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Abstract—For continuous multi-objective optimization prob-
lems there exists an infinite number of solutions on the Baret
optimal front. A multi-objective evolutionary algorithrtempts
to find a representative set of the Pareto-optimal solutidns
the case of multi-objective multi-modal problems, ther&stex
multiple decision vectors which map to identical objective
vectors on Pareto front. Many multi-objective evolutiopar
algorithms fail to find and preserve all of the multi-modal
solutions in the non-dominated solutions set. Finding mafre Fig. 1: A many to one objective function. The two se&ts
the available multi-modal solutions would give the decisio andC> map to the same Pareto optimal solutions in the Pareto
maker a greater selection when choosing between solutioneptimal setP.
In this paper, we present an extended version of the Pareto
estimation method, to increase the density of the muleaibje
multi-modal solutions. The method uses clustering amslisi  identify and separate different clusters in the decisianaides
identify and separate different clusters in the decisionialdes  space which correspond to the multi-modal Pareto optimal
space which correspond to the multi-modal Pareto optimakolutions. Then Pareto estimation procedure is employed fo
solutions. Then Pareto estimation procedure is employed fahese individual clusters, therefore increasing the dgnsi
these individual clusters, there by increasing the density available multi-modal solutions in multi-objective prebis.
available multi-modal solutions. The proposed method has The remainder of this paper is organized as follows. In
been tested on experimental test functions and is shown to I8zction 2 a general definition of a multi-objective optintiaa
successful. problem and key concepts and definitions are provided. @ecti

3 presents Pareto estimation method and in Section 4 the
Keywords: Multi-objective optimization, multi-objective multi-  axtended Pareto estimation method with clustering is dsestr

h

modal problems, cluster analysis, genetic algorithms. for multi-objective multi-modal problems. In Section 5 the
1. Introducti method is tested against a multi-objective multi-modat tes
- Introduction problem with three cases and these tests are reported ilniBect

Many multi-objective evolutionary algorithms (MOEAs) fai 6. This paper is summarized and concluded in Section 7.
to find and preserve all of the multi-modal solutions in the
non-dominated solutions set [1]. Due to the incorporatibn 02. Problemswith M ultiple Global Optima
diversity operators in MOEA, they will assign low fithesswes
to solutions that are densely clustered in objective spabih
will eventually lead to their elimination from the populati. min F(x) = (f1(x), f2(x), ..., fr(x)),
Hence they can identify only one set of decision vectors out *
of the multi-modal solutions and converge to any one of the
global optima out of multiple global optima present in thewherek describes the multiplicity of scalar objective functions
multi-objective multi-modal problems. Finding the muftiedal  f(-) and S is the feasible region The vector of variablesx,
solutions would allow the decision maker a greater choicerwh in this context is often referred to as decision vector while
choosing between solutions. For example, in chemical pocez = F(x) is referred to as objective vector. An implicit
optimization the decision maker would want to know aboutassumption is that the individual scalar objective funtsion
different temperature settings for which the process cdimede (1) are mutuallycompeting The objective function described in
the same results [2]. (1) can in some cases be a many-to-one mapping. Namely, there

In this work, we present an extended version of the Pareto esxistx,y € S andx # y that map to the same objective vector,
timation method [3], which can be used to increase the numbdf(x) = F(y). This can especially impact the optimization
of multi-modal solutions. The method uses clustering asialp  algorithm when the objective function is many-to-one in the

A multi-objective problem (MOP) is defined as:

1)

subject tox € S,



domain of Pareto optimal solutions, séig. 1. In this case, the 3. Pareto Estimation Method
same Pareto optimal objective vector can be obtained foemor3 1 Motivation

than one decision vector. ) ) o
. . Consider the following problem. At the end of an optimiza-
If the above assumptions hold then only a partial order;

. be defined bi V. N I h ~"tion run on a multi-objective optimization problem we have
INg can be defined unambiguously. INamely, When comparing et of sojutions that approximate the Pareto optimal front
two decision vectorx,x € S, it can so happen that their

: S : , Subsequently, these solutions are presented to a decisikerm
corresponding objective vectors are incomparable. Intjac (DM) who can identify a few candidate solutions that are of
this situation is resolved by a decision maker who will selec

luti Il oth thus induci ; ¢ | tinterest, however, he would prefer a solution in the vigiraf
one solution over afl others, thus Inducing a form of COMPIEL y,o 4forementioned solutions. In this case the analyst does
ordering. However this ordering is mostly subjective, euen

" . have many options and would either restart the optimization
the case that utility functions [4] are used to ease the wérk o y op P

he DM. In the ab fa DM | on is th h|n hope that the preferred solution of the decision maker is
the T n the absence of a oM a usua assumption is t a_tt Gbtained. An alternative is to use an interactive method suc
relative importance of the objectiveg;, is unknown hence it

. ble 1o obtai I bl ut as, progressive preference articulation [9]. These alteses
IS reasonable lo obtain several non-comparabie Soiu ihines. present a number of difficulties of which the most obvious one
problem of inducing partial ordering in Euclidean spaces wa

initially studied by Edgeworth [5], and later further expiza is that the computational load is increasing dispropodiely

. . . to the expected gain as there is absolutely no guaranteéhthat
by Pareto [6]. T.h.e r_elatllons introduced by Pareto are defirsed preferred solutions will be obtained. This consideratioaym
follows for a minimization problem:

lead the decision maker to abandon all the above scenaribs an
Definition 1: A decision vectorx* € S is said toweakly  simply select one solution from the already existing Paseto

dominate a decision vectorx iff fi(x*) < fi(x), ¥i €  approximation.

{1,2,...,k} and fi(x*) < fi(x), for atleastone & The Pareto estimation method (PE) initially introduceddh [

{1,2,...,k} thenx* < x. resolves, to some extent, this issue by allowing the detisio
Definition 2: A decision vectox* € S is said todominate = maker to explore more solutions in the vicinity of already

a decision vectoxk iff f;(x*) < fi(x), Vi € {1,2,...,k} then obtained ones without resorting to further optimizatiope&if-

x* < X. ically, Pareto estimation gives positive answer to the tjoes
Definition 3: A decision vectorx* ¢ S is said to be “Given a set of Pareto optimal solutions, obtained by any

Pareto optimal if there is no other decision vector € S optimization algorithm, can specific solutions on the Raret
such thatfi(x) < fi(x*), ¥i € {1,2,....k} and fi(x) < front be obtained that are not part of the initially obtaifadeto

fi(x*), for at least one € {1,2,...,k}. set?”.

Definition 4: Let F : S — Z, with S € R” andZ € R*. 3.2 Overview
If S is the feasible region then the sétis the feasible region | [3] it was shown that using the Pareto estimation method
in objective space. Given a sé C Z, the non-dominated  the number of Pareto optimal solutions can be increased in
set is defined asP = {z : 7z < 2,Vz € A}. If A is the specific regions of interest. Pareto estimation was applied-

entire feasible region in the objective spage,then the seP  ypiective portfolio optimization problem successfullygating
is called thePareto optimal set (PS) orPareto Front (PF). o regions where the optimization algorithm used could not

Any elementz € Z is referred to ambjective vector. obtain solutions acros&) optimization runs. However, one of
Definition 5: The ideal objective vector, z*, is the vector the assumptions in [3] was that the objective function is-one

with elements(inf(f),...,inf(fx)) [7, pp. 16]. to-one, or at least that this condition obtains for the magpi
Definition 6: The nadir objective vector, z"¢, is the vector between the Pareto set in decision and objective space. If

with elementgsup(f1), . .., sup(fx)), subject tof; be elements this condition doesn’t hold the artificial neural networkeds

of objective vectors in the Pareto optimal set [7, pp. 16]. would face difficulties as for the same objective vector itido

have to produce two or more output vectors simultaneously,
seeFig. 3. In the rest of this section we briefly describe the
Pareto estimation method and then explain the motivation fo
o the extension introduced in this work. For a more complete
Definition 8: The extended convex hull (EHi) of the set  gescription of the original version of the Pareto estinmatio
C, is the union ofCH; and the points in the affine space of jethod the reader is referred to 13].
the setC' produced by the projection of a Pareto optimal front, A major motivation for the introduction of PE has been that
with ideal vector0 and nadir vectod, onto the hyper-surface pareto optimal solutions can be obtained in specific regions
of C. of the Pareto front without the need to resort to additional
Definition 9: Two decision vectors,y € S are said to be optimization runs. Although there is no guarantee that such
multi-modal solutionsif they satisfyx # y, andF(x) = F(y)  solutions will be produced the success rate of PE on a set
foralli=1,... k. of difficult test problems illustrated that the relative tad

Definition 7: The convex hull [8, pp.24] of the setC =
{e1,...,er}, denoted azonv C, wheree; is ak x 1 vector
of zeros with1 on thei*" position, is referred to a€Hj.
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Fig. 2: lllustration of thell~! mapping for a hypothetical Pareto set

Pareto Estimation Method

3.3 Pareto Estimation - General Procedure

Pareto estimation is comprised of three main parts:

« A transformation of the Pareto optimal solutions in objec-
tive spacelI~! : P — P.

« The identification of the relationshig;s : » — D, where
D are decision vectors corresponding to Pareto optimal
objective vectorsp.

« The generation of a sef, and its use with thé’; mapping
to generate a set of estimated decision vectDgs,

The first part is essentially a projection of the g&tonto the
CHj. This is essential as it simplifies the task of generating
the set€ to a large degree, sdgg. 2. Prior to application of
the projection the seP is normalized using,

: fi—z

fi:mv (3)

[ [

wherez* and z"? can be estimated from the Pareto optimal
. . . . setP. Using the normalization in (3) the objectives 1 are
Fig. 3: The original version of the Pareto estimation methoqestricted in the rang, 1] as shown inFig. 2. Consequently

(top). The _extendeel _Pareto_ estimation methed firet_ clusker's 1o normalized objective vectors are projected oGtH; as
Pareto optimal decision variable vectors and identifies af®N  ¢,/1ows

every one (bottom).

1
EJ|7>|,k- 4)

The matrix.Jyp| , is a|P|x k unit matrix andPg is a projection
applying PE before another method is justified [3]. PE dependmatrix obtained as:

P =PPE +

on _the ability.to identify_a relationship (mapp_in.g) from Par _ Py = H(HTH) 'HT,

optimal solutions in objective space to decision spaces Thi 1 ) )
relationship can then be manipulated to produce solutians i H = (81 —Z1---ep_q — _1) ,

specific parts of the Pareto front. We refer to this mapping as

Fp, whose domain of definition is the set of Pareto optimalyhere e; is a vector of zeros with itgt” element set tol.
objective vectorsP, and its range their corresponding decisionnext the artificial neural network (ANN) which is employed to
variable vectorsD, identify the mappingFp, is created (see [3]), using and D
Fp:P — D. (2) @s the training inputs and output_s respectively.
When the ANN has been trained, it then can be used for
creating more Pareto optimal solutions in specific regions o

We elected originally to use a radial basis neural network as ; - 8 ’
has been shown that it has competitive performance compardf PF given a set;, is supplied as input’ can be generated

to the alternatives, see [10]. The theoretical argument thd" One of two ways:

supports PE is was presented initially in [11], [12] and vatst « In a specific region, presumably that is of interest to the
used by Zhang et al. [13] to create RM-MEDA, a regularity-  decision maker.

based estimation of distribution algorithm. The argument i « On the entireCH;, which if PE is successful will cover
that for continuous multi-objective problems the Parettroal the entire Pareto front.

set is a piecewise continuous manifold in decision space Thin this paper, we employ the second method as it illustrates
effectively enables the identification of the mapping in.(2)  the ability of PE and its extended version presented here, to



successfully identify Pareto optimal solutions acrossehtire Step 3The obtained clusters of decision vectafs, and

front. It should be noted however that we envisage that the corresponding objective vectof®:, will have one-
usage of PE would be to target specific parts of the PF as seen to-one mapping between decision variable space and
in [3]. objective space.

. . . Step 4 For each individual cluster normalize using (3).
4. CIUSte”ng and Pareto Estimation for Step 5 Project the normalize® onto the the:—1 hyperplane

Multi-Objective Multi-M odal Solutions defined by the set of vectofe;, ..., e;—1} using (5)

In the case of multi-objective multi-modal problems, thexe S G?dngn(tidlz), ttr?eprr'r?:ucién). f. P 5 C using® and
ists multiple decision vectors which result in identicalesttive € y PP gFPcm ’ o 9
, . Cn, as inputs and outputs, respectively, and use these
vectors on Pareto front as shown kiig. 1. This corresponds to train the ANN
to the many-to-one mapping of the multiple decision vectors Step 7 Create the sef IIn this work this is a set of evenl
in D to the objective vectors inP. The decision vectors & ' y

. - . spaced convex vectors.
co_rr_espondlng to each multi moda_l optlm_a_l fronts_(Pareﬂmﬂ) Step 8 Use the sef as inputs to the ANN created in Step
originate from different clusters,,, in decision variable space

D. The ANN relationship will fail to produce the one-to-many 5, 0 obtain estimates of deglsmn vec_td,’tgs_ .

. = : Step 9 All the setsCe can be used with the objective function
mapping ofF’; : P — D. It will generate any one but not all of F(.) to verify that the produced solutions are non-
the multi-modal solutions. In order to overcome this prahle dominated and acceptable
the different clusters’,, of multi-modal solutions present in ’
the non-dominated set can be identified and separated usingea Experimental Setting
clustering algorithm. The obtained clusters of decisiootoes
C., and corresponding objective vectors # will have one-
to-one mapping between decision variable space and olgecti

We employed the following multi-objective multi-modal tes
functions as seen in [1].

space for the Pareto front. Once the different clusters ciitmn F(x) = (fi(x), f2(x))
vectorsC,, are separated, the ANN can be trained for the n n
individual cluster of solutiong,, and P to identify number = <Z sin(mﬁ,Zcos(wxﬁ) (6)
of one-to-one mappingé};c :P = Con. i=1 o=t
Most clustering algorithms need the number of output clus- z; €[0,6],i=1,2,...,n.

ters to be pre-specified as an input to the algorithm. In generThe above objective functions are chosen since both otgecti
we do not know a priori the number of clusters available in theare in conflict with each other and will have a trade-off in the
data set. Bezdek and Hathaway developed a visual assessmebfective space. For the minimization case, the above probl
of cluster tendency (VAT) method [14], to identify potemtia will have a known Pareto front which varies betweey "> | i
clusters in a data set. Here the pair-wise dissimilarititsvben  to 0, wherei is the number of decision variables chosen. The
then individuals of the data set are estimated and reordered,$thove problem is also a multi-objective multi-modal proble
that all the neighbouring individuals are consecutivelgesed. The two objective functions are periodic functions with aipe
The reorderedn x n matrix of pair-wise dissimilarities is of 2. They will have efficient frontiers which correspond to
displayed as an intensity image with x n pixels. Clusters the Pareto-optimal solutions for all the decision variatdiies
are indicated by dark blocks of pixels along the diagonal of/arying in the ranges; € [2r + 1,2r + 3/2], wherer is an
the image. However, the VAT method is too computationallyinteger.
costly for larger data sets. Wang et al., [15], proposed an Deb and Tiwari [1] developed a generic evolutionary algo-
improved VAT (iVAT) and an automated VAT (aVAT) methods rithm: Omni-optimizer, which incorporates restrictedestion
to automatically determine the number of clusters and efust and crowding measure utilizing both objective and variable
separation based on the difference between diagonal blouks space information to find and preserve a well distributedtimul
off-diagonal blocks in the image of the reordered dissiritifa modal solutions. Here we use Omni-optimizer for solving the
matrix. In this paper, the VAT and aVAT [15] methods are multi-objective multi-modal test problem in all three case
used for identifying different clusters of decision vestG), in  Also we employ the ratio of the inverted generational distgn
D, which correspond to multi-modal solutions in the objegtiv Dg(-,-) and the ratio of the mean nearest neighbour distance
spaceP. The steps involved in clustering and Pareto estimatiorsz(-,-) as well as the C-Metric. Due to space limitations we
of multi-objective multi-modal solutions are summarisesl a cannot include a description of these metrics, the reader is
follows: referred to [3].
Step 1 Extract,P, the non-dominated individuals obtained at . .
the end run of an optimization algorithm, arid,the 6. Resultsand Discussion
associated decision vectors. In this paper, we are considering three test cases of the-mult
Step 2 Perform clustering analysis on the obtained decisiorobjective multi-modal optimization problem (6) with difent
variable vectorsD using a clustering algorithm. numbers of variables and population sizes in the optinomati
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6.1 CASE | found all 27 multi-modal Pareto fronts, however, it is not able

In the Case I, we have chosen two decision variables O ©btain good distribution of solutions in all the corresing
0,6],i = 1,2. for the optimization problem (6). Within the QeC|S|on vectors ra.nges..Thls can be easily observed frem th
range of these two variables the problem will have nine multiimage of clusters, in which some clusters have more than 70
modal optimal fronts. We have set the population size tadge  Solutions, where as some clusters got very less number of
and run the optimizer fob00 generations. For the optimizer, d€cision vectors aroundi or 3.
finding the global Pareto front is not so difficult in this pteim. We applied Pareto estimation to each cluster of solutions,
However, finding all the multi-modal global Pareto frontgiwi tried to estimat@00 solutions for each cluster. After combining
good distribution of solutions in corresponding decisi@ttor  the solutions estimated from all the clusters, non-doreuhat
ranges is very difficult. In this particular instance, the @m sorting is performed to get the non-dominated solutionsufd
optimizer [1] is able to find all nine multi-modal optimal fits 1 950 solutions found to be non-dominated out ®400 esti-
with 200 Pareto solutions with a good distribution of decisionmated solutions. The method is able to estimate aroLitd

vectors in all ranges of; € [2r + 1,2r + 3/2], wherei =  to 200 non-dominated solutions in some clusters, but failed to
1,2 andr = 0,1, 2. Fig. 4 shows the obtained Pareto optimal estimate more solutions in clusters where there are ingaritic
solutions in top three sub-plots. number of solution used for training the ANN. IRig. 5

Cluster analysis using iVAT and aVAT [15] methods is the bottom three sub plots show the estimated non-dominated
performed for the obtained Pareto optimal decision vectorssolutions, in objective space, decision variable spacerande
The reordered dissimilarity matrix df00 decision vectors is Of clusters. (Note: Here the order of clusters in top anddvott
displayed a00 x 200 image with gray scaling in right hand images is not same.)
side sub-plot. The dark blocks appearing on the diagondief t
image represent individual clusters; the size of each diatkb
represent number of individuals present in each clustearitbe
seen from this plot, that each cluster (dark block) has sitl&@
individual solutions. After separating these clusters @dision o )
vectors, the procedure for Pareto estimation is executed. F N Case lll, we have chosen the same objective functions
each cluster, the ANN is trained to find the one-to-one mappinWith three decision variables; < [0,6],: = 1,2, 3., but now
between objective space and decision vector space. Then tificrease the population size 1000 in optimization and run
ANN is used to estimat800 solutions in each cluster. the optimizer for500 generations. The obtainetl000 non-

The quality of mapping estimated by ANN is highly depen_dominat_ed_ solutions are shown H‘=|g 6 top three subplots.
dent on the supplied training decision vectors. If the fran The optimizer has found all7 multi-modal Pareto fronts and
data has a sufficient number of vectors, well distributeehtine 'S NOw able to obtain a good distribution of solutions in all
ANN will estimate a better mapping, otherwise, the mappingthe corresponding d_ecision vectors ranges. '_I'his can bé easi
estimated by ANN will be deceptive and may not generate gooebserved _from the image of cluster§, in which clusters have
solutions in the Pareto estimation process. After comiginin Solutions in the range di0 to 60 solutions per cluster.
all the solutions obtained from individual Pareto estimiasi, We applied Pareto estimation to each cluster of solutiods an
we perform non-dominated sorting to remove any dominatetfied to estimatd 50 solutions for each cluster. After combining
solutions from the set. At the end we have obtained arounthe solutions estimated from all the clusters, non-doreahat
2 300 non-dominated solutions out 8700 solutions estimated. sorting is performed to get the non-dominated solutionsufd
In Fig. 4 the bottom sub-plots show plots for objective vectors,3 000 solutions were found to be non-dominated out4@%0
decision vectors and gray scale image of the dissimilariyrin ~ estimated solutions. The method is able to estimate around
of estimated solutions. It can be seen from these sub-plot$00 to 150 non-dominated solutions in each cluster.Hig. 6
that Pareto estimation along with clustering is succelgsful the lower three sub-plots show the estimated non-dominated
able to find many solutions for the multi-objective multi-dad  solutions, in objective space, decision variable spacdraade

6.3 CASE Il

problem. of clusters. It can be seen that, a very good distribution of
non-dominated solutions is obtained from the Pareto etitima
6.2 CASE Il (Note: Here the order of clusters in top and bottom images is

In Case I, we have chosen the same objective functions witAOt same.)
three decision variables € [0, 6],7 = 1, 2, 3.. Within the range Tables 1 and 2 summarize the various test metric computed
of these three variables the problem will have 27 multi-niodafor the non-dominated solutions before and after the Pareto
optimal fronts each one correspondingtoc [2r+1,2r+3/2], estimation in all the three cases I, Il, and Ill. These mstric
wherei =1,2,3 andr = 0,1, 2. indicated that the proposed method is able to estimate well

We have set00 as the population size and run the optimizerdistributed non-dominated solutions close to the true tBare
for 500 generations. The obtaind®0 non-dominated solutions front, when compare to non-dominated solutions obtainechfr
are shown in the top three sub-pldig. 5. The optimizer has the Omni-optimizer.



Table 1: Dr(P,Ps) and Sr(P,Ps) values of the obtained
solutions by OMNI-optimizer,P, and the estimated seE¢,
by the extended Pareto estimation method.

IGD Ratio ESSm Ratio
Problem min mean std min mean std
Case | 5.2689 6.3300 0.5565 9.1278 11.3150 1.3969
Case Il 1.8721 2.3615 0.2722 5.0175 5.6117 0.3843
Case Il 1.8316 2.2347 0.1524 2.4162 2.9601 0.2344

solutions in the cluster analysis. In all cases, the exteideeto
estimation method has successfully found many non-domxhat
solutions corresponding to different multi-modal solagoThe
success of the proposed method highly depends on the number
of solutions available in an individual cluster for traigimnd
estimating the one-to-one mapping between objective spade
decision vector space. In case I, the method failed to img@ro
density of the solutions in the clusters with a small numker o
individuals. However, it has improved the density of sans

in the remaining clusters representing multi-modal sohsito

Table 2: C-Metric values of the solutions obtained by OMNI-the test problem. We leave for future work the evaluation of

optimizer, P, and the estimated seB, using the extended the proposed method on a real-world system architectuigries

Pareto estimation method.

C(Ps,P) C(P,Pe)
Problem min mean std min mean std
Case | 0.4900 0.5848 0.0433 0.0000 0.0100 0.0042
Case Il 0.4525 0.5200 0.0273 0.0000 0.0000 0.0000
Case lll 0.5900 0.6154 0.0216 0.0000 0.0000 0.0000

problems, which have a tendency to have multi-model saistio
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