Visualization and Computer Aided Design Techniques for Teaching Computer Hardware Design Course

J. Pang

1Department of Electrical and Electronic Engineering and Program of Computer Engineering, California State University, Sacramento, Sacramento, CA, U.S.A.

Abstract - It is essential for undergraduate computer engineering students to have thorough understanding of the computer internal architecture. However, the study of computer hardware usually involves with a lot of abstract concepts, complex hardware structural interconnections and also dynamic hardware behavior. In order to invigorate students in efficient and active learning, effective technology integration with classroom instruction is required. This paper proposes three different visualization techniques for active learning including circuit diagram visualization, waveform visualization, and signal flow visualization. In addition, this paper presents how to use computer aided design method such as using a free open source logic design tool Logisim to assign projects to students so that they are able to integrate course contents, enhance problem solving skills, and also engage in active learning.

Keywords: Active learning, computer engineering education, visualization, computer aided design

1 Introduction

Understanding of the internal architecture of microcomputers is the basis for undergraduate computer engineering students to obtain in-depth knowledge of the design and application of computers. Traditionally, real digital hardware was used inside classroom for teaching microcomputers [1][2][3] and it was helpful for students to understand usage of microcomputers [4][5][6]. However, usually real digital hardware and associated software tools are expensive [7]. Moreover, it is time consuming for students to conduct experiments which require wiring components together. Especially, it is frustrating for students to trace problems when there are hardware related errors, such as broken wires, wrong connections, stray inductance and capacitance, power bus noise, and so on. This may also distract students from efficient understanding of the internal architecture of microcomputers. A separate and dedicated electrical engineering circuit class is necessary for students to focus on electronic circuit issues.

Active learning strategies using visualization and logic design tools have been used by author of this paper to teach computer hardware design course to undergraduate computer engineering students at CSUS. The author has observed that when students study course materials, it is hard for them to associate a lot of static texts and abstract concepts with complex internal connections of microcomputers. It is also hard for them to imagine how digital signals propagate inside microcomputers to operate different functional units. Representing information into graphic format through visualization techniques, and also using computer aided logic design tools for projects can concisely demonstrate microcomputer architecture related ideas. It is beneficial for students to enhance their involvement and comprehension of course materials, to reduce stress, to get motivated and also to have better insight into the internal architecture of microcomputers.

This paper looks at the roles and implementation details of using visualization techniques and computer aided logic design tool for teaching computer hardware design course. Part 2 describes how to use multiple visualization techniques to represent information inside classroom. Part 3 presents examples of using Logisim tool [8] for student projects which help them study the internal architecture of the microcomputer. Part 4 draws conclusions of this work.

2 Use of visualization techniques in class

Visualization techniques help students understand microcomputer architecture details at various levels of complexity and they provide important supporting roles to instructors inside classroom. Three different visualization techniques are proposed in this paper.

2.1 Circuit diagram visualization

A circuit diagram representation of computer concepts enables students to approach course material in more concrete way, and to visualize abstract behavior of computer hardware architecture more clearly and effectively.

Take memory hardware which is used to store data as one example. In general, the A1 and A0 signals represent address of the memory, the CS signal enables the memory, the RD signal allows reading memory data, and the OE signal allows the memory to output data onto the data bus. Such descriptions can be visualized through the circuit diagram shown in Figure 1 which is a 4x2 memory circuit. The analysis of circuit diagram allows students to explore the functionality of the circuit, and to enhance their understanding of the memory behavior.
For example, in Figure 1, when the \(CS \) signal is logic 0, it results in all logic 0s for the \(CLK0, CLK1, CLK2, CLK3 \), and \(EN \) signals, which are used to generate the clock pulses and also to enable the output tri-state buffers. Because these signals are disabled, new data inputs won’t be written into D Flip-flops, and also the output data bus will be in high-impedance mode. Through such analysis, students will be able to understand why the \(CS \) signal can disable the memory.

Instructors can use circuit diagrams to stimulate in-class discussion, to engage students in active learning and to initiate a collaborative effort among students for finding answers and solutions to the functionality of circuits.

2.2 Waveform visualization

Waveforms can help students find relationship among multiple signals, and visualize signal patterns. Figure 2 shows the simulation waveform for the memory circuit in Figure 1.

In Figure 2, it is obviously to see that the \(CLK0, CLK1, CLK2, \) and \(CLK3 \) pulses are generated at different time. For example, the \(CLK3 \) pulse is generated due to the input of \(CS \) pulse from 35 ns to 45 ns. At this time, the \(A1A0 \) signals point to memory address 3, and the memory data input signals \(I1 \) and \(I0 \) are binary “10”. Because \(RD \) is logic 0, it allows binary data “10” to be written into the memory address location 3. Here, multiple signals show joint actions in order to write data into memory. In another word, to write data into memory location 3, the \(CS \) signal needs to be logic 1 to enable the memory hardware. The address signals need to be set at value 3, and the \(RD \) signal needs to be logic 0 to allow writing to occur.

From 45 ns to 50 ns in Figure 2, because the \(RD \) and \(CS \) signal are activated with logic 1s, the memory cells at address 3 can output data “10” onto the data bus \(D1D0 \). This shows how memory reading works. It also proves the previous writing was successful.

In general, waveforms can be used to promote hardware functionality analysis and extend students’ understanding of key concepts of computer hardware.

2.3 Signal flow visualization

To analyze the dynamic behavior of interconnected computer system and also to provide a more complete view of how computer hardware works, a signal flow diagram is beneficial for students to visualize the hardware complexity in a more comprehensible way. Signal values can be marked on the hardware diagram for different case studies as displayed in Figure 3. Figure 3 shows the Mic-1 microprocessor [9] consisting of data path and control parts interweaved together.

Mic-1 architecture implements Integer Java Virtual Machine (IJVM) instruction set. Figure 3 shows signal flow values marked inside black rectangles for iadd1 micro-operation. IADD instruction is one of IVJM instructions,
which pops two words from the stack memory, and then push their sum into the stack. To implement IADD, three micro-
operations of iadd1, iadd2, and iadd3 are needed. iadd1 is
used to read next-to-top stack data. The opcode 0x60 for
IADD points to the control store memory address where
iadd1 micro-operation is stored. The iadd1 micro-operation is
fetched into the micro-instruction register \textit{MIR}, which
controls hardware in the data path.

In Figure 3, the four bits of “B field” inside the \textit{MIR}
register are equal to “0100” which are connected with a 4-to-
16 decoder. This enables the 5th output of the decoder so that
the SP register can output content “0x8002” onto the B bus.

The “ALU field” of the \textit{MIR} register has totally 8 bits.
Two bits are “00” which disable the shifter circuit from
shifting. And the other 6 bits are “110110” which choose
ALU function of B - 1. As a result, the B bus data “0x8002”
is subtracted by 1 through ALU and then generates 0x8001
on the C bus, which is the next-to-top stack address value.

The “C field” of the \textit{MIR} register outputs binary
numbers which are used as write enable signals for different
registers connected with the C bus. Since only the write
enable signals of \textit{MAR} and \textit{SP} registers are logic 1s, the \textit{MAR}
and \textit{SP} registers are activated. As a result, both \textit{MAR} and \textit{SP}
registers will be updated by the next-to-top stack address.

Since the “M field” of the \textit{MIR} register outputs binary
number “010” for write, read and fetch control of the main
memory, the main memory will be set to read mode. In
another word, the Mic-1 processor is going to read next-to-
top stack data from the main memory and store it into the
memory data register \textit{MDR}.

After iadd1 micro-operation is processed by data path
hardware, Mic-1 is going to process next micro-operation of
iadd2. The logic 0 values of the “J field” in the \textit{MIR}
register allow the \textit{MPC} register to choose the next micro-instruction
address from the “Addr field” of the \textit{MIR} register, and it is
“001100001” (0x61). The \textit{MPC} register stores the control
store memory address for the next micro-operation. At the
address 0x61 location of the control store, the micro-
operation iadd2 machine code is stored. Then the whole
processing steps will be repeated to implement the new
micro-operation.

Signal flow helps explain cause and effect of different
dynamic actions inside the computer hardware with the
support of data. It can engage students in the active learning
process, and also increase their attention and focus.
Moreover, it helps students understand context in a tangible
way.

Signal flow data can be fully provided by instructors, or
partially by instructors and partially by students through
questions and problem solving inside the classroom. Such
practice increase students’ curiosity for course contents, and
also promotes meaningful learning experiences among
students.

3 Computer aided design projects

Project assignments using computer aided design tools
help students integrate topics covered in the course, and
engage them in active learning instead of just memorizing
knowledge transferred from instructors in class. As a free and
user friendly open source educational tool, Logisim [8]
allows students to design and simulate digital logic circuits.
This tool has been used by author of this paper to teach
computer hardware design course to undergraduate computer
engineering students at CSUS.

Figure 4 shows one project idea of using Logisim. It
requires students to create the register logic sub-circuit to be
connected with the data bus, the ALU, the control store, and
the main memory of the Mic-1 processor.

![Figure 4. Registers and data bus](image_url)

The ALU needs two operands A and B. The operand A
comes from the register \textit{H}. The operand B comes from one of
those registers with read enable controls and also connected
with the data bus \textit{B Bus}. Every register connected with the
data bus \textit{C Bus} has write enable control for storing the ALU
result. For example, the \textit{rd_pc} is the read enable control for
the \textit{PC} register, and the \textit{we_pc} is the write enable control for
the \textit{PC} register. In addition, registers \textit{MAR}, \textit{PC}, \textit{MDR}, and
\textit{MBR} are used to interface with another sub-circuit of the
memory block.

In Figure 4, when the \textit{fetch} signal is logic 0, it selects the
\textit{MAR} register output to be the memory address \textit{mem_addr}. When the \textit{fetch} signal is logic 1, it selects the \textit{PC}
register output to be the memory address, and also it allows
reading instruction \textit{mem_data_in} from the main memory into
the MBR register. The MDR register has write enable controls from we_mdr and sel. The signal we_mdr allows the C_Bus data to be written into the MDR register. The signal sel allows the memory data mem_data_in to be written into the MDR register. The signal mem_data_out comes from the MDR register output which can be written into the main memory. The output mbr_data can be used as one of inputs to the CONTROL_STORE subcircuit to determine the next microinstruction address.

Moreover, Logisim has built-in RAM which can be configured as the Mic-1 memory space to hold the main IJVM instructions, local variable, stack, and constant pool data. Logisim also has built-in ROM which can be configured as control store to hold micro-instructions. Students are required to design appropriate micro-instructions to be loaded into the control store to interact with the data path. In conclusion, the whole Mic-1 processor can be created, and simulated by using the Logisim tool. Modification of the Mic-1 is also possible which may stimulate students for more creative design ideas.

4 Conclusions

Three different visualization techniques are discussed in this paper including circuit diagram visualization, waveform visualization, and signal flow visualization. These techniques allow students to study computer hardware in different perspectives, to visualize computer hardware concepts in more tangible ways, and to improve their learning experience. In addition, computer aided design projects stimulate students to think creatively, to integrate course contents, and to enhance their problem solving skills. Combining different visualization techniques for instruction inside classroom, and also using computer aided design project assignments for students outside classroom, instructors are able to teach computer hardware course more effectively and efficiently, and also engage computer engineering students in active learning.

5 References

