
UML Model Based Design of the Claw Car Robot

Andre Layne
1
, Adria Mason

1
, Yujian Fu

1
, Mezemir Wagaw

2

1
Department of Electrical Engineering & Computer Science,

2
Department of Food & Science,

Alabama A&M University, Normal, AL, United States

Abstract - Robots are intricate systems and applied in many

aspects of today’s society. It is highly desirable to design and
develop robust robotics systems. This paper aims at

developing an autonomous robotic system using object-

oriented software development (OOSD) methodology – UML –

to ensure the quality of the system. Unified Modeling

Language (UML), a typical OOSD method, is a standard

visualization language for object-oriented system development

that has been widely used in the design of safety critical and

mission critical systems (e.g. aeronautic systems, missile

defense systems, etc). In this paper, the UML class diagram is

used to represent the static structure and relations of objects.

The dynamic behavior is modeled in the state machine

diagram. A case study is performed in the LEGO NXT tool kit,
a low cost highly integrated educational robot setting, in Java

programming language. In this case study, a Claw Car Robot

is designed and assembled with the function of continuously

moving forward and stop on the color definition. The robot

can close the claw and clasp the object in its path once an

object is detected. The LEGO NXT tool kit includes multiple

sensors and supported by several platforms including Java

and C++. This LEGO NXT tool kit is very convenient for the

design and implementation of robotics systems, and has been

widely adopted in institutions for educational and initial

research purposes.

Keywords: UML; Autonomous; NXT; Object-Oriented

Programming Language

1 Introduction

 The robot population is doubling every few years.
According to IEEE Spectrum [6], the world population of
robots had reached over 4.5 million at the end of 2006 and 8.5
million at the end of 2008. The size and growth of these
numbers show that robots contribute to a very important role
in our society today. These robots use various types of
integrated technologies to achieve specific goals in various
types of environment. Therefore, reliability and quality of the
robotics system is becoming more and more important.
However, there is not enough research on the building of
reliable robot systems. In this research work, we developed the
UML model of the robotics system, and then implemented in
Java, based on the assembled LEGO NXT tool kit.
 A typical feature of robotic systems is multiple interfaces
and multiple objects. To provide flexible functionality, a robot

usually integrates with several different types of sensors to get
the data from its environment as well as multiple devices for
different purposes such as arms, claws and some other tools.

 All these integrated sensors and devices apply their own

way to read and handle information, which is defined by

various APIs. Therefore, designing and the programming of

the multiple interfaces, and also integrating them to the system

smoothly, are challenges for the robotics design. Any

miscommunication between controller and sensors or devices

may cause unexpected results and huge losses. It is key to

build and develop reliable and quality software for the robotics

systems.
 Object-oriented software development (OOSD)

methodology has been widely used in the design of safety

critical and mission critical systems (e.g. aeronautic systems,

missile defense systems, etc). Unified Modeling Language

(UML) [9, 10, 11], a typical OOSD method, is a standard

visualized language for object-oriented system development.

In this paper, we proposed a UML 2.0 model that includes the

class diagram and state machine diagram on the robotics

systems to specify the system design requirements, and use

Object Constraint Language (OCL) to define the desired

properties. Therefore, the object-oriented design model of a
robotics system includes three components in general – static

structure, dynamic behavior, and property specification. This

paper presented the UML based model of the robotics system

that is represented by the above three components.
 This work is implemented in an assembled claw car
using LEGO NXT tool kit and implemented with the Java
programming language. The Mindstorm NXT brick uses a 32-
bit ARM processor as its main processor, with 256 kilobytes
of flash memory available for program storage and 64
kilobytes of RAM for data storage during program execution.
To acquire data from the input sensors, another processor is
included that has 4 kilobytes of flash memory and 512 bytes of
RAM. Two motors can be synchronized as a drive unit. To
give the robot the ability to “see,” the ultrasonic sensor, which
is accurate to 3 centimeters and can measure up to 255
centimeters, and the light sensor, which can distinguish
between light and dark, can be attached to the brick. Finally,
the two touch sensors give the ability for a robot to determine
if it has been pressed, released, or bumped, and react
accordingly [12].
 This paper is organized as follows. Section 2 introduces
the background knowledge used in this work. Section 3
presents the hardware assembly and functions for the LEGO
robot. Section 4 shows the UML model of the robotics

systems. Section 5 presented the Java implemented with the
LeJOS package. Section 6 discusses the results and the
conclusion.

2 Background

 In the Object-Oriented Software Development (OOSD)

approach, the system is viewed as a collection of multiple

objects and with various interfaces definitions. The

functionality of the system is achieved by the interaction and

communication among these objects through messages. The

Unified Modeling Language – UML – is developed on the

above principles and widely used in the complex embedded

system and large scale software intensive system development.

In this paper, we presented a UML based model driven

architecture for the robotics design that includes three
components – static structure (class diagram), dynamic

structure (state machine diagram) and property specification

(OCL). Therefore, we simply introduce each component in the

UML syntax.

 UML defines twelve types of diagrams which fall into

three categories [9, 10]: (i) Structural Diagrams which include

the Class Diagram, Object Diagram, Component Diagram, and

Deployment Diagram, focus on the static organization of

instance of the system; (ii) Behavior Diagrams which include

the Use Case Diagram, Activity Diagram, Communication

Diagram, and State Machine Diagram, focus on the functions
and collaborations among instances; and (iii) Model

Management Diagrams which include Packages, Components,

and Subsystems, focus on the packaging and setting of

diagrams. UML has been used across a wide variety of

domains, from computational to physical, making it suitable

for specifying systems independently of whether the

implementation is accomplished via software or hardware.

Since UML was initially introduced in the software domain,

most commercial tools based on UML descriptions have the

ability of generating software code, such as Java and C++.

 However, no such tools are commercially available that
can design and synthesize UML models into a model for

robotics system model directly, thus imposing a limitation for

the usage of UML in robotics system design. Additionally, it is

also observed that assuring correct functional behavior is the

dominating factor of a successful hardware design. It shows

that up to 80% of the overall circuit design costs are due to

verification tasks. Assurance of quality of robotics is a key

issue now.

 To complement the UML diagrammatic notation, the

Object Constraint Language (OCL) [14, 15] can be used to

express constraints and specify the effect of operations in a

declarative way. In each predicate of OCL, the logical
statements must be satisfied by all valid instances of the

system that are represented by constraints.

 The OCL [15, 14, 13] is a textual, declarative language

based on first-order logic and set theory. In addition to

expressing constraints on class diagrams, OCL can also be

used to specify the effect of the execution of an operation,

using pre and post conditions. A pre condition is an OCL

statement that has to evaluate to true before the execution of

an operation, while a post condition is a statement that has to

evaluate to true when the operation terminates.

3 Lego Robot & Functionalities

 The LEGO Mindstorm tool kit is composed of five
external sensors and three motors except for many other pieces

that give the physical design and construction of the robot

flexibility. In this section, we introduce the assembly and

functionalities of the LEGO robot claw car design as well as

the challenge issues during the development.

3.1 Functionalities

 The Claw Car Robot needs to move forward on the color
- white. However, once the color - black is detected, the robot

will close the claw and clasp the object in its path. The robot

will also slow down once black is detected and the claw is

closed. As the Claw Car Robot passes over white again, the

robot continues in this same state until the color - black is

detected again. Once black is detected again, the robot will

open the claw and release the object. In addition, almost

simultaneously, the Claw Car Robot will end its program, as

designed. In this work, each sensor has its own API. The NXT

needs to be able to work with the sensors properly to realize a

stable and reliable system. All these factors point to a strong
need to maximize software and system development

productivity through the use of embedded system platforms,

reuse, and synthesis methods driven from system-level

models.

3.2 Hardware Development

 In the robotics community, most robots manipulate

objects using what is called an End of Arm Tool (EOAT) [5].
The most common type of EOAT is the robotic gripper. These

grippers come in various shapes and sizes. There are two

different categories of robotic grippers which are friction and

encompassing robotic grippers. Friction robotic grippers are

used to hold objects by using force only. Encompassing

robotic grippers surround objects to grasp them and do not use

much force at all. To make a decision on which type of gripper

we would use, we had to take into consideration the material

we would build the object with as well as the type and size of

the objects this robot would manipulate. Since our Robot has

been built with light-weight materials, it will be used to pick

up light-weight and flexible objects. An encompassing style
gripper shown in figure 1 would be the best type to use.

Figure 1. A robotic gripper from NXTPrograms.com

3.3 Challenge Issues

 It is not hard to build a mobile robot with the above

expected functionalities using the LEGO NXT Mindstorm

toolkit. The challenge issue is how to build a reliable robot to

satisfy the expected properties and maintain the stable

behaviors as required. For instance, a light sensor is used to

detect light values given off from the surface beneath the

robot. One problem is how to make sure the claw car can

detect specific light values efficiently, and manipulate objects

in its environment according to the light values detected. We

needed an approach that can efficiently respond to light values
of the terrain beneath the robot, and perform object

manipulation based on these values. In sum, the key issue is

how to develop a robotics system with respect to the user

requirements, minimize risk, maintain correct behavior, and

improve quality.

 The unreliability issue comes from two aspects in the

LEGO robot design from our study. One is from the

imprecision of the sensors. The LEGO kit is used for the

educational purpose and many sensors do not have high

precision to reflect the required value. For instance, the

responded value for white color and light yellow color can
vary between 49 to 52, depending on the lighting condition.

Another major issue is from the control software design,

which is the one this research focuses on. For instance, even

though we give enough space for the white value to be

changed, the system may still do not maintain stable status due

to internal or external stimuli. For instance, the light sensor

may stop working. If there is no other way to fix this sensor,

the robot will fail the duty. To solve that problem, we included

an alternative light sensor and require the system to continue

working with the same behavior, if one of these two sensors

fails.

3.4 Redundancy Design

 We needed a redundant sensor that will be able to

perform the work needed if the default sensor was down. To

mitigate this concern we added a secondary, or back up sensor

that will become active if the default or primary sensor isn’t

available. This back up sensor is working during the robot

running time. Which means the back up sensor is detecting
color, responding to the NXT brick, and maintains the same

duty as the default sensor. Once the default light sensor is

unplugged, the back up sensor can automatically resume duty

without any interruption of the system. Figure 2 displays the

image of the robot with redundant sensors. In Figure 2(a), the

robot is driving with both sensors working. In Figure 2(b), the

default sensor is unplugged and the back up sensor is taking

control after the primary sensor isn’t functioning.

4 UML Based Robotics Architecture &

System Design

 Initially proposed as a unifying notation for object-

oriented design, UML has added a semantic underpinning that

makes it possible to build platform independent descriptions

that can be used by designers and architects to make informed

decisions about hardware/software tradeoffs. We present UML

based architecture for the robotics system design to ensure the

quality of the robot. The architecture is composed of three

components (Figure 3.) – static structure (represented by class
diagram), dynamic structure (represented by communication

diagram or state machine diagram), and system properties

(specified by OCL).

 The OCL specification can describe all desired

constraints on the static structure and dynamic structure. From

Figure 3, we can see that is the OCL properties are not

satisfied, we can go back to the model architecture and find

out what is the problem. After the properties and constraints

are ensured, then the system can be implemented based on the
model. The verification of OCL properties can be done by

software testing tools or model checking techniques.

 In the following, we use the LEGO claw car robot to

illustrate the UML architecture model.

4.1 Class Diagram

 According to Michael Blaha and James Rumbaugh [1], a

“class diagram provides a graphic notation for modeling

Robotics System

Static Structure

Dynamic

Structure

OCL

Constraints ?

NO

Figure 3. UML based robotics system architecture

YES

 (a) (b)

Figure 2. View of default & secondary light

sensor

classes and their relationships, thereby describing possible

objects. Class diagrams are useful both for abstract modeling

and for designing actual programs.” The class diagram of this

LEGO claw car robot is shown in Figure 4.

 The Claw Car Robot is a robot that drives forward, and is

composed of aggregate parts; motors, a light sensor, and a
backup light sensor. To represent the above function, the Class

diagram shows this relationship as a model with each one of

the real world objects represented appropriately. The

FinalClawCar Class is the container class for the remaining

classes. Therefore, Figure 3 shows the FinalClawCar Class

with an aggregation relationship to the other classes.

4.2 State Machine Diagram

 The dynamic behaviors are represented by the State
Diagram, which includes state, transition and events. A state is

an abstraction of the values and links of an object. An event is

an occurrence at a point in time. Events represent points in

time. States represent intervals of time. [1]. Before

implementing our actual code, it was necessary to first provide

a full description of what each object would do in response to

different events.

 The possible states, transitions, and events of the Claw

Car Robot are shown in Figure 5. The black dot represents the

entry into the diagram. In this case, the object is originally in

the idle state until the Enter button is pressed on the NXT
Brick, and the robot begins to drive forward. While the robot

is in the ‘Moving Forward’ state, it responds to two possible

events. In this diagram, either the robot detects black for the

first time, which in this case, it moves into a claw close state.

If the color black is detected a second time the claw opens,

releasing any obtained object. The challenge issue here is the

claw cannot close if there is no object in hand. However, how

to detect the claw holding the object is a challenge. Therefore,

we reduce the question to a simple case – a) first, detect the

object; b) once the object is detected, the car moves and pick

up the object; and the claw closes. From the state machine

diagram in Figure 5, you can see the car releasing the object

without detecting if there is object holding. But, the robot will
check the line color before releasing the object (Figure 5).

Figure 5. State machine diagram of the Claw Car Robot

4.3 Quality Of Robot – Object Constraint

Language

 UML provides a formal language to specify and express

the constraints within a system, named the Object Constraint

Language (OCL) [8]. A constraint restricts the values that

elements can assume. We utilized the OCL 2.0 version to

specify the constraints within this system. Several constraints

are defined for the system on classes. For example, for the

class Motor, we define an invariant as if the speed is larger

than zero, then the robot is moving (shown in formula (b)). As

discussed before, the claw open and close checking is critical

to grab the object. Therefore, we have defined the invariant for

the claw close checking (shown in formula (f)).

Context: Motor

INV: Motor.forward implies Motor.isMoving (a)

INV: Motor.setSpeed()>0 implies Motor.isMoving (b)

Pre: Motor.stop() (c)

Post: Motor.isMoving = false (d)

Context: LightSensor

 INV: LightSensor.getLightValue() >330 implies
 LightSensor.isWhite (e)

Context: FinalTheClaw

Figure 4. Class Diagram of the Claw Car Robot

INV: FinalTheClaw.isClosed= = 0 implies

FinalTheClaw.isOpen (f)

5 Robot Implementation In Java

 This robot is implemented in Java, a typical object-
oriented programming language (OOPL). There are several

reasons to choose Java as the choice coding language.

 First, Java is considered a pure OOPL with typical OO

features, including encapsulation, inheritance, polymorphism,

besides objects and classes. In Java, object communication is

defined by response to classes on messages. When a certain

method is executed in response to a message to another object,

this method can generate new information that can be a

message. Therefore, Java is a perfect implementation language
of UML model. Secondly, currently, there is not enough

LEGO NXT projects that are implemented in Java. Most of

LEGO projects are used for the motivation of high school

students and the demonstration of robotics. Therefore, the

implementation is mainly reduced to the simple diagram based

langauge such as LabView. However, there is no space for the

students to explore the design issues and quality assurance of

the software control systems. The last reason is LEGO

Mindstorm Kit provides free platform for Java applications

named LeJOS [16].

 Most robotics implementation uses Behavior
Programming (BP), which is supported by the LeJOS package.

The important aspect of BP is sequential ordering of the

concurrent behaviors issued from multiple objects of a robot.

In other words, BP uses sequence to implement concurrence.

The Behavior interface is located in a package called

Robotics.Subsumption. The Subsumption package also

provides a class that handles the Behavior objects called an

arbitrator. The Behavior interface provide three methods that

allow the code to work in a more logical manner than writing a

large amount of if-else statements, which

LejosSourceForge.com calls “spaghetti code”. Instead of our

code being tangled with all if-else statements, we were able to
take a behavioral approach and write the application so that

each method and function performed would work in a logical

sequence.

 The Behavior interface uses three methods to provide a

seamless, behavioral interaction between multiple objects. The

methods are; takeControl(), suppress(), and action(). These

three methods are described in further detail below:

 suppress() - The suppress method returns true whenever a

specific object doesn’t want to take control, or when the

object’s takeControl() method is false.

 takeControl() - An object’s takeControl() method returns
a Boolean value whenever it reaches a condition where it can

return a true value. When this occurs, the object’s action()

function will perform some action according to its priority

level. The suppress method is turned false, and all other

Behavior objects should remain suppressed.

 action() - when an object’s suppress() method returns a

false value and the takeControl condition returns true, the code

that is within the action() method is performed.

 The implementation of the robot is based on the UML

model and maintains the constraints defined in the OCL. In

this section, we illustrate the Java implementation on the

LEGO NXT Mindstorm tool kit on each class. All the classes

are defined in Robotic.Subsumption package and Behavior

Interface and discussed in the following.
 The FinalDriveBot2 Class (Figure 6) is responsible for

controlling how and when the claw car robot drives. Since the

robot should always want to drive, we initially set the suppress

and takeControl functions to false. Although the

FinalDriveBot2’s suppress() method is set to false, if any

higher level priority object’s takeControl() method returns

true, the FinalDriveBot2’s suppress() method will set to the

true value. Once all other object’s takeControl() method

returns false, FinalDriveBot2 will resume.

 The FinalSurfaceDetection Class (Figure 7) utilizes the

LightSensor Class. Through a method called

readNormalizedValue, the FinalSurfaceDetection Class will
detect light values reflected from the surface beneath the

Robot. This class is set to take control if it detects the color

black or a light value above 330. Once this class takes control,

it will check the value of a static variable named

FinalTheClaw.isClosed. If isClosed is set to 0, the robots claw

will close and change the value of FinalTheClaw.isClosed to

1. If black is detected and the value of FinalTheClaw.isClosed

is 1, then the claw will open. The logic behind this is to

provide the robot with a flag to indicate whether the claw is in

an opened or closed state.

 The FnalSurfaceDetectectionBackup Class (Figure 8)
provides a 2nd LightSensor object for the default sensor. The

code is very similar to the FinalSurfaceDetection Class since it

will be checking for most of the same conditions. This will

allow redundancy between the two sensors. The design is set

up so that if one sensor stops working, the other sensor will

resume the work without any downtime. The takeControl()

method for this class is set so that it will only takeControl if

black is detected and sensor1 is returning 0(indicating sensor 1

is not functioning). Since there is a static variable set up in the

FinalTheClaw Class, to represent the state of the claw, the

second sensor will know the current state of the claw, and

therefore will be able to make a logical decision on the next
state of the claw.

 The FinalDriveBot2 class consists of only one static class

variable. This variable is isOpen(). The isOpen variable is

used by the FinalSurfaceDetection and the

FinalSurfaceDetectionBackup class to determine whether the

claw is in an open, or closed state.

lejos.nxt.Motor;

import lejos.robotics.subsumption.Behavior;

public class FinalDriveBot2 implements Behavior{

private boolean suppressed = false;

 public boolean takeControl() {return true;}

 public void suppress() {suppressed = true;}

 public void action() {

 suppressed = false;

 Motor.A.forward();

 Motor.C.forward();

 while(!suppressed) Thread.yield();
Motor.A.setSpeed(100);

 Motor.C.setSpeed(100); } }

Figure 7. The code of class FinalSurfaceDetection

Figure 8. The code of class FinalSurfaceDetectionBackup

5.1 Integrated Technologies

 This robot was integrated with different technologies to
make it successful in its proposed goal. Light Sensor
technology was used to sense and determine light values. The
Robotic Motor, or mechanical motor technology, was used to
mobilize our robot as well as give the gripper functionality.
Lego’s NXT brick was used as a processor to perform logical
decisions and calculations commanded by the downloaded
software application. Each one of these technologies worked
together in this robot to perform each required action as
efficient and seamless as possible.

5.2 Robot Behavior Validation

 The system validation is done by checking if the robot
meets all requirements and constraints specified. Initially,
there were some problems observed. Some of the issues were
caused by the design and some were introduced in the
implementation. For instance, the robot could not resume the
duty when one sensor was down during execution of the
robotics system. This was caused by the off-the-shelf light
sensor. The back up light sensor was originally built as an off-
the-shelf light sensor. Therefore, it wasn’t able to resume
functionality after the default sensor was down. After
examining the design, we found that it can be solved by fixing
a variable declaration. To realize the runtime back up sensor, a
static variable is introduced and is updated during the sensor
switch. To validate the OCL properties, we use the LCD to
display the information that is consistent with the robot
moving. During implementation, the display is consistent with
the robot movement and we found that all constraints are
maintained.

6 Conclusion

 This paper presented UML based robotics system design

architecture on the three components – static structure,

behavior structure, and OCL constraints. The approach to

building correct and reliable robotics is validated in a LEGO

NXT Mindstorm tool kit on a well developed claw car robot.

During the study, we have carefully developed the UML

robotics architecture model, design, assembly, and

implemented the software code in the Java platform.

Afterwards, a system validation was conducted to validate the
OCL constraints of the robotics system.

 From the study on the LEGO NXT tool kit, we can

conclude the following: First, the fundament diagrams of

UML model with the OCL constraints are suitable for the

design and development of reliable robotics systems.

Secondly, the UML based robotics architecture can be used for

the general robotics system design. Finally, the LEGO NXT

tool kit can be used for the fundamental design and

implementation research study.

public class FinalSurfaceDetectionBackup implements

Behavior{

 LightSensor light1 = new

LightSensor(SensorPort.S1);

LightSensor light2 = new

 LightSensor(SensorPort.S3);

 boolean suppressed = false;

 public boolean takeControl(){
boolean control2=false;

if(light2.readNormalizedValue()< 330 &&

light1.readNormalizedValue() ==0)

{ control2 = true;}

 return control2; }

 public void action() {

 suppressed = false;

 if(FinalTheClaw.isClosed == 0){

… …

 } else {

 … …
 while(Motor.B.isMoving())

 Thread.yield();

 } } }

Figure 6. The code of class FinalDriveBot2

public class FinalSurfaceDetection implements Behavior {
 LightSensor light = new LightSensor

 (SensorPort.S1); //default light Sensor object

 boolean suppressed = false;

 public boolean takeControl(){

 // this function will take control

 //if a light value is returned less than 330

 //but not equal to 0

 boolean control1=false;

 if(light.readNormalizedValue() < 330

&& light.readNormalizedValue()> 200){

 control1=true;}
 return control1; }

 public void action() {

 suppressed = false;

 if(FinalTheClaw.isClosed == 0){

 Motor.B.backward();// close claw

 FinalTheClaw.isClosed = 1; //flag

//used to indicate if and object has been

//grabbed

 while(Motor.B.isMoving())

 Thread.yield(); }

 else { Motor.B.forward();//open claw
 Motor.A.stop();

 Motor.C.stop();

 System.exit(0);// exit program

 while(Motor.B.isMoving())

 Thread.yield();

 }

 }

 For the future work, we expect two aspects – one is the

real time embedded system specification. The other aspect is

developing model checking on the OCL constraints. The UML

based robotics system architecture can be used to describe the

real time system architecture. OCL is suitable for the

specification of timing constraints if the class diagram and
behavior diagrams include the timing concerns. Secondly, the

constraints can be validated in two other ways – a) model

checking and b) assertion implementation.

 UML robotics architecture model allows the system

analyst and developer to focus on front end conceptual issues

before implementation. Using this architecture, we are able to

develop reliable robotic controller code that performed all

specifications and requirements. It is worth to note that LEGO

NXT tool kit is a good set for the low cost robot design.

However, the imprecision of the accessories causes some

problems during actual implementation.

 This study shows that combining the use of UML and
OCL, the flexibility of the Lego NXT kit, and the robustness

of Java LeJOS, we were able to build a robot that met

requirements. Although there were specific hardware parts

necessary for these abilities to be realized, the use of UML

gave us the ability to use a clear, concise method in the

software development process to reach each one of the robot’s

projected goals.

7 Acknowledgements

 We would like to extend our thanks for valuable

comments from reviewers.

8 References

[1] Blaha, M. and Rumbaugh, J., Object-Oriented Modeling and
Design with UML Second Edition. Pearson Prentice Hall, 2005

[2] The Association for Computing Machinery, Inc. A list of Implicit
Subject Descriptors in ACM CCS (N.D.) Available from:
http://dl.acm.org/lookup/CcsNoun.cfm

[3] The Association for Computing Machinery, Inc. Copyright 2011

Retrieved on November 26, 2011 available from: www.acm.org

[4] Dave Parker, LEGO MINDSTORMS NXT! Gives fun projects
and building instructions using LEGO MINDSTORMS NXT robotic
kit. Copyright 2007-2011, available from www.nxtprograms.com

[5] Robotic Equipment Spotlight, January, 2011. Available from:
http://www.robots.com/blog.php?tag=496

[6] Guizzo, Erico IEEE Spectrum Inside Technology, World Robot
Population Reaches 8.6 Million Wed, April 14, 2010 Available from
http://www.robots.com/blog.php?tag=496

[7] A. Brown, Robot Population Expansion, ASME, February 2009,
http://www.asme.org/kb/news---articles/articles/robotics/robot-
population-explosion

[8] Document Associated With Object Constraint Language, version
2. http://www.omg.org/spec/OCL/2.0/. May 2006.

[9] Jacobson, I., G. Booch and J. Rumbaugh, 1999. The Unified
Software Development Process, Addison-Wesley.

[10] Gomaa, H., 2000. Designing Concurrent, Distributed and Real-

Time Applications with UML. Addison-Wesley.

[11] Maciaszec, L., 2001. Requirements analysis and system design,
Addison-Wesley.

[12] Bagnall, B., 2007. Maximum Lego NXT: Building Robots with
Java Brains. Variant Press.

[13] JosWarmer and Anneke Kleppe. The Object Constraint

Language: Getting Your Models Ready for MDA. The Addison-
Wesley object technology series. Addison Wesley, Reading, Mass., 2
edition, 2003.

[14] JosWarmer and Anneke Kleppe. The Object Constraint
Language : Precise Modeling with UML. Addison-Wesley, 1998.

[15] OMG. OCL Version 2.0, 2006. Document id: formal/06-05-01.

[cited April 2008]. Available from: URL: http://www.omg.org.

[16] LEGO Team. NXJ API. Available from:
http://lejos.sourceforge.net/nxt/nxj/api/index.html.

http://dl.acm.org/lookup/CcsNoun.cfm
http://www.acm.org/
http://www.nxtprograms.com/
http://www.robots.com/blog.php?tag=496
http://www.asme.org/kb/news---articles/articles/robotics/robot-population-explosion
http://www.asme.org/kb/news---articles/articles/robotics/robot-population-explosion
http://www.omg.org/

