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Abstract— For continuous multi-objective optimization prob-
lems there exists an infinite number of solutions on the Pareto-
optimal front. A multi-objective evolutionary algorithm attempts
to find a representative set of the Pareto-optimal solutions. In
the case of multi-objective multi-modal problems, there exist
multiple decision vectors which map to identical objective
vectors on Pareto front. Many multi-objective evolutionary
algorithms fail to find and preserve all of the multi-modal
solutions in the non-dominated solutions set. Finding moreof
the available multi-modal solutions would give the decision
maker a greater selection when choosing between solutions.
In this paper, we present an extended version of the Pareto
estimation method, to increase the density of the multi-objective
multi-modal solutions. The method uses clustering analysis to
identify and separate different clusters in the decision variables
space which correspond to the multi-modal Pareto optimal
solutions. Then Pareto estimation procedure is employed for
these individual clusters, there by increasing the densityof
available multi-modal solutions. The proposed method has
been tested on experimental test functions and is shown to be
successful.

Keywords: Multi-objective optimization, multi-objective multi-
modal problems, cluster analysis, genetic algorithms.

1. Introduction
Many multi-objective evolutionary algorithms (MOEAs) fail

to find and preserve all of the multi-modal solutions in the
non-dominated solutions set [1]. Due to the incorporation of
diversity operators in MOEA, they will assign low fitness values
to solutions that are densely clustered in objective space,which
will eventually lead to their elimination from the population.
Hence they can identify only one set of decision vectors out
of the multi-modal solutions and converge to any one of the
global optima out of multiple global optima present in the
multi-objective multi-modal problems. Finding the multi-modal
solutions would allow the decision maker a greater choice when
choosing between solutions. For example, in chemical process
optimization the decision maker would want to know about
different temperature settings for which the process can deliver
the same results [2].

In this work, we present an extended version of the Pareto es-
timation method [3], which can be used to increase the number
of multi-modal solutions. The method uses clustering analysis to

Fig. 1: A many to one objective function. The two setsC1

andC2 map to the same Pareto optimal solutions in the Pareto
optimal setP .

identify and separate different clusters in the decision variables
space which correspond to the multi-modal Pareto optimal
solutions. Then Pareto estimation procedure is employed for
these individual clusters, therefore increasing the density of
available multi-modal solutions in multi-objective problems.

The remainder of this paper is organized as follows. In
Section 2 a general definition of a multi-objective optimization
problem and key concepts and definitions are provided. Section
3 presents Pareto estimation method and in Section 4 the
extended Pareto estimation method with clustering is described
for multi-objective multi-modal problems. In Section 5 the
method is tested against a multi-objective multi-modal test
problem with three cases and these tests are reported in Section
6. This paper is summarized and concluded in Section 7.

2. Problems with Multiple Global Optima
A multi-objective problem (MOP) is defined as:

min
x

F(x) = (f1(x), f2(x), . . . , fk(x)) ,

subject tox ∈ S,
(1)

wherek describes the multiplicity of scalar objective functions
f(·) andS is the feasible region. The vector of variables,x,
in this context is often referred to as decision vector while
z = F(x) is referred to as objective vector. An implicit
assumption is that the individual scalar objective functions in
(1) are mutuallycompeting. The objective function described in
(1) can in some cases be a many-to-one mapping. Namely, there
existx,y ∈ S andx 6= y that map to the same objective vector,
F(x) = F(y). This can especially impact the optimization
algorithm when the objective function is many-to-one in the



domain of Pareto optimal solutions, seeFig. 1. In this case, the
same Pareto optimal objective vector can be obtained for more
than one decision vector.

If the above assumptions hold then only a partial order-
ing can be defined unambiguously. Namely, when comparing
two decision vectorsx, x̃ ∈ S, it can so happen that their
corresponding objective vectors are incomparable. In practice,
this situation is resolved by a decision maker who will select
one solution over all others, thus inducing a form of complete
ordering. However this ordering is mostly subjective, evenin
the case that utility functions [4] are used to ease the work of
the DM. In the absence of a DM a usual assumption is that the
relative importance of the objectives,fi, is unknown hence it
is reasonable to obtain several non-comparable solutions.The
problem of inducing partial ordering in Euclidean spaces was
initially studied by Edgeworth [5], and later further expanded
by Pareto [6]. The relations introduced by Pareto are definedas
follows for a minimization problem:

Definition 1: A decision vectorx⋆ ∈ S is said toweakly
dominate a decision vectorx iff fi(x

⋆) ≤ fi(x), ∀i ∈
{1, 2, . . . , k} and fi(x

⋆) < fi(x), for at least onei ∈
{1, 2, . . . , k} thenx⋆ � x.

Definition 2: A decision vectorx⋆ ∈ S is said todominate
a decision vectorx iff fi(x

⋆) < fi(x), ∀i ∈ {1, 2, . . . , k} then
x⋆ ≺ x.

Definition 3: A decision vectorx⋆ ∈ S is said to be
Pareto optimal if there is no other decision vectorx ∈ S
such thatfi(x) ≤ fi(x

⋆), ∀i ∈ {1, 2, . . . , k} and fi(x) <
fi(x

⋆), for at least onei ∈ {1, 2, . . . , k}.

Definition 4: Let F : S → Z, with S ∈ Rn andZ ∈ Rk.
If S is the feasible region then the setZ is the feasible region
in objective space. Given a setA ⊂ Z, the non-dominated
set is defined asP = {z : ∄z̃ � z, ∀z̃ ∈ A}. If A is the
entire feasible region in the objective space,Z, then the setP
is called thePareto optimal set (PS) or Pareto Front (PF).
Any elementz ∈ Z is referred to asobjective vector.

Definition 5: The ideal objective vector, z⋆, is the vector
with elements(inf(f1), . . . , inf(fk)) [7, pp. 16].

Definition 6: The nadir objective vector, znd, is the vector
with elements(sup(f1), . . . , sup(fk)), subject tofi be elements
of objective vectors in the Pareto optimal set [7, pp. 16].

Definition 7: The convex hull [8, pp. 24] of the setC =
{e1, . . . , ek}, denoted asconvC, whereei is a k × 1 vector
of zeros with1 on theith position, is referred to asCHI.

Definition 8: The extended convex hull (EHI) of the set
C, is the union ofCHI and the points in the affine space of
the setC produced by the projection of a Pareto optimal front,
with ideal vector0 and nadir vector1, onto the hyper-surface
of C.

Definition 9: Two decision vectorsx,y ∈ S are said to be
multi-modal solutions if they satisfyx 6= y, andF(x) = F(y)
for all i = 1, . . . , k.

3. Pareto Estimation Method
3.1 Motivation

Consider the following problem. At the end of an optimiza-
tion run on a multi-objective optimization problem we have
a set of solutions that approximate the Pareto optimal front.
Subsequently, these solutions are presented to a decision maker
(DM) who can identify a few candidate solutions that are of
interest, however, he would prefer a solution in the vicinity of
the aforementioned solutions. In this case the analyst doesnot
have many options and would either restart the optimization
in hope that the preferred solution of the decision maker is
obtained. An alternative is to use an interactive method such
as, progressive preference articulation [9]. These alternatives
present a number of difficulties of which the most obvious one
is that the computational load is increasing disproportionately
to the expected gain as there is absolutely no guarantee thatthe
preferred solutions will be obtained. This consideration may
lead the decision maker to abandon all the above scenarios and
simply select one solution from the already existing Paretoset
approximation.

The Pareto estimation method (PE) initially introduced in [3]
resolves, to some extent, this issue by allowing the decision
maker to explore more solutions in the vicinity of already
obtained ones without resorting to further optimization. Specif-
ically, Pareto estimation gives positive answer to the question:
“Given a set of Pareto optimal solutions, obtained by any
optimization algorithm, can specific solutions on the Pareto
front be obtained that are not part of the initially obtainedPareto
set?”.

3.2 Overview
In [3] it was shown that using the Pareto estimation method

the number of Pareto optimal solutions can be increased in
specific regions of interest. Pareto estimation was appliedto a3-
objective portfolio optimization problem successfully targeting
two regions where the optimization algorithm used could not
obtain solutions across20 optimization runs. However, one of
the assumptions in [3] was that the objective function is one-
to-one, or at least that this condition obtains for the mapping
between the Pareto set in decision and objective space. If
this condition doesn’t hold the artificial neural network used
would face difficulties as for the same objective vector it would
have to produce two or more output vectors simultaneously,
seeFig. 3. In the rest of this section we briefly describe the
Pareto estimation method and then explain the motivation for
the extension introduced in this work. For a more complete
description of the original version of the Pareto estimation
method the reader is referred to [3].

A major motivation for the introduction of PE has been that
Pareto optimal solutions can be obtained in specific regions
of the Pareto front without the need to resort to additional
optimization runs. Although there is no guarantee that such
solutions will be produced the success rate of PE on a set
of difficult test problems illustrated that the relative cost of



Fig. 2: Illustration of theΠ−1 mapping for a hypothetical Pareto setP .

Fig. 3: The original version of the Pareto estimation method
(top). The extended Pareto estimation method first clustersthe
Pareto optimal decision variable vectors and identifies a NNfor
every one (bottom).

applying PE before another method is justified [3]. PE depends
on the ability to identify a relationship (mapping) from Pareto
optimal solutions in objective space to decision space. This
relationship can then be manipulated to produce solutions in
specific parts of the Pareto front. We refer to this mapping as,
FP , whose domain of definition is the set of Pareto optimal
objective vectors,P , and its range their corresponding decision
variable vectorsD,

FP : P → D. (2)

We elected originally to use a radial basis neural network asit
has been shown that it has competitive performance compared
to the alternatives, see [10]. The theoretical argument that
supports PE is was presented initially in [11], [12] and was later
used by Zhang et al. [13] to create RM-MEDA, a regularity-
based estimation of distribution algorithm. The argument is
that for continuous multi-objective problems the Pareto optimal
set is a piecewise continuous manifold in decision space. This
effectively enables the identification of the mapping in (2).

3.3 Pareto Estimation - General Procedure
Pareto estimation is comprised of three main parts:

• A transformation of the Pareto optimal solutions in objec-
tive space,Π−1 : P → P̃ .

• The identification of the relationship,̃FP̃ : P̃ → D, where
D are decision vectors corresponding to Pareto optimal
objective vectors,P .

• The generation of a set,E , and its use with theFP̃ mapping
to generate a set of estimated decision vectors,DE .

The first part is essentially a projection of the setP onto the
CHI . This is essential as it simplifies the task of generating
the setE to a large degree, seeFig. 2. Prior to application of
the projection the setP is normalized using,

f̃i =
fi − z⋆i

zndi − z⋆i
, (3)

where z⋆ and znd can be estimated from the Pareto optimal
setP . Using the normalization in (3) the objectives inP are
restricted in the range[0, 1] as shown inFig. 2. Consequently
the normalized objective vectors are projected ontoCHI as
follows,

P̃ = PPT
E +

1

k
J|P|,k. (4)

The matrixJ|P|,k is a |P|×k unit matrix andPE is a projection
matrix obtained as:

PE = H(HTH)−1HT ,

H =

(

e1 −
1

k
1 · · · ek−1 −

1

k
1

)

,
(5)

where ei is a vector of zeros with itsith element set to1.
Next the artificial neural network (ANN) which is employed to
identify the mappingF̃P , is created (see [3]), using̃P andD
as the training inputs and outputs respectively.

When the ANN has been trained, it then can be used for
creating more Pareto optimal solutions in specific regions on
the PF given a set,E , is supplied as input.E can be generated
in one of two ways:

• In a specific region, presumably that is of interest to the
decision maker.

• On the entireCHI , which if PE is successful will cover
the entire Pareto front.

In this paper, we employ the second method as it illustrates
the ability of PE and its extended version presented here, to



successfully identify Pareto optimal solutions across theentire
front. It should be noted however that we envisage that the
usage of PE would be to target specific parts of the PF as seen
in [3].

4. Clustering and Pareto Estimation for
Multi-Objective Multi-Modal Solutions

In the case of multi-objective multi-modal problems, thereex-
ists multiple decision vectors which result in identical objective
vectors on Pareto front as shown inFig. 1. This corresponds
to the many-to-one mapping of the multiple decision vectors
in D to the objective vectors inP . The decision vectors
corresponding to each multi-modal optimal fronts (Pareto front)
originate from different clustersCm in decision variable space
D. The ANN relationship will fail to produce the one-to-many
mapping ofF̃P̃ : P̃ → D. It will generate any one but not all of
the multi-modal solutions. In order to overcome this problem,
the different clustersCm of multi-modal solutions present in
the non-dominated set can be identified and separated using a
clustering algorithm. The obtained clusters of decision vectors
Cm and corresponding objective vectors inP will have one-
to-one mapping between decision variable space and objective
space for the Pareto front. Once the different clusters of decision
vectors Cm are separated, the ANN can be trained for the
individual cluster of solutionsCm and P̃ to identify number
of one-to-one mappings̃FP̃Cm

: P̃ → Cm.
Most clustering algorithms need the number of output clus-

ters to be pre-specified as an input to the algorithm. In general
we do not know a priori the number of clusters available in the
data set. Bezdek and Hathaway developed a visual assessment
of cluster tendency (VAT) method [14], to identify potential
clusters in a data set. Here the pair-wise dissimilarities between
then individuals of the data set are estimated and reordered,so
that all the neighbouring individuals are consecutively ordered.
The reorderedn × n matrix of pair-wise dissimilarities is
displayed as an intensity image withn × n pixels. Clusters
are indicated by dark blocks of pixels along the diagonal of
the image. However, the VAT method is too computationally
costly for larger data sets. Wang et al., [15], proposed an
improved VAT (iVAT) and an automated VAT (aVAT) methods
to automatically determine the number of clusters and cluster
separation based on the difference between diagonal blocksand
off-diagonal blocks in the image of the reordered dissimilarity
matrix. In this paper, the iVAT and aVAT [15] methods are
used for identifying different clusters of decision vectors Cm in
D, which correspond to multi-modal solutions in the objective
spaceP . The steps involved in clustering and Pareto estimation
of multi-objective multi-modal solutions are summarised as
follows:

Step 1 Extract,P , the non-dominated individuals obtained at
the end run of an optimization algorithm, and,D the
associated decision vectors.

Step 2 Perform clustering analysis on the obtained decision
variable vectorsD using a clustering algorithm.

Step 3 The obtained clusters of decision vectorsCm and
corresponding objective vectorsPCm

will have one-
to-one mapping between decision variable space and
objective space.

Step 4 For each individual cluster normalizeP using (3).
Step 5 Project the normalizedP onto the thek−1 hyperplane

defined by the set of vectors{e1, . . . , ek−1} using (5)
and (4), to producẽP.

Step 6 Identify the mappingF̃P̃Cm

: P̃ → Cm using P̃ and
Cm as inputs and outputs, respectively, and use these
to train the ANN.

Step 7 Create the setE . In this work this is a set of evenly
spaced convex vectors.

Step 8 Use the setE as inputs to the ANN created in Step
5, to obtain estimates of decision vectorsCE .

Step 9 All the setsCE can be used with the objective function
F(·) to verify that the produced solutions are non-
dominated and acceptable.

5. Experimental Setting
We employed the following multi-objective multi-modal test

functions as seen in [1].

F(x) = (f1(x), f2(x))

=

(

n
∑

i=1

sin(πxi),

n
∑

i=1

cos(πxi)

)

xi ∈ [0, 6], i = 1, 2, ..., n.

(6)

The above objective functions are chosen since both objectives
are in conflict with each other and will have a trade-off in the
objective space. For the minimization case, the above problem
will have a known Pareto front which varies between−

∑n

i=1
i

to 0, wherei is the number of decision variables chosen. The
above problem is also a multi-objective multi-modal problem.
The two objective functions are periodic functions with a period
of 2. They will have efficient frontiers which correspond to
the Pareto-optimal solutions for all the decision variablevalues
varying in the rangesxi ∈ [2r + 1, 2r + 3/2], wherer is an
integer.

Deb and Tiwari [1] developed a generic evolutionary algo-
rithm: Omni-optimizer, which incorporates restricted selection
and crowding measure utilizing both objective and variable
space information to find and preserve a well distributed multi-
modal solutions. Here we use Omni-optimizer for solving the
multi-objective multi-modal test problem in all three cases.
Also we employ the ratio of the inverted generational distance,
DR(·, ·) and the ratio of the mean nearest neighbour distance
SR(·, ·) as well as the C-Metric. Due to space limitations we
cannot include a description of these metrics, the reader is
referred to [3].

6. Results and Discussion
In this paper, we are considering three test cases of the multi-

objective multi-modal optimization problem (6) with different
numbers of variables and population sizes in the optimization.



−2 −1.5 −1 −0.5 0
−2

−1.5

−1

−0.5

0

f1

f2

Pareto front 

0 1 2 3 4 5 6
0

1

2

3

4

5

6

x1

x2

Decision vectors

0 50 100 150 200

0

50

100

150

200

No of Pareto solutions

No
 o

f P
ar

et
o 

so
lu

tio
ns

Clusters of multi−modal decision vectors 

−2 −1.5 −1 −0.5 0
−2

−1.5

−1

−0.5

0

f1

f2

Pareto front

0 1 2 3 4 5 6
0

1

2

3

4

5

6

x1

x2

Decision vectors

0 500 1000 1500 2000

0

500

1000

1500

2000

No of Pareto solutions

No
 o

f P
ar

et
o 

so
lu

tio
ns

Clusters of multi−modal decision vectors 

Fig. 4: Case I: Non-dominated solutions obtained with Omni-optimizer (top) and extended Pareto estimation methods (bottom) in
objective space, decision variable space and image of clusters.
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Fig. 5: Case II: Non-dominated solutions obtained with Omni-optimizer (top) and extended Pareto estimation methods (bottom)
in objective space, decision variable space and image of clusters.
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Fig. 6: Case III: Non-dominated solutions obtained with Omni-optimizer (top) and extended Pareto estimation methods (bottom)
in objective space, decision variable space and image of clusters.



6.1 CASE I
In the Case I, we have chosen two decision variablesxi ∈

[0, 6], i = 1, 2. for the optimization problem (6). Within the
range of these two variables the problem will have nine multi-
modal optimal fronts. We have set the population size to be200
and run the optimizer for500 generations. For the optimizer,
finding the global Pareto front is not so difficult in this problem.
However, finding all the multi-modal global Pareto fronts with
good distribution of solutions in corresponding decision vector
ranges is very difficult. In this particular instance, the Omni-
optimizer [1] is able to find all nine multi-modal optimal fronts
with 200 Pareto solutions with a good distribution of decision
vectors in all ranges ofxi ∈ [2r + 1, 2r + 3/2], where i =
1, 2 and r = 0, 1, 2. Fig. 4 shows the obtained Pareto optimal
solutions in top three sub-plots.

Cluster analysis using iVAT and aVAT [15] methods is
performed for the obtained Pareto optimal decision vectors.
The reordered dissimilarity matrix of200 decision vectors is
displayed as200 x 200 image with gray scaling in right hand
side sub-plot. The dark blocks appearing on the diagonal of the
image represent individual clusters; the size of each dark block,
represent number of individuals present in each cluster. Itcan be
seen from this plot, that each cluster (dark block) has atleast 18
individual solutions. After separating these clusters of decision
vectors, the procedure for Pareto estimation is executed. For
each cluster, the ANN is trained to find the one-to-one mapping
between objective space and decision vector space. Then this
ANN is used to estimate300 solutions in each cluster.

The quality of mapping estimated by ANN is highly depen-
dent on the supplied training decision vectors. If the training
data has a sufficient number of vectors, well distributed, then the
ANN will estimate a better mapping, otherwise, the mapping
estimated by ANN will be deceptive and may not generate good
solutions in the Pareto estimation process. After combining
all the solutions obtained from individual Pareto estimations,
we perform non-dominated sorting to remove any dominated
solutions from the set. At the end we have obtained around
2 300 non-dominated solutions out of2 700 solutions estimated.
In Fig. 4 the bottom sub-plots show plots for objective vectors,
decision vectors and gray scale image of the dissimilarity matrix
of estimated solutions. It can be seen from these sub-plots,
that Pareto estimation along with clustering is successfully
able to find many solutions for the multi-objective multi-modal
problem.

6.2 CASE II
In Case II, we have chosen the same objective functions with

three decision variablesxi ∈ [0, 6], i = 1, 2, 3.. Within the range
of these three variables the problem will have 27 multi-modal
optimal fronts each one corresponding toxi ∈ [2r+1, 2r+3/2],
wherei = 1, 2, 3 andr = 0, 1, 2.

We have set400 as the population size and run the optimizer
for 500 generations. The obtained400 non-dominated solutions
are shown in the top three sub-plotsFig. 5. The optimizer has

found all 27 multi-modal Pareto fronts, however, it is not able
to obtain good distribution of solutions in all the corresponding
decision vectors ranges. This can be easily observed from the
image of clusters, in which some clusters have more than 70
solutions, where as some clusters got very less number of
decision vectors around2 or 3.

We applied Pareto estimation to each cluster of solutions,
tried to estimate200 solutions for each cluster. After combining
the solutions estimated from all the clusters, non-dominated
sorting is performed to get the non-dominated solutions. Around
1 950 solutions found to be non-dominated out of5 400 esti-
mated solutions. The method is able to estimate around150
to 200 non-dominated solutions in some clusters, but failed to
estimate more solutions in clusters where there are insufficient
number of solution used for training the ANN. InFig. 5
the bottom three sub plots show the estimated non-dominated
solutions, in objective space, decision variable space andimage
of clusters. (Note: Here the order of clusters in top and bottom
images is not same.)

6.3 CASE III

In Case III, we have chosen the same objective functions
with three decision variablesxi ∈ [0, 6], i = 1, 2, 3., but now
increase the population size to1 000 in optimization and run
the optimizer for500 generations. The obtained1 000 non-
dominated solutions are shown inFig. 6 top three subplots.
The optimizer has found all27 multi-modal Pareto fronts and
is now able to obtain a good distribution of solutions in all
the corresponding decision vectors ranges. This can be easily
observed from the image of clusters, in which clusters have
solutions in the range of20 to 60 solutions per cluster.

We applied Pareto estimation to each cluster of solutions and
tried to estimate150 solutions for each cluster. After combining
the solutions estimated from all the clusters, non-dominated
sorting is performed to get the non-dominated solutions. Around
3 000 solutions were found to be non-dominated out of4 050
estimated solutions. The method is able to estimate around
100 to 150 non-dominated solutions in each cluster. InFig. 6
the lower three sub-plots show the estimated non-dominated
solutions, in objective space, decision variable space andimage
of clusters. It can be seen that, a very good distribution of
non-dominated solutions is obtained from the Pareto estimation.
(Note: Here the order of clusters in top and bottom images is
not same.)

Tables 1 and 2 summarize the various test metric computed
for the non-dominated solutions before and after the Pareto
estimation in all the three cases I, II, and III. These metrics
indicated that the proposed method is able to estimate well
distributed non-dominated solutions close to the true Pareto
front, when compare to non-dominated solutions obtained from
the Omni-optimizer.



Table 1: DR(P ,PE) and SR(P ,PE) values of the obtained
solutions by OMNI-optimizer,P , and the estimated set,PE ,
by the extended Pareto estimation method.

IGD Ratio ESSm Ratio

Problem min mean std min mean std

Case I 5.2689 6.3300 0.5565 9.1278 11.3150 1.3969
Case II 1.8721 2.3615 0.2722 5.0175 5.6117 0.3843
Case III 1.8316 2.2347 0.1524 2.4162 2.9601 0.2344

Table 2: C-Metric values of the solutions obtained by OMNI-
optimizer, P , and the estimated set,PE , using the extended
Pareto estimation method.

C(PE ,P) C(P,PE )

Problem min mean std min mean std

Case I 0.4900 0.5848 0.0433 0.0000 0.0100 0.0042
Case II 0.4525 0.5200 0.0273 0.0000 0.0000 0.0000
Case III 0.5900 0.6154 0.0216 0.0000 0.0000 0.0000

7. Conclusions
For continuous multi-objective optimization problems, there

exist an infinite number of solutions on the Pareto-optimal front.
A multi-objective evolutionary algorithm (MOEA) attemptsto
find a representative set of the Pareto-optimal solutions. If the
decision maker is not satisfied with the representative set found
by the MOEA, and wants to explore different solutions available
on the Pareto front, the MOEA needs to be re-run, which will
increase the number of function evaluations without providing
any guarantees that a suitable solution will be identified. In this
case, the Pareto estimation method can prove useful in order
to increase the density of available non-dominated solutions in
particular regions or the entire Pareto front. However, in the case
of multi-objective multi-modal problems, the Pareto estimation
method is not able to identify the one-to-many mapping of the
objective vectors to decision variables vectors.

In this paper, we have introduced an extended version of
the Pareto estimation method, to increase the density of multi-
objective multi-modal solutions. The method uses clustering
analysis to identify and separate different clusters in thedeci-
sion variable space which correspond to the multi-modal Pareto
optimal solutions. These individual clusters are then usedto
estimate the relation between objective space to decision space
using an ANN. Instead of a single network, as is the case in
the Pareto estimation method, we employ a network for each
individual cluster. These are then employed to estimate more
solutions for the selected cluster, presumably by the decision
maker, or all cluster. For testing purposes we have employed
the latter method in this work.

The proposed method has been tested on experimental test
functions, with three different case studies. We have used Omni-
optimizer [1] to solve the test problem in three cases, and
iVAT and aVAT [15] methods to identify different clusters of

solutions in the cluster analysis. In all cases, the extended Pareto
estimation method has successfully found many non-dominated
solutions corresponding to different multi-modal solutions. The
success of the proposed method highly depends on the number
of solutions available in an individual cluster for training and
estimating the one-to-one mapping between objective spaceand
decision vector space. In case II, the method failed to improve
density of the solutions in the clusters with a small number of
individuals. However, it has improved the density of solutions
in the remaining clusters representing multi-modal solutions to
the test problem. We leave for future work the evaluation of
the proposed method on a real-world system architecture design
problems, which have a tendency to have multi-model solutions.
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