conclusions and Future Work

The Automated Grading Framework presented
here has a number of advantages. Since it requires
minimal time to set up and use, it can provide rapid
feedback to students after the assignment submission
deadline, even when grading dozens of submissions.
This rapid feedback gives students the opportunity to
learn from previous errors in time to avoid repeating
them on the next assignment. Moreover, this framework
sets a consistently high marking standard and provides
uniform marking results regardless of which instructor or
teaching assistant executed the scripts. From the student
perspective, by providing round-the-clock access to
individualized feedback, the preview script helps

students to continue making progress regardless of when
and where they choose to work on the assignment.

Despite these advantages, there are disadvantages
to using this framework. The structured nature of the
assignments may lead to more similarities in student
code submissions making plagiarism detection more
difficult. The instructor currently compensates for this
possibility by reducing the total course credit for
projects, by screening submissions using the MOSS
plagiarism detection tool to identify potentially
plagiarized submissions for manual screening [3], and by
asking assignment-derived questions on the exams.

Another disadvantage is that in the end, the goal
is have the students learn how to test their own programs.

	

The test driver source code and test files provide an
example of a systematic approach to testing of the
container, but the instructor currently supplies these
materials. Future work will investigate the possibility of
teaching about test coverage analysis by using this
framework backwards – that is, supplying the test driver
and the code under test and requiring students to develop
and submit sets of test files as a graded assignment, with
gcov analysis used to assess the completeness of the test
set.

7 References
[1] Nell Dale and Chip Weems, Programming And
Problem Solving With C++, 6th editon, Jones & Bartlett
Learning, March 6, 2013.
[2] Nell Dale, C++ Plus Data Structures, 5th edition,
Jones & Bartlett Learning, September 26, 2011.
[3] Alex Aiken, MOSS: A System for Detecting Software
Plagiarism, URL http://theory.stanford.edu/~aiken/moss/

