
Programming at Different Levels: A Teaching Module for

Undergraduate Computer Architecture Course

Xuejun Liang, Loretta A. Moore, and Jacqueline Jackson

Department of Computer Science, Jackson State University, Jackson, MS, USA

Abstract - Computers can be programmed by using the high-

level programming languages, such as C, C++, Java, Python,

etc., and the low-level assembly programming languages, such

as MIPS, IA-32, Accumulator, etc.. In this teaching module,

we will use some simple computing examples to illustrate how

to solve these same problems by using different computer

programming languages. This work will expose students with

different computer architectures and programming languages.

It will show the similarities and differences among these

architectures and programming languages. So, it will help

students to get a better understanding of fundamentals of

computer architectures and programming languages, and to

enhance their problem solving skills with using computers.

Keywords: Computer Architecture, Assembly Language,

High-Level Programming Language, Problem Solving

1 Introduction

 Computing with using computers can be carried out at

different levels. At the application level, computer users can

use any computer software for their application. For example,

users can use the Microsoft Office Excel to organize and

compute their data. At the high-level programming language

level, computer programmers can use high-level programming

languages, such as C, C++, Java, Python, etc., to write a

computer program to solve their problems. At the low-level

programming language level, programmers can use different

machine assembly programming languages, such as MIPS, IA-

32, Accumulator, etc., to write a computer program for the

corresponding computer. It is quite difficult for a new

computer science student to understand the similarities and

differences among high-level programming languages and

among low-level programming languages, and relationship

between high-level and low-level programming languages.

But, the above knowledge is important for students to have a

deeper understanding of computer systems, to write correct

and efficient computer programs, and to debug computer

codes.

In this teaching module, we will use some simple examples to

illustrate how to solve these computational problems using

different means with computers. This work will help students

to have a better understanding of fundamentals of computer

architectures and programming languages. More importantly,

this work will show how to design and implement a computer

algorithm for a particular computer architecture or using a

particular programming language. Therefore, it is highly

expected that students will enhance their problem solving

ability using computers significantly after they complete this

teaching module.

In this teaching module, three simple computing problems are

studied: (1) evaluate arithmetic expressions, (2) sort an array

of integers, and (3) get an array of integer from the keyboard,

sort the array, and display the sorted array on the screen.

Three high-level programming languages are utilized: (1)

Python, (2) Java, and (3) C++ (and C). Four computer

architectures (assembly languages) are considered: (1) MIPS,

(2) IA-32, (3) Accumulator-based machine, and (4) Stack-

based machine. Eclipse is used for both C++ and Java

programming. Real assembly languages are used for MIPS

and IA-32 architectures, while the accumulator-based machine

and stacked-based machine are simulated using Python, Java,

and C++ for evaluating arithmetic expressions.

In the rest of the paper, the brief instructions and references

for software download and installation are given first in

Section 2. So, students can setup their computer for compiling

and running the given codes and their own codes for the

study. Then, the three computing problems and the solutions

are discussed in Sections 3, 4, and 5, respectively. Finally, the

conclusion and future work are given in Section 6.

2 Software Download and Installation

 The software packages listed below are needed for running

programs discussed in this paper. They all have been installed

and tested on the Windows 7 platform.

2.1. Python: Download Python 2.7 release for Windows from

http://www.python.org/download/releases/2.7/ [1] and select

Windows x86 MSI Installer (2.7). Then run the downloaded

program Python-2.7 for the installation.

2.2. SPIM Simulator: This simulator will be used for the

MIPS assembly language programming. Download it from

http://sourceforge.net/projects/spimsimulator/files/ [2] and

select PCSpim_9.1.9.zip. Unzip it and run the setup program

for the installation.

2.3. MinGW: (Minimal GNU for Windows): MinGW will

provide a native Windows port of the GNU Compiler

Collection (GCC), which will be used for linking IA-32 object

a = 32
b = 45
c = 23
d = (a+b) * (c-b) + (b-c) + a
print d

public class ComputeExpression {
 public static void main(String[] args) {
 int a = 32;
 int b = 45;
 int c = 23;
 int d = (a+b)*(c-b)+(b-c)+a;
 System.out.println("The answer is " + d);
 }
}

 .text # text segment
 .globl main
main:
 lw $t0, A # $t0 = a
 lw $t1, B # $t1 = b
 lw $t2, C # $t2 = c
 sub $t3, $t2, $t1 # $t3 = c-b
 sub $t4, $t0, $t3 # $t4 = a-(c-b) = (b-c)+a
 add $t5, $t0, $t1 # $t5 = a+b
 mul $t6, $t5, $t3 # $t6 = (a+b)*(c-b)
 add $t7, $t6, $t4 # $t7 = (a+b(c-b)+(b-c)+a
 sw $t7, D

 li $v0,10
 syscall # au revoir...

 .data # data segment
A: .word 32
B: .word 45
C: .word 23
D: .word 0

#include <iostream>
int main() {
 int a = 32;
 int b = 45;
 int c = 23;
 int d = (a+b)*(c-b)+(b-c)+a;
 std:: cout << "The answer is " << d << endl;
 return 0;
}

code with C library I/O functions. Download MinGW from

http://sourceforge.net/projects/mingw/files/ and click Installer

and then select mingw-get-setup.exe. Then run the setup

program for the installation.

2.4. NASM: (the Netwide Assembler): It is an assembler

targeting the Intel x86 series of processors. It can get object

codes from IA-32 assembly codes. Download NASM from

http://www.nasm.us/pub/nasm/releasebuilds/2.10.09/win32/

and select nasm-2.10.09-win32.zip. Unzip it into a directory

(for example, C:\NASM) where you want to install NASM.

Then add the directory (for example, C:\NASM\nasm-

2.10.09) where the nasm executable is stored into the Path

environment variable.

To add C:\NASM\nasm-2.10.09 into the Path environment

variable in Windows 7, from the Window's Start, select in turn

the following: Control Panel, System and Security, System,

Advanced system settings. Then, the System Properties

dialogue window shows up, click the Environment Variables

button. Under System variables list, find and select the

variable Path, and click the Edit... button. Then type

"C:\NASM\nasm-2.10.09;" at the end of the variable value.

When you are done, click OK.

To compile and run x86 assembly language program, you will

type cmd in Window's search programs and files textbox to

get a command line window first. Then compile and link your

program, say, exprX86.asm, by typing

>nasm -f win32 exprX86.asm

>gcc exprX86.obj -o exprX86

Finally, run the program by typing

>exprX86

2.5. Eclipse IDE for Java Developers: Download and unzip

the file eclipse-java-indigo-SR2-win32-x86_64.zip from

http://www.eclipse.org/downloads/download.php?file=/techno

logy/epp/downloads/release/indigo/SR2/eclipse-java-indigo-

SR2-win32-x86_64.zip. Then, create a shortcut of eclipse.exe

on your Desktop.

2.6. Eclipse IDE for C++ Developers: Download and unzip

eclipse-cpp-indigo-SR2-incubation-win32-x86_64.zip from

http://www.eclipse.org/downloads/download.php?file=/techno

logy/epp/downloads/release/indigo/SR2/eclipse-cpp-indigo-

SR2-incubation-win32-x86_64.zip. Then, create a shortcut of

eclipse.exe on your Desktop.

3 Evaluate Arithmetic Expressions

 Consider the following arithmetic expression:

d = (a+b) * (c-b) + (b-c) + a (1)

Assume initial values a=32, b=45, and c=23. Now, we will

evaluate this expression using the following programming

languages and architectures.

3.1. Python: Figure 1 lists the Python code to evaluate (1).

Figure 1: Python Code to Evaluate the Expression (1)

3.2. Java: Figure 2 lists the Java code to evaluate (1).

Figure 2: Java Code to Evaluate the Expression (1)

3.3. C++: Figure 3 lists the C++ code to evaluate (1).

Figure 3: C++ Code to Evaluate the Expression (1)

3.4. MIPS: Figure 4 lists the MIPS code to evaluate (1),

where a, b, c, and d are assumed to be stored in memory

locations A, B, C, and D, respectively. Note that the result

display is omitted. The SPIM provides system calls to display

data in registers or character strings stored in memory. From

the code, we can see that MIPS is a load/store architecture (or

register-to-register arithmetic) and there are three operands per

ALU instructions.

Figure 4: MIPS Code to Evaluate the Expression (1)

3.5. IA-32: Figure 5 lists IA-32 code to evaluate (1), where a,

b, c, and d are assumed to be stored in memory locations A, B,

 global _main
 extern _printf

 section .text ; Text section
_main:
 mov eax, [A] ; eax = a;
 mov ebx, [B] ; ebx = b;
 add eax, ebx ; eax = a+b;
 sub ebx, [C] ; ebx = b-c;
 imul ebx ; edx:eax = (a+b)*(b-c);
 add ebx, [A] ; ebx = (b-c)+a;
 sub ebx, eax ; ebx = (a+b)*(c-b)+(b-c)+a;
 mov [D], ebx ; [D] = (a+b)*(c-b)+(b-c)+a;

 ret

 section .data ; Data section
A: dd 32
B: dd 45
C: dd 23
D: dd 0

Accumulator code
ld(a) #acc = a
add(b) #acc = a+b
st(d) #d = a+b
ld(c) #acc = c
sub(b) #acc = c-b
mul(d) #acc = (a+b)*(c-b)
add(b) #acc = (a+b)*(c-b)+b
sub(c) #acc = (a+b)*(c-b)+(b-c)
add(a) #acc = (a+b)*(c-b) +(b-c)+a
st(d) #d = (a+b)*(c-b) + (b-c) + a

acc = 0

Def ld(A):
 global acc
 acc = A
def add(A):
 global acc
 acc = acc + A
def mul(A):
 global acc
 acc = acc * A
def sub(A):
 global acc
 acc = acc - A
def st(A):
 global acc
 A[0] = acc

a = 32
b = 45
c = 23
d = [0]

Accumulator code

print d

public class ExprAccumulator {
 static int acc;

 static void ld(int A){
 acc = A;
 }
 static void add(int A){
 acc = acc + A;
 }
 static void sub(int A){
 acc = acc - A;
 }
 static void mul(int A){
 acc = acc * A;
 }
 static void st(int [] A){
 A[0] = acc;
 }

 public static void main(String[] args) {
 int a = 32;
 int b = 45;
 int c = 23;
 int[] d = new int[1];

 //# Accumulator code

 System.out.println("The answer: " + d[0]);
 }
}

C, and D, respectively. Note that the result display is omitted.

The NASM allows to use C library function _printf to

display data. Programmers for IA-32 can simply call it in the

assembly code after pushing its actual parameters onto the

stack. From the code, we can see that IA-32 is not a load/store

architecture (or register-to-register arithmetic) and there are

two operands per ALU instructions. So, the output operand of

ALU instructions is the same with the first input operand, and

only the second input operand can be a memory location.

Figure 5: IA-32 Code to Evaluate the Expression (1)

3.6. Accumulator: Assume that accumulator-based machine

has the following five instructions (functions), where acc is

the accumulator, as shown in Table 1. Then, Figure 6 lists the

accumulator code to evaluate (1). Note that the accumulator

machine has only one operand and the rest of operands is acc.

Table 1: Instructions of Accumulator Machine

Figure 6: Accumulator Code to Evaluate the Expression (1)

In order to run the code shown in Figure 6, we can define and

use the instructions (or functions) in Table 1 using high-level

programming languages and then run the code in simulation.

3.6.1. Python Simulation: Figure 7 lists the Python code to

simulate the accumulator machine and to evaluate the

expression (1).

Figure 7: Python Code to Simulate the Accumulator Machine

From the code in Figure 7, we can see that acc is implemented

as a global variable and the array type parameter is used for

passing the result back from the function st(A)because the

Python function uses the call-by-value only.

3.6.2. Java Simulation: Figure 8 lists Java code to simulate

the accumulator machine and to evaluate the expression (1).

Figure 8: Java Code to Simulate the Accumulator Machine

From the code in Figure 8, we can see that acc and all the

functions are static. The array type parameter is used for

passing the result back from the function st(int[]A)because

the Java function uses the call-by-value only.

Instruction Meaning
ld(A) acc = memory[A]
add(A) acc = acc + memory[A]
mul(A) acc = acc * memory[A]
sub(A) acc = acc - memory[A]
st(A) memory[A] = acc

#include <iostream>
using namespace std;

int acc;

void ld(int A){
 acc = A;
}
void add(int A){
 acc = acc + A;
}
void mul(int A){
 acc = acc * A;
}
void sub(int A){
 acc = acc - A;
}
void st(int &A){
 A = acc;
}

int main() {
 int a = 32;
 int b = 45;
 int c = 23;
 int d = 0;

 //# Accumulator code

 std::cout << "The answer: " << d << endl;
 return 0;
}

#Stack-based code
push(a)
push(b)
add() # a+b
push(c)
push(b)
sub() # c-b
mul() # (a+b)*(c-b)
push(b)
push(c)
sub() # b-c
add() # (a+b)*(c-b)+(b-c)
push(a)
add() # (a+b)*(c-b)+(b-c)+a
pop(d)

3.6.3. C++ Simulation: Figure 9 lists C++ code to simulate

the accumulator machine and to evaluate the expression (1).

Figure 9: C++ Code to Simulate the Accumulator Machine

From the code in Figure 9, we can see that acc is implemented

as a global variable. The C++ function st(int &A)now uses

the call-by-reference for passing the result.

3.7. Stack-based: Assume that the stack-based machine has

the following five instructions (functions) as shown in Table 2.

Then, Figure 10 lists the stack-based code to evaluate (1).

Table 2: Instructions of Stack-based Machine

Figure 10: Stack-Based Code to Evaluate the Expression (1)

Note that all operands of ALU instructions are located in the

operand stack. Therefore, ALU instruction has zero operand in

the stack-based machine. The code shown in Figure 10 can be

obtained from the postfix notation of Expression (1), which is

 d = a b + c b - * b c - + a + (2)

In order to run the code shown in Figure 10, we can define and

use the instructions (or functions) in Table 2 using high-level

programming languages and then run the code in simulation.

We can use an array to simulate the operand stack as shown in

Table 2. At the mean time, we can use the stack data structure

in high-level language or library to simulate the operand stack.

These codes are omitted here for the space.

4 Sorting Array

 Consider sorting the integer array: 68, 86, 65, 75, 67, 76,

62, 79, 98, 67 in an ascending order.

4.1 Using Built-in Sorting Function: Figures 11, 12 and 13

list the Python code, Java code, and C++ code that use their

built-in array sorting function to sort the array, respectively. It

can be noticed that the codes are all quite simple. The Python

code are only three lines! Note that printing an integer array

needs to have a loop structure in C++, but the loop is not

needed in Python and Java.

Figure 11: Python Code to Sort an Array

Figure 12: Java Code to Sort an Array

Figure 13: C++ Code to Sort an Array

Instruction Meaning
push(A) tos++; S[tos] = memory[A]
pop(A) memory[A] = S[tos]; tos--
add S[tos-1] = S[tos-1]+S[tos]; tos--
sub S[tos-1] = S[tos-1]-S[tos]; tos--
mul S[tos-1] = S[tos-1]*S[tos]; tos--

a = [68,86,65,75,67,76,62,79,98,67]
a.sort()
print a

import java.util.Arrays;

public class Sorting {
 public static void main(String[] args) {
 int[]a ={68,86,65,75,67,76,62,79,98,67};
 Arrays.sort(a);

 //print results
 System.out.println(Arrays.toString(a));
 }
}

#include <iostream>
#include <algorithm>
using namespace std;

int main() {
 const int len = 10;
 int a[len]={68,86,65,75,67,76,62,79,98,67};
 sort(a, a+len);

 //print results
 for (int i=0; i< len; i++)
 cout << a[i] << " ";
 cout << endl;

 return 0;
}

4.2 Using the Bubble Sort Algorithm: Consider putting the

elements in a vertical array. The bubble sort algorithm will

scan the array elements from bottom to up repeatedly until the

array is sorted. In each scan, every adjacent pair of elements

are compared. They are swapped if they are not in right order.

So, after the first scan, the first element in the array is already

in its right place. Similarly, the second scan will make the

second element in the array to be in its right place, and so on.

4.2.1. Python, Java, and C++: Figure 14 lists Python code

that uses the bubble sort algorithm to sort the array. As you

can guess, the bubble sort implementations in Java and C++

will be identical, and they are different from Python only in

syntax. Java and C++ use { } to include a block of statements,

while Python use : and the indentation to indicate a block of

statements. Variables should have an explicit data type in Java

and C++, but not in Python. Therefore, Java and C++ codes

that use the bubble sort algorithm are omitted here.

Figure 14: Python Code: Bubble Sort

4.2.2. MIPS and IA-32: After the bubble sort algorithm has

been implemented using a high-level programming language,

a better way to implement it in an assembly language again is

to consider how to translate branch and loop statements from

high-level languages to low-level languages. In Table 3, the

second column lists corresponding constructs in assembly

languages for branches and loops in high-level language.

Table 3: Branch and Loop in Assembly Language
High Level Language Assembly Language
if(x<y)
 A;
C;

 if(x>=y) goto c
 A
c: C

if(x<y)
 A;
else
 B;
C;

 if(x>=y) goto b
 A
 goto c
b: B
c: C

While(x<y)
 A;
C;

a: if(x >= y)goto c
 A
 goto a
c: C

Figures 15 and 16 list MIPS code and IA-32 code that both

use bubble sort algorithm to sort the array, respectively. One

key point in assembly language programming is how to access

array elements, i.e. how to compute the memory addresses of

array elements. Simply speaking, the address of an array

element can be computed by adding the array base address

and the array element offset, which is the product of the array

element index and the element size. As the element size in the

code is four, the element offset should be multiple of four.

Figure 15: MIPS Code: Bubble Sort

Figure 16: IA-32 Code: Bubble Sort

a = [68,86,65,75,67,76,62,79,98,67]
len = len(a)

current = 0;
while (current < len - 1):
 index = len-1
 while (index > current):
 if (a[index] < a[index-1]):
 tmp = a[index]
 a[index] = a[index-1]
 a[index-1] = tmp
 index = index - 1
 current = current + 1

print a

 .text
 .globl main
main:
 move $t0, $0 # $t0 = current
 lw $t1, count # $t1 = 10
 sll $t1, $t1, 2 # $t1 = 40
 addi $t1, $t1, -4 # $t1 = 36
loop1:
 beq $t0, $t1, done
 move $t2, $t1 # $t2 = index
loop2:
 beq $t2, $t0, next
 addi $t3, $t2, -4
 lw $t4, A($t2)
 lw $t5, A($t3)
 bge $t4, $t5, continue
 sw $t5, A($t2)
 sw $t4, A($t3)
continue:
 addi $t2, $t2, -4
 b loop2
next:
 addi $t0, $t0, 4
 b loop1
done:
 li $v0,10
 syscall # au revoir...

 .data
A: .word 68,86,65,75,67,76,62,79,98,67
count: .word 10

 global _main
 section .text
_main:
 sub edi, edi ; edi = current
 mov ecx, [count] ; ecx = 10
 shl ecx, 2 ; ecx = 40
 sub ecx, 4 ; ecx = 36
loop1:
 cmp edi, ecx
 je done
 mov eax, ecx ; eax = index
loop2:
 cmp eax, edi
 je next
 mov ebx, [eax+A]
 mov edx, [eax+A-4]
 cmp ebx, edx
 jge continue
 mov [eax+A], edx
 mov [eax+A-4], ebx

continue:
 sub eax, 4
 jmp loop2
next:
 add edi, 4
 jmp loop1
done:
 ret

 section .data
A: dd 68,86,65,75,67,76,62,79,98,67
count: dd 10

From Figures 15 and 16, it can be seen that both codes have

the same program structure with the Python code. Registers

$t0, $t1, and $t2 in MIPS code and registers edi, ecx, and

eax in IA-32 code have the values of current*4, (len-

1)*4, and index*4, respectively, where current, len-1,

and index are used in the Python code.

5 Problem Decomposition

 In this section, we will consider the problem: get an array of

integers from the keyboard, sort the array, and display the

sorted array on the screen. This task is composed by three

subtasks: (1) input an array, (2) sort an array, and (3) print an

array. We want to use a subroutine for array sorting, while the

input and the output will remain in the main routine.

5.1 Python, Java, C++, and C: Utilizing a subroutine in high-

level language is easy as we see in subsections 3.6.1, 3.6.2,

and 3.6.3. Printing an integer array in high-level language is

also simple. We will only show how to accept an integer array

from the keyboard. These are shown in Figures 17-20.

Figure 17: Python Code: Accept Input Array

Figure 18: Java Code: Accept Input Array

Figure 19: C++ Code: Accept Input Array

Figure 20: C Code: Accept Input Array

Note that Figure 20 shows the C code that uses printf and

scanf functions to do the I/O. We will need this knowledge

to do the I/O for IA-32 assembly programs with using NASM.

5.2 MIPS and IA-32: Firstly, how to accept input array from

the keyboard and print it on the screen is shown in Figure 21

and 22 for MIPS and IA-32, respectively. Both codes get the

array length first and then get array elements using a loop.

Both codes also print the array using a loop. The array length

is stored at count and the array is stored starting from A. In

MIPS code in Figure 21, the system calls are used for both

read an integer from keyboard and print an integer on screen.

In IA-32 code in Figure 22, _scanf is called for reading and

_printf is called for printing. Note that before calling them,

we need to push the arguments onto the stack.

Figure 21: MIPS Code: Accept Input Array and Print It

Secondly, as shown in Figure 23 and Figure 24, the subroutine

bubbleSort is designed to have two input arguments. The

first one is the array starting address and is passed to the

subroutine via $a0 and via edi for MIPS and IA-32,

respectively. The second one is the array length and is passed

via $a1 and via ecs for MIPS and IA-32, respectively. The

sorted array will remain in the same memory locations.

a = []
length= int(raw_input("Enter the array length: "))
for i in range(0, length):
 if(i = 0):
 a.append(int(raw_input(Enter your integer array)))
 else
 a.append(int(raw_input()))

public class SortBubble {
 public static void main(String[] args) {
 Scanner in = new Scanner(System.in);
 System.out.print("Enter the array length: ");
 int length = in.nextInt();
 int [] a = new int[length];
 System.out.print("Enter your integer array: ");
 for(int i = 0; i < length; i++)
 a[i] = in.nextInt();
 }
}

int main() {
 int length;
 cout << "Enter the array length: " << endl;
 cin >> length;
 int a[length];
 cout << "Enter your integer array: " << endl;
 for(int i = 0; i < length; i++)
 cin >> a[i];
 return 0;
}

int main() {
 int length;
 printf("Enter the array length: ");
 scanf("%d", length);
 int a[length];
 printf("Enter your integer array:");
 for(int i = 0; i < length; i++)
 scanf(%d", a[i]);
 return 0;
}

 .text
 .globl main
main:
 #Read count
 li $v0, 5
 syscall # read an integer
 sw $v0, count

 # Read integer array
 move $t0, $0
 lw $t1, count
 sll $t1, $t1, 2
loop1:
 beq $t0, $t1, done1
 li $v0,5
 syscall # read an integer
 sw $v0, A($t0)
 addi $t0, $t0, 4
 b loop1
done1:

 # print the integer array
 move $t0, $0
 lw $t1, count
 sll $t1, $t1, 2
loop2:
 beq $t0, $t1, done2
 lw $a0, A($t0)
 li $v0,1
 syscall # print an integer
 la $a0, sp
 li $v0,4
 syscall # print the space
 addi $t0, $t0, 4
 b loop2
done2:

 li $v0,10
 syscall # au revoir...

 .data
A: .word 0:20
count: .word 0
sp: .asciiz " "

Figure 22: IA-32 Code: Accept Input Array and Print It

Figure 23: MIPS Code with Subroutine Call

Figure 24: IA-32 Code with Subroutine Call

Note that Figure 23 and 24 show the whole program skeletons.

the subroutine bubbleSort codes are omitted here in Figure

23 and 24 because they have almost identical codes with those

shown in Figure 15 and 16. The codes of reading an input

integer array and printing the output array can be found from

Figure 21 and 22.

6 Conclusion and Future Work

 The teaching module was taught last semester and students

were given a related assignment as bonus. Most students are

very interested in this material and like the assignment. Some

future work can be as follows.

• Illustrate the stack-based machine by using the Java byte

code (or Java Virtual Machine) directly.

• Illustrate implementations of basic data type such as two-

dimensional array and class at assembly language level.

• Provide some applications that can be more effectively and

simply solved by using assembly languages than high-level

programming languages.

• Multi-core processor programming and architecture.

• GPU (graphics processing unit) programming model and

architecture.

7 References

[1] Python 2.7 Release, Available at

http://www.python.org/download/releases/2.7/

[2] Sourceforge, Spim MIPS simulator, Available at

http://sourceforge.net/projects/spimsimulator/files/

[3] Sourceforge, MinGW-Minimal GNU for Windows,

Available at http://sourceforge.net/projects/mingw/files/

 global _main
 extern _printf
 extern _scanf

 section .text
_main:
 ;read count
 push count
 push rfmat
 call _scanf ;read integer
 add esp, 8

 ;read integer array
 mov ecx, [count];
 mov edi, A
read:
 push ecx
 push edi
 push rfmat
 call _scanf ;read integer
 add esp, 8
 add edi, 4
 pop ecx
 loop read

 ;print integer array
 mov edi, A
 mov ecx, [count]
print:
 push ecx
 mov ebx, [edi]
 push ebx
 push wfmat
 call _printf ;print integer
 add esp, 8
 add edi, 4
 pop ecx
 loop print
 ret

 .section .bss
A: resd 20
count: resd 1

 .section .data
rfmat: db '%d', 0
wfmat: db '%6d', 0
end: db 10, 0

 .text
 .globl main
main:
 # Read count
 # Read integer array and store at A

 la $a0, A
 lw $a1, count

 jal bubbleSort

 # print the result

 li $v0,10
 syscall # au revoir...

bubbleSort:

 jr $ra

 global _main
 extern _printf
 extern _scanf

 section .text
_main:
 ;Read count
 ;Read integer array and store at A

 mov edi, A
 mov ecx, [count]

 call bubbleSort

 ;Print the sorted integer array:
 ret

bubbleSort:

 ret

