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Abstract—In this paper, we compare with the inversetype include the QR algorithm [10] and the divide-and-
iteration algorithms on PowerXCéll 8i processor, which conquer algorithm [3], [13]. The second type of algorithm
has been known as a heterogeneous environment. Wheaomputes all or some eigenvalues and all or some eigen-
some of all the eigenvalues are close together or there argectors. Algorithms for computing eigenvalues include the
clusters of eigenvalues, reorthogonalization must be adoptesbot-free QR algorithm [12] and the bisection algorithm [10].
to all the eigenvectors associated with such eigenvalueglgorithms for computing eigenvectors include the KR
Reorthogonalization algorithms need a lot of computationaklgorithm [7] and the inverse iteration algorithm with the
cost. The Classical Gram-Schmidt (CGS) algorithm, thanodified Gram-Schmidt (MGS) algorithm [10], [17]. LA-
modified Gram-Schmidt (MGS) algorithm, and the HousePACK (Linear Algebra PACKage) [16], which is a software
holder orthogonalization algorithm in terms of the compactlibrary for numerical linear algebra, has codes that integrate
WY representation have been known as reorthogonalizatioall the above-mentioned algorithms. These algorithms can
algorithms. These algorithms can be computed using BLABe parallelized, except the root-free QR algorithm.
level-1 and level-2. Since synergistic processor elements in The inverse iteration algorithm is an algorithm for com-
PowerXCell™ 8i processor archive the high performance of puting eigenvectors independently associated with mutu-
BLAS level-2 and level-3, the orthogonalization algorithmsally distinct eigenvalues. However, when some eigenval-
except the MGS algorithm can be computed high-speed ames are very close to each other, the eigenvectors, which
parallel computers. are computed using the inverse iteration algorithm, must
be reorthogonalized. As reorthogonalization algorithms, the
Keywords: inverse iteration, eigenvalue decomposition, Classi-Classical Gram-Schmidt (CGS) algorithm [10], the MGS
cal Gram-Schmidt, Householder transformation, modified Gramalgorithm, the Householder orthogonalization algorithm [15]

Schmidt, PowerXCefi"’ 8i processor are known. Reorthogonalization algorithms need a lot of
computational cost. The CGS algorithm is suitable algorithm
1. Introduction for parallel computing. The orthogonality of eigenvectors

computed by the CGS algorithm depends on the square
The eigenvalue decomposition of a symmetric matrix isof the condition number of the eigenvectors, which are
one of the most important operations in linear algebra. It igjenerated using the inverse iteration, in the same cluster
used in molecular orbital of chemical, vibrational analysis,of the eigenvalues [20]. The MGS algorithm is sequential
image processing, data searches, etc.. and inefficient for parallel computing. The orthogonality
Owing to recent improvements in the performance ofof eigenvectors computed by the MGS algorithm depends
computers equipped with multicore processors, we haven the condition number. The Householder orthogonaliza-
had more opportunities to perform calculations on paralletion algorithm can orthogonalize eigenvectors by using the
computers. As a result, there has been an increase in thouseholder transformation [19]. The orthogonality in the
demand for an eigenvalue decomposition algorithm that caRlouseholder orthogonalization algorithm does not depend
be effectively parallelized. on the condition number. The Householder algorithm is
Any nxn symmetric matrix is transformed into a symmet- sequential and inefficient for parallel computing. Ishigami et.
ric tridiagonal matrix by using a sequence of Householdegal. have developed parallel algorithms for the Householder
transformations [4], [9]. This preconditioning process helpsorthogonalization algorithm in terms of the compact WY
to shorten computational time drastically. Hence, eigenvalueepresentation [15], which is named as the cWY algorithm
decomposition algorithms of symmetric tridiagonal matricedn this paper.
are important. Several eigenvalue decomposition algorithms In ExaFLOP computing, since it is critical issue to min-
of a symmetric tridiagonal matrix have been proposed [3]imize electricity, heterogeneous environments are suitable.
[7], [10], [12], [13], [17]. They are classified into two types. Consequently, it is important to validate the inverse iteration
The first type of algorithm computes simultaneously allalgorithms with the CGS algorithm, the MGS algorithm, and
the eigenvalues and the eigenvectors. Algorithms of thithe cWY in heterogeneous environments. As a heteroge-



neous environment, cell processor has PowerPC Processorn a famous algorithm, a real symmetric matri is
Element (PPE) and eight cores of Synergistic Processaimilarly transformed into a symmetric tridiagonal matrix
Elements (SPEs). PPE and SPEs can share the same mem@nby using the Householder transformations. Namely,
Since SPEs are consisted as multicore, SPEs archive the high

performance of BLAS level-2 and level-3 [1]. Basic Linear QArAQa =T, (7)
Algebra Subprograms (BLAS) is an application program- ) ) o

ming interface standard for publishing libraries to performWith suitable orthogonal matrix)4. After the tridiagonal-
basic linear algebra operations such as vector and matri%ation, 7" is decomposed as

multiplications. BLAS level-1 can compute vector operations -

such as inner products, dot products and vector norms. BLAS T'=QrDQr (®)

level-2 and level-3 contain matrix-vector and matrix-matrix . .
. ) . some orthogonal matrir. Consequently, by combinin
operations, respectively. The CGS algorithm and the MG y 9 57 q Y, By 9

algorithm can be computed using BLAS level-2 and level- i?/'é;)a\;vlth Eq.(8), the eigenvalue decomposition Afis
1, respectively. The cWY needs BLAS level-1 and Ievel-g

2. Note that, the Householder orthogonalization algorithm A= D T 9
is almost computed using BLAS level-2. Therefore, these (QaQr)D(@aQr) ®)

orthogonalization algorithms should be performed in SPEs53 | it fi | ith
By using PPE, an implementation of an inverse iteration is”* nverse Iteration algoritnm

easy. In this paper, we compare with the CGS algorithm, |, this section, we introduce the inverse iteration algo-
the MGS algorithm, and the cWY on PowerXCell 8i  (iihm \when some of all the eigenvalues are close together
processor. _ _ _ _ or there are clusters of eigenvalues, reorthogonalization must
In Section 2, we give a brief review on eigenvaluépe needed to all the eigenvectors associated with such
decomposition. In Section 3, we explain an inverse iterationyenyalues, since the eigenvectors needs to be orthogonal to

algorithm and describe its orthogonalization algorithms. INgach other. Therefore, reorthogonalization algorithms should
Section 4, we confirm each performance in the inverse o adopted.

i;eratioQCaII%%itg_ms with orthogonalization algorithms on Section 3.1, we explain a concept of the inverse
owerAt-e | processor. iteration algorithm. In Section 3.2, 3.3, and 3.4, the CGS
: e algorithm, the MGS algorithm and the cWY are described,
2. Elgenvalue dgcomp05|t|on respectively. In Section 3.5, these orthogonalization algo-
Let A ben x n matrix such that rithm are compared. In Section 3.6, we descrive a relation-
Av;=M\v; (j=1,2 n) @ ship between BLAS and the orthogonalization algorithms.
J 9% T by sy ey

where A; (A; @ A; € C) andwv; (v; : v;(# 0) € C) 31 Concept

are an eigenvalue and an eigenvectordofrespectively. If _ _ _
eigenvectorw; of A are linear independent, then When )\; is an approximate value of; and a starting
vector v§0) are given, the inverse iteration algorithm can

AV = VD, (2) compute an eigenvector &f. To this end, the following
D = diag[\M X2 - A, (3)  equation is solved iteratively:
Vi o= [on v - . (4)

. . . . _ _ (T - le) o = 1) (10)
Since V is nonsingular, the inverse matri¥ —! exists J J
and V~'V is equal to an identity matri¥. Hence, A is

If the eigenvalues ofl" are mutually well-separated, the
decomposed as

solution of vj(.k) in EqQ.(10) generically converges to the

A=VDV! (5)  eigenvector associated with; ask goes toco The above
) ) N iteration algorithm is the inverse iteration algorithm. When
Eq.(5) is called eigenvalue decomposition Af m eigenvectors are computed, the computational cost of this

Let A be real symmetric, then; € R andv; € R.  gigorithm is of ordernn. The computational cost is less than
Moreover, eigenvectors; are orthogonal to each other, if that of other algorithms.In the implementation, the vector
A1 # A2 # -+ # An. Note here thal” becomes orthogonal (k) st be normalized to avoid overflow.
matrix by the normalizatiorw; — wv;/||v;||. Then A is /

decomposed as 3.2 Classical Gram-Schmidt algorithm

A=VDVT i i
| £214 ©) The CGS algorithm has been proposed as the first re-

whereV " denotes the transposed matrix 16f orthogonalization algorithm. In the CGS algorithm, a basis



1. 1 = v1.
2: for j =2 tom do
3:  Generatev; in an algorithm.
4:  Eq.(11) and Eq.(12) : Orthogonalize; to ; by usingx1, ---,
Tj—1-
5: end for
Fig. 1: Classical Gram-Schmidt algorithm.
1: for j =1ton do
2: Generatevj(.o) from random numbers.
3: k=0
4: repeat
5: k< k+1.
6: Normalizev(* ™%,
7: Eq.(10) : Computa;](.k) by usingv;k_l).
8: if [X; — Xj—1| < 1073||T], then
9: fori=j1t057—1do
zT
1
2
10: v](.k) — v;k) — e, @2, ,xj_1] : U§k)
xl
11: end for
12: else
13: =7
14: end if

15: until some condition is met.
16:  Normalizev;™ to x;.
17: end for

Fig. 2: Inverse iteration algorithm with the CGS algorithm.

j1 means the inde) of the first eigenvalue of a cluster.

vectorx;, which is an orthogonal vector i, is computed

as follows:
j—1
x = vj—z<'vj,wi>xi, (11)
=1
o = (12)
! (B2l

1: for j=1ton do

2: Generatev§0) from random numbers.
3: k=0

4: repeat

5: k+—k+1.

6: Normalizefuj(.k*l).

7 Eq.(10) : Computazj(.’€> by usingv;kfl).
8: if [X; — Aj_1] < 1073||T||, then
9: fori:jlto(jfldo

10: 'vj(.k> — 'ujk) — <v§k),xi>wi
11: end for

12: else

13: =7

14: end if

15:  until some condition is met.
16:  Normalizev") to x;.
17: end for

Fig. 3: Inverse iteration algorithm with the MGS algorithm.

3.3 Modified Gram-Schmidt algorithm

If the MGS algorithm is adopted to reorthogonalize eigen-
vectors, the computational cost is of order’n. There-
fore, the computational cost, for which eigenvectors of a
matrix 7' are computed, increases significantly. In general,
to implement the inverse iteration algorithm on computers,
the MGS algorithm with the Peters-Wilkinson method [17]
is adopted as the standard orthogonalization process. The
MGS algorithm with the Peters-Wilkinson method is also
available on DSTEIN, which is implemented in the LAPACK
code [16] of the inverse iteration algorithm for computing
eigenvectors of a real symmetric tridiagonal matrix. In
the Peters-Wilkinson method, when the distance between
the close eigenvalues is less thad—3||T||, these close
eigenvalues are regarded as members of the same cluster
of eigenvalues, and all of the eigenvectors associated with
these eigenvalues are orthogonalized.

Figure 3 shows the inverse iteration algorithm based
on the MGS algorithm with the Peters-Wilkinson method.

In Eq.(11), (v;, z;)x; means an orthographic projection on

the direction to; of ;. Throughw, is subtracted the This loop includes the iteration based on Eq.(10) and the

orthoaraphic proiectiony. can be picked out of elements orthogonalization of the eigenvectors. This orthogonalization
grap proJ Vi P process becomes a bottleneck of the inverse iteration with

x1,T2, - ,Tj—1. Thus,z; is orthogonalized. . . . X
Figure 1 shows the orthogonalization algorithm using thereSpeCt o the computational time. The MGS algorithm is

CGS algorithm. Since Eq.(11) and Eq.(12) are Compute(r]nalnly based on BLAS level-1 such as the inner product

using an inner product, BLAS level-1 has to be adopted?peraltlon and the AXPY operation [1].

Therefore, to adopt BLAS level-2, Eq.(11) and Eq.(12)3.4 Householder orthogonalization algorithm
should be transformed into the following vector product. The Householder orthogonalization algorithm is one of the

x| alternative orthogonalization algorithms. When some vectors
, g v;, w; € R" satisfy ||v;]la = |lwj|2, there exists the
o =v; — [T, X, xia] || (13)  symmetric matrixH; satisfying H;H = HH; = I,

T H;v; = w; defined by
Zj-1

Hj =1 - s;y;y;, (14)

Figure 2 is a code, which is based on DSTEIN in
LAPACK and modified the orthogonalization process fromwherey; = v; —w; ands; = 2/||y;||3. The transformation
the MGS algorithm to the CGS algorithm. Specifically, lineby H; is called the Householder transformation. Figure 4
10 in Figure 2 is changed to Eq.(13). shows the Householder orthogonalization algorithm. The



for 5 =1 tom do
Generatev; in an algorithm.

for j =1tom do
Generatev; in an algorithm
’

1 1:

2 2

3 v} = (I - Sj_lyj_ly;r_l) (I - sgygy;) (I - slylyir) v;. 3 'v§ = (I - )9_18;_11@11) vj.

4. Computey; ands; by usingvg. 4.  Computey; ands; by usingv;..

5 z; = (I _ S1y1y1T) (I _ 52y2y;—) . (I _ Sjy]'y;r) e;. 5 Eq.(24) and Eq.(25) : Updafg; andS; by usings;, y;, S;—1 and
6:

L
end for J

q; = (I - YjSJ-YjT) e;.

Fig. 4. Householder orthogonalization algorithm. 7: end for
Fig. 5: Householder orthogonalization algorithm in terms of
the compact WY representation.

o

vector y; is the vector, in which the elements frointo

j — 1 are the same as the elements@fand the elements 1:for j=1to n(OC)!O
from j + 1 to n are zerow} andw; are defined as follows: 2 Generate; from random numbers.
T 4 repeat
ro= ' e, oy e 5: kE+k+1.
i {“]{1} Yiti-y Yitsy U]{n}} 6 Nomalizen(* V.
= ijlHj*Q T H2H1Uj7 . (15) 7 Solve linear equations (T — XjI) v§.k) = vj(.kfl).
1 / I X -3 h
w, = |v - s 0} 16 8: if |X; —Aj_1] < 1073||T]|, then
j { {1} -1y G : e g R,
h 10: if 5o =1andk =10 then
where, 11: ComputeY; = y1 andS1 = s1 by usingvy;, .
12: end if )
n . ’ _ _v. oTyT
_ / Z - (17) 13: Vjot1 = (I Yﬂusjcyjc)”j -y
Cj = 8GN\ Vi Uity 14: Computey;, +1 ands;, 41 by usingv’_,,. _
i=j 15: Eq.(24) and Eq.(25) : Updat®;_ 41 and S; 1 by using
. Sjc+1’ yjc+1’ Sjc and}fjc'
H;, y; ands; are computed using; as follows: 16: o{¥) (1 - %GHS'CHYJLJ € i1
T 17: else
H; = I-s;yy; (18) 1s: J1 < J.
o ’ 19 19: end if
Yy, = Y- wy (19)  20:  until some condition is met.
n 21: Normalizevjk to v;.
2 2 2 .
lyslls = Wiy —e)®+ D vjy®  (20)  2zendfor
i=7+1 . . . . . .
. i=j+ Fig. 6: Inverse iteration algorithm with the cWY algorithm.
_ / 2 / . 2
= D Ui’ — Wipe+d (21)
i=J . . . ) .
5 - and upper triangular matriceS; is defined recursively as
= 2 (cj - Uj{j}cj) : 22 follows:
2 1
SR 7 A et o G e wl, @4
' | | J 'J{J} g Si—1 _Sijfli/j—Elyj (25)
The vectore; in Figure 4 is thej-th vector of ann- i 0 5

dimensional identity matrix. ) ) )
The orthogonality of the vectors:; generated by the N this case, the following equation holds
Householder_Qrthogonalization algorif[hm does not depend HyHy- - H; =1 — YijYjT. (26)
on the condition number of a matri¥. Therefore, the
Householder orthogonalization algorithm is more stable thas shown by Eq.(26), the product of the Householder
the MGS algorithm. On the other hand, being similar to thematrices H1H, - -- H; can be rewriten in a simple block
MGS algorithm, it is sequential algorithm that is mainly matrix form. Herel — YijYjT is called the compact WY
based on BLAS level-1. Its computational cost is higherepresentation of the product of the Householder matrices.
than that of the MGS algorithm. Thus the HouseholderFigure 5 shows the orthogonalization algorithm.
orthogonalization algorithm is an ineffective algorithm in Figure 6 is a code, which is based on DSTEIN in
parallel computing. LAPACK and changed the orthogonalization process from
By combination with the compact WY representationthe MGS algorithm to the cWY algorithm. In other words,
[18], the Householder orthogonalization algorithm becomeshe MGS algorithm (from line 4 to 15 in Figure 3) is rewriten
capable of computation with BLAS level-2 [20]. Hence, in the cWY algorithm.In Figure 6, the indegx denotes thg.-th
this paper, the cWY is adopted to an inverse iteration. Leeigenvalue of the cluster in computing theth eigenvector.
Yy = y1 € R and S; = s € R'™™! MatricesY;  This index j. needs to compute and updats and Y.



Table 1: Comparison of the orthogonalization algorithms [5]4- EXperimentS

[20]. In this section, we describe some numerical experiments
algorithms ~ Computation ~ Synchronization ~ Orthogonality performed using the CGS algorithm, the MGS algorithm,
cGS almosm2n O(m)  O(er(A)?) and the cWY algorithm on PowerXCé&l! 8i processor.
MGS almost2m?n O(m?) O(er(A)) In the experiments, we use GigaAccel 180, which is
House  almostim®n O(m?) O(e) a PCI Express board with PowerXCelf 8i processor.
cWY almost4m?n O(m) O(e)

PowerXCell™ 8i processor is one of Cell Broadband
Engind™. The theoretical performances of a single and
) ] ] _double precision floating-point arithmetic operation on an
Therefore, a variablg. should be confirmed on line 9 in gpg i PowerxCell™ 8i processor ard S0GFLOPS and
Figure 6. _ _ . 90GFLOPS in2.8GHz, respectively. We implement those

The cWY algorithm has a stable orthogonality arisingg|qorithms by using Cell SDK 3.1 [2], which is developed
from the Householder transformations, and its mathematicg)y the |BM corporate [14]. Cell SDK 3.1 includes the
calculation is mainly performed by BLAS level-2 such aspargjielized BLAS for Cell Broadband Engifi# . The MGS
the product of a matrix and a vector and a rank-1 updatgqorithm is implemented in Cell SDK 3.1.

operation. As experimental matrices, we use three types. Type 1 is

a random matrix, of which elements are set to the random
number on the interval frond to 1. Type 2 is shown as
follows:

3.5 Comparison of the orthogonalization algo-
rithms

The cWY algorithm has a stable orthogonality arising
from the Householder transformations, and its mathematical
calculation is mainly performed by BLAS level-2 such
as the product of a matrix and a vector and a rank-1 : (27)
update operation. As a result, this orthogonalization has 1 1 1
more stable and sophisticated orthogonality, and it is more 1 1

effective for parallel computing than the MGS algorithm. is the alued-Wilki 5t which i |
Table 1 displays the differences in performance of the'YPe 3 is the glued-Wilkinson matrixV'j, which is rea

four orthogonalization methods, considered in the abovdymmetric an.d .has d|men§|ons on the order of thousands.
sections. In this table, “House” denotes the HouseholdefN® 9lued-Wilkinson matrix has been used to evaluate
orthogonalization algorithnmComputationdenotes the order the performance of the INVerse Iteration algor!thms as the
of the computational cosSynchronizatiomenotes the order benchmark problems of elgenvglueTz decomggfltlon [6], [8].
of the number of synchronization®rthogonality denotes W, consists of the bllgfk ma_th2_1 €R and the
the norm|[V TV — I|, whereV = [vy,-- ,v,]. ¢ denotes scalar parametef € R*** and is defined as follow:
the machine epsilon and denotes the condition number of [ wit
a matrix. These are the results obtained from [5] and [20]. 2119
On the other hand, the computational cost in the CGS ng
algorithm is twice less than that in the cWY algorithm. wi = S (28)
Therefore, when high orthogonality is not needed, the CGS g o ’
algorithm is also the suitable selection for the orthogonal- s
ization. oyt
21

3.6 Adoption of BLAS

The line from 1 to 7 on each algorithm is the code in
the inverse iteration algorithm without an orthogonalization [10 1
algorithm. This computational costn is relatively smaller 19 1
than that in the inverse iteration algorithm with an orthogo- 1
nalization algorithm shown in Table 1. Therefore, we adopt ng - _
SPEs to orthogonalization algorithms. w0

In the CGS algorithm, the line 10 on Figure 2 can be
computed using BLAS level-2. In the MGS algorithm, BLAS
level-1 is adopted in the line 10 on Figure 3. In the cWY -
algorithm, the line 13 and 16 on Figure 6 can be performednd ¢ satisfies0 < ¢ < 1 and is also the semi-diagonal
with BLAS level-2, and the line 11 and 14 can be performedelement ofW_J. SinceW_J is real symmetric tridiagonal and
with BLAS level-1. its semi-diagonal elements are nonzero, all the eigenvalues of

0

where W, is defined by

: (29)

|
1 10]
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Fig. 7: Relationship between dimension size and performance in the orthogonalization algorithms.

Wg are distinct and real, and they are divided into 21 clusters In type 1 and 2 of Figure 7(c}}V "V — I||r in the CGS
of close eigenvalues. Whehis small, the distance between algorithm is nearly equal to that in the MGS algorithm. The
the minimum and maximum eigenvalues in any cluster iSCGS algorithm and the MGS algorithm are focused on the
small. In our experiments, we sét= 104 orthogonality of eigenvectors. On the other hand, in the cWY

Figure 7 and Table 2 show the experimental results of thelgorithm, accuracy of eigenvalue decomposition is given
orthogonalization algorithms. Time in Table 2 is the compu-importance. Therefore, the orthogonality of eigenvectors is
tational time.||AV — VD||r and ||V TV — I||r mean the something lower than that in the CGS algorithm and the
frobenius norm of synchronization and orthogonalizationMGS algorithm.
respectively. In type 3 of Figure 7(c),|VTV — I|z in the CGS

In type 11 each eigenva|ue is usua”y Separated_ On thélgo”thm is worse than that in the other Orthogonalization
other hand, eigenvalues in type 2 and 3 become clustedlgorithm. Ing = 10~*, eigenvalues in type 3 are extremely
Therefore,|AV — VD|r and |VTV — I||r are smaller close together. Therefore, the CGS algorithm is aborted that
than that in type 2 and 3. v; is picked out. . o

In 2100 dimension size of type 1 in Table 2, the compu- Ir_1 summarlzatlon, the computational time in the cWY al-
tational time in the MGS algorithm, which is implemented 9°ithm is adequate speedy. Furthermgré)’ —V D||» and
by the IBM corporate, is smaller than that in the otherlV"V — I||r in the cWY algorithm is sufficient accuracy.
orthogonalization algorithms. However, the increasing raté'€nce, the cWY algorithm is suitable, except case that the
of the computational time in the MGS algorithm is higher ashigh-orthogonality of eigenvectors is given importance.
shown in Figure 7(a). The MGS algorithm is computed usin .
BLAS level-1. On the other hand, the CGS algorithm an%- Conclusions
the cWY algorithm are almost computed using BLAS level- |n this paper, we validated the parallel performance of
2. Therefore, in the computational time, the CGS algorithnthe inverse iteration algorithms with the CGS algorithm, the
and the cWY algorithm are better. MGS algorithm, and the cWY algorithm on PowerXCe

In Figure 7(b) and Table 2|AV — VD||r in the CGS 8i processor. PowerXCéll¥ 8i processor is one of het-
algorithm is nearly equal to that in the MGS algorithm. erogeneous environments. In ExaFLOP computing, since
||[AV —V D||r of the cWY algorithm is the smallest, except it is critical issue to minimize electricity, heterogeneous
the case 06300 dimension size in type 3. The exception is environments are suitable. SPEs in PowerXC¥II8i pro-
likely to be caused by the order of. In the experiments; cessor archive the high performance of BLAS level-2 and
is listed in descending order of eigenvalues, which are relatelével-3. The inverse iteration algorithms are algorithms for
to eigenvectors. Therefore, by using the cWY algorithm withcomputing eigenvectors and need a lot of computational cost.
suitable order ofv;, accuracy of eigenvector computation Therefore, the algorithms should be computed with SPEs.
can become more properly. The experimental results show that the computational time




of the CGS algorithm and the cWY algorithm are shorter
and||AV —V D||r and||[V TV — ||z of the cWY algorithm
are sufficiently small.

In a future work, the inverse iteration algorithms should
be compared on General-purpose computing on graphics
processing units (GPGPU).

Table 2: Experimental results
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algorithm  time[sec.] ||AV —VD|p VTV —I||r
typel (dimension size is 2100.)
CGS 10.35  9.15x 10~15 2.50 x 1014
MGS 732  9.15x 10715 2.50 x 1014
cWY 1351  0.70x 10~15 2.61x 1014
(dimension size is 4200.)
CGS 60.54 1.25x 1014 3.31x 10714
MGS 64.51 1.25x 10~ 14 3.32x 10714
cWY 94.27 0.067x 1014 3.36x 10714
(dimension size is 6300.)
CGS 188.52 1.52x 1014 3.49x 10714
MGS 478.53 1.53x 1014 3.49x 10714
cWY 318.04 0.30x 1014 4,52 x 10714
(dimension size is 8400.)
CGS 768.40 1.82x 1014 3.47 x 1014
MGS 5887.12 1.81x 10~ 14 3.47 x 1014
cWY 1408.27 1.01x 10~ 14 21.48x 1014
(dimension size is 2100.)
CGS 4315  8.72x 10~ 4 1.06 x 10~13
MGS 263.82 8.64x 1014 1.11x 10713
cWY 78.75  0.37x 10714 2.56 x 10713
(dimension size is 4200.)
CGS 247.92 1.79x 1013 1.84x 10°13
MGS 2392.14 1.77x 10713 1.97 x 10-13
cWY 456.93 0.052x 1013 4,96 x 10~13
(dimension size is 6300.)
CGS 754.69  2.64x 10713 2.83x 10713
MGS 7864.63 2.63x 1013 3.04x 10713
cWY 1394.79  0.061x 1013 7.45 x 1013
(dimension size is 8400.)
CGS 1718.53  3.51x 1013 4.33x 10713
MGS 16770.71  3.48 10713 453 x 10713
cWY 3186.58 0.078x 1013 10.18 x 10~13
(dimension size is 2100.)
CGS 20.13 1.11x 1012 1.00 x 10~13
MGS 28.15 1.11x 1012 1.07 x 10~13
cWY 35.64 0.18x 1013 1.06 x 10~13
(dimension size is 4200.)
CGS 89.47 1.75x 10~12 7.72x 10712
MGS 202.16 1.75x 1012 1.53 x 1012
cWY 158.18 0.25x 10~12 0.95x 1012
(dimension size is 6300.)
CGS 210.98  2.37x 10711 77.29x 10-10
MGS 678.24  2.51x 10~ 11 2.00 x 1010
cWY 371.78 26.89x 10~ 11 2.17 x 10710
(dimension size is 8400.)
CGS 391.50 7.93x 10712 757.15x 1011
MGS 1422.99 7.94x 1012 3.13x 1011
cWY 678.31 3.13x 10712 3.13x 1011




