
Is D the Answer to the One vs. Two Language High
Performance Computing Dilemma?

Ralph Butler, Chrisila Pettey, and Matthew Wang
Department of Computer Science, Box 48

Middle Tennessee State University
Murfreesboro, Tennessee 37132, USA

(ralph.butler, chrisila.pettey)@mtsu.edu, mw3n@mtmail.mtsu.edu
Abstract – During the course of our careers we have
written a variety of high performance computing programs
(parallel Genetic Algorithms [12, 13], genetic sequence
analysis [4], automated reasoning applications such as
theorem provers [5], and an asynchronous, dynamic, load-
balancing library [1, 3, 7, 10]). In our projects we often
found ourselves using a bilingual programming model to
gain the advantages of both high performance execution
and advanced language features like garbage collected data
structures. D gives us access to both facilities in a single
language. While D [8] is not a new language in the
Computer Science scheme of things, it has only recently
advanced to the point where we could begin to consider it
as a solution to our dilemma. In this paper we discuss how
we use D for rapid development of high performance code,
and how we link it to legacy code such as MPICH2 [11] and
ADLB.

Keywords: D Programming, Bilingual Computing, High
Performance Computing

1 Introduction
As computer scientists we recognize the value in

learning multiple languages. Each language brings a unique
set of features to the table that has the potential for
providing elegant solutions to various problems. However,
in a perfect world, we would only need to be an expert in
one language, and that language would have all the features
needed to easily create well-designed code. Since the world
is not perfect, we have typically in the past focused on one
language per project. In practice, the high performance
world typically relies on Fortran or C, and in our case it was
C. But the lure of scripting languages such as Python would
occasionally draw us in. When our project needed the ease
of built-in advanced data structures such as associative
arrays along with automatic garbage collection of those
structures, we used a high level scripting language such as
Python. When high performance was absolutely critical or
if we were doing low-level programming such as memory
management, then we typically used some language that
was a C-derivative.

Over time, we began to incorporate both scripting
and compiled languages into one project in such a way that
distinct pieces of the project might be in different languages,
but the interaction between pieces written in different
languages was minimal. For example, initially the mpd
component of MPICH2 [11] was written in Python while
the rest of the modules were written in C [9]. The mpd
component is a stand-alone process management system that
has a trivial interface for connecting to other systems.

Because we always want both performance and
ease of development, we have ended up doing bilingual
computing. In the bilingual model of computing the
interactions between the components written in different
languages involve the concept of shared high-level data
structures. The reason for two languages was sometimes to
overcome a missing feature in C (the high-level data
structure) [5]. And sometimes we used two languages to
overcome a limiting feature in Python (the global interpreter
lock) [6].

However, bilingual computing can be problematic.
Besides the obvious requirement of being expert in two
languages, bilingual computing introduces the problem of
what parts of the project to do in each language and how to
interface the various pieces with each other. These are not
always trivial problems to overcome. So we are left with
the dilemma of do we choose only one language for a
project and lose important features of the other language, or
do we choose two languages and deal with the problems of
interfacing the two languages? And if we choose two
languages, someone has to maintain both. As we mentioned
previously, MPICH2 was written in C, but its process
management component was written in Python. The
MPICH2 team, however, felt compelled to rewrite the mpd
component in C not for performance reasons but largely for
ease of maintenance.

The solution to our dilemma is that we need a
single programming language that has all the features to
elegantly solve our problems. The D programming
language [8] was initially developed with the idea of
improving C++, and has recently stabilized into what we
believe to be the answer to our dilemma. In this paper we
begin by discussing salient attributes of D. We then

describe our interfaces to legacy code – specifically
MPICH2 [11] and ADLB [1, 3, 7, 10].

2 Why D?
 The obvious question to ask is, "Why D?" It
doesn't even appear on the TIOBE Programming
Community Index [14] of the top 20 most used
programming languages. It is interesting to note, however,
that the top five programming languages on the list are C
derivatives, and four of the remaining languages in the list
are scripting languages.
 As mentioned before, D was initially developed
with the idea of improving C++. Specifically, the
developers asked this question:

Can the power and capability of C++ be
extracted, redesigned, and recast into a
language that is simple, orthogonal, and
practical? Can it all be put into a package
that is easy for compiler writers to correctly
implement, and which enables compilers to
efficiently generate aggressively optimized
code? [8]

 Because of this, it has many of the features of C/C++ that
we consider to be important for high performance
computing:

• It is so compatible with C that it will link with
existing C programs.

• It has all the features of C from pointers to inline
assembly language.

• It has all the features of C++ including a simplified
method of handling templates.

• Programming can look like C or C++.
• Performance is equivalent to C.
• The developers claim that on average it compiles

100 times faster than C++ and four times faster
than GO. [2]

So we have the performance and features of the C derivative
languages. But we also want the high-level data structures,
automatic garbage collection, and rapid development time
of scripting languages. D actually has many of these
features as well. For instance:

• Rapid development can be done with the rdmd
wrapper to dmd (the original D compiler) that
allows for compiling, linking, and executing
without appearing to compile and link.

• D has advanced data structures such as lists and
associative arrays.

• D has automatic garbage collection.
• It has Perl-compatible regular expression handling.

In addition to having the aforementioned features of the C
derivative languages and the scripting languages, D has
some features that can be very helpful for high performance
computing projects. Features such as:

• built-in language support for it's own thread model
(it should be noted that memory is not shared by
default, but it can easily be annotated as shared),

• built-in language support for unit test – both with
compiler options and within actual code,

• facilities for contract programming

3 Interfacing D to Legacy HPC Code
 Because D is link-friendly with C, i.e., it just links

with C functions, one would be inclined to believe that it
would also be compile-friendly with C. What we mean by
that is you might think that it would allow you to include C
header files. But that is not the case. Instead D imports its
own modules. For example, you might expect to be able to
include the mpi.h header file. Instead, the mpi.h header file
has to be converted to a D

/* -*- Mode: C; c-basic-offset:4 ; -*-
*/
/*
 * (C) 2001 by Argonne National
Laboratory.
 * See COPYRIGHT in top-level
directory.
 */
/*src/include/mpi.h. Generated from
mpi.h.in by configure.*/
#ifndef MPI_INCLUDED
#define MPI_INCLUDED
/* user include file for MPI programs */
/* Keep C++ compilers from getting
confused */
#if defined(__cplusplus)
extern "C" {
#endif
/* Results of the compare operations. */
#define MPI_IDENT 0
#define MPI_CONGRUENT 1
#define MPI_SIMILAR 2
#define MPI_UNEQUAL 3
typedef int MPI_Datatype;
#define MPI_CHAR
((MPI_Datatype)0x4c000101)
#define MPI_SIGNED_CHAR
((MPI_Datatype)0x4c000118)
#define MPI_UNSIGNED_CHAR
((MPI_Datatype)0x4c000102)
#define MPI_BYTE
((MPI_Datatype)0x4c00010d)

Figure 1. A portion of mpi.h.

module. To facilitate this process, there is a htod program.
htod is quite useful in that it accomplishes most of the task,
and most of what needs to be done by hand is annotated in
the converted file with comments. Admittedly there is some

hand-crafting necessary to make the project work. The
transformation process is shown in Figures 1 – 3 where we
list a portion of the mpi.h header file, what that same portion
looks like coming out of htod, and what the final hand-
crafted portion looks like.

/* Converted to D from
\mpich2i\include\mpi.h by htod */
module mpi;
/* -*- Mode: C; c-basic-offset:4 ; -*-
*/
/*
 * (C) 2001 by Argonne National
Laboratory.
 * See COPYRIGHT in top-level
directory.
 */
/* src/include/mpi.h. Generated from
mpi.h.in by configure. */
//C #ifndef MPI_INCLUDED
//C #define MPI_INCLUDED
/* user include file for MPI programs */
/* Keep C++ compilers from getting
confused */
//C #if defined(__cplusplus)
//C extern "C" {
//C #endif
/* Results of the compare operations. */
//C #define MPI_IDENT 0
//C #define MPI_CONGRUENT 1
const MPI_IDENT = 0;
//C #define MPI_SIMILAR 2
const MPI_CONGRUENT = 1;
//C #define MPI_UNEQUAL 3
const MPI_SIMILAR = 2;
const MPI_UNEQUAL = 3;
//C typedef int MPI_Datatype;
extern (C):
alias int MPI_Datatype;
//C #define MPI_CHAR
((MPI_Datatype)0x4c000101)
//C #define MPI_SIGNED_CHAR
((MPI_Datatype)0x4c000118)
//C #define MPI_UNSIGNED_CHAR
((MPI_Datatype)0x4c000102)
//C #define MPI_BYTE
((MPI_Datatype)0x4c00010d)
Figure 2. A portion of mpi.h that has been run through htod

/* Converted to D from
\mpich2i\include\mpi.h by htod */
module mpi;
/* -*- Mode: C; c-basic-offset:4 ; -*-
*/
/*
 * (C) 2001 by Argonne National
Laboratory.
 * See COPYRIGHT in top-level
directory.
 */
/* src/include/mpi.h. Generated from
mpi.h.in by configure. */
//C #ifndef MPI_INCLUDED
//C #define MPI_INCLUDED
/* user include file for MPI programs */
/* Keep C++ compilers from getting
confused */
//C #if defined(__cplusplus)
//C extern "C" {
//C #endif
/* Results of the compare operations. */
//C #define MPI_IDENT 0
//C #define MPI_CONGRUENT 1
//C #define MPI_SIMILAR 2
//C #define MPI_UNEQUAL 3
const MPI_IDENT = 0;
const MPI_CONGRUENT = 1;
const MPI_SIMILAR = 2;
const MPI_UNEQUAL = 3;
//C typedef int MPI_Datatype;
extern (C):
alias int MPI_Datatype;
//C #define MPI_CHAR
((MPI_Datatype)0x4c000101)
//C #define MPI_SIGNED_CHAR
((MPI_Datatype)0x4c000118)
//C #define MPI_UNSIGNED_CHAR
((MPI_Datatype)0x4c000102)
//C #define MPI_BYTE
((MPI_Datatype)0x4c00010d)
const MPI_CHAR =
cast(MPI_Datatype)0x4c000101;
const MPI_SIGNED_CHAR =
 cast(MPI_Datatype)0x4c000118;
const MPI_UNSIGNED_CHAR =
 cast(MPI_Datatype)0x4c000102;
const MPI_BYTE =
cast(MPI_Datatype)0x4c00010d;
Figure 3. A portion of mpi.h that has been run through htod

and then hand-crafted to work correctly

While the conversion process was a bit tedious, it

was not difficult, and we were successful in using a small

subset of MPICH2 in D programs. We turned our results
over to the current MPICH2 support team, and discussions
are being held to determine if MPICH2 is going to support
D as it already does C, C++, and Fortran.

Having this experience behind us, it was relatively
trivial to perform the same operation on ADLB and begin
using ADLB in D programs. Encouraged by these results,
this semester we have provided D as an option in our
graduate level parallel processing class which uses both
MPI and ADLB.

As a purely intellectual exercise to convince
ourselves that D would be a good replacement for C and/or
Python, we did the necessary work to convert portions of
mpd, ADLB, and the theorem prover into D. In cases where
our major concern was nothing but performance, we found
that writing D code was essentially equivalent to writing C
code. If we wanted to, we could use pointers and write
memory managers. On the other hand, if we wanted to let D
handle memory management we could. In fact, D was able
to handle practically all that we wanted it to handle. There
were only two places where D was somewhat less than
perfect for our needs. The first tiny flaw is that D's
definition of associative arrays is not as elegant as Python's.
If you want to map a single data type to another single data
type, D is fine. But if you want to use multiple data types as
the key, you have to use a Variant – so technically D is up
to the task but it is not as elegant as Python. The second
tiny flaw is that as far as we can tell, there is no serialization
library right now in D. There is one proposed that has not
been accepted. But to fully re-implement some of the mpd
code, we would need serialization. As part of our exercise,
we implemented a small serialization library suitable for our
own needs, but it would be nice to have serialization as part
of the distribution libraries.

4 Conclusions and Future Work
During the course of several decades of writing

high performance code our goals have evolved. Initially the
aim was simply to improve performance – which meant
programming in C (or some C derivative). Over time our
goals evolved to allow more features of scripting languages
for small parts of a large project – features such as advanced
data structures and automatic garbage collection.
Eventually our goals would require the sharing of data
structures between high-level scripting code and low-level
performance code in a single project. The desire for both
caused us to develop a bilingual programming model, thus
requiring us to deal with the problems associated with
sharing data structures between languages. This was not an
ideal situation.

We believe the dilemma of whether to code a
project in a single language or two languages can be solved
by coding in D. D provides the power and capability of the
C derivative languages. It also provides the flexibility of the
scripting languages. And D has some added attributes that

aren't available in the others. It is trivial to link D code to C
code, and it is fairly easy to interface D to legacy code using
the htod software. The interface to legacy code does require
some manual labor to get the project to work, but it is
minimal.

We have begun using D in our graduate Parallel
Processing class as well as in our research. The elegance of
the D threading model and its ease of use with MPI and
ADLB have led to plans to use D next year in a Software
Design and Development course which might not otherwise
be able to use high performance computing facilities.

While we can use D on our own cluster, on
machines like the BlueGene/Q, this might not currently be
possible. Typically you can only be guaranteed C/C++ and
Fortran. Since D is under consideration by the MPICH2
team, this may lead to availability of D on the bigger
clusters/machines.

Just as people constantly argue about what
language is better. They also have frequent discussions
about whether or not languages are scalable. For example,
they might say, "Perl's fine for quick and dirty hacks, but it's
not scalable." Or they might say, "Python is elegant and
scalable." We doubt that anyone would argue that C/C++ is
not scalable. On the other hand, the large projects done in
C/C++ may not be as elegant or as maintainable as those
done in Python. All arguments aside, if you want
performance, rapid development, elegance, scalability, safe
language features, ease of maintenance, and advanced
software engineering functionality, then it is really hard to
find it all in one place other than D. At this point we see no
reason to use anything other than D for new projects. From
our point of view it scales elegantly, and gives us all the
features we need.

5 References
[1] ADLB: Asynchronous Dynamic Load Balancing,
http://www.cs.mtsu.edu/~rbutler/adlb Accessed March
2012.

[2] Alexandrescu, A., "Three Cool Things About D – The
Case for the D Programming Language," Google Tech Talk,
July 29, 2010,
http://www.youtube.com/watch?v=RlVpPstLPEc Accessed
March 2012.

[3] ASCR SciDAC Universal Nuclear Energy Density
Functional project: A Closer Look at Nuclei, Building a
Universal Nuclear Energy Density Functional.
http://www.scidac.gov/physics/unedf.html Accessed March
2012.

[4] Butler, R., Butler, T., Foster, I. Karonis, N., Olson, R.,
Overbeek, R., Pfluger, N., Price, M., and Tuecke, S.,
"Aligning Genetic Sequences," Chapter 11 in Strand: New

http://www.cs.mtsu.edu/~rbutler/adlb
http://www.scidac.gov/physics/unedf.html

Concepts in Parallel Programming, Foster and Taylor,
Prentice-Hall, Englewood Cliffs, New Jersey, 1989.

[5] Butler, R., and Pettey, C., "A Bilingual Theorem Prover
for Evaluating HPC Systems," Proceedings of the 2007
International Conference on Parallel and Distributed
Processing Techniques and Applications, Las Vegas, NV,
June 2007, pp 1000 – 1003.

[6] Butler, R., Ells, D., and Pettey, C., "PySMO: Python
Shared Memory Objects," Proceedings of the 2010
International Conference on Parallel and Distributed
Processing Techniques and Applications, Las Vegas, NV,
July 2010, pp 203 – 209.

[7] Butler, R., Pettey, C., and Manifold, B., "Go2ADLB:
An Interface for Using ADLB Within Go," Proceedings of
the 2011 International Conference on Parallel and
Distributed Processing Techniques and Applications, Las
Vegas, NV, July 2011, pp 54 – 58.

[8] D Programming language http://dlang.org/index.html
Accessed March 2012.

[9] Gropp, W., Lusk, E., Ashton, D., Balaji, P., Buntinas,
D., Butler, R., Chan, A., Krishna, J., Mercier, G., Ross, R.,

Thakur, R., and Toonen, B., MPICH2 Installer's Guide,
September 14, 2007, ftp://ftp.mcs.anl.gov/pub/mpi/mpich2-
doc-install.pdf, Accessed March 2012.

[10] Lusk, Ewing L., Pieper, Steven C., Butler, Ralph M.,
“More Scalability, Less Pain,” SciDAC Review 2010
http://www.scidacreview.org/1002/html/adlb.html Accessed
March 2012.

[11] MPICH2, www.mcs.anl.gov/research/projects/mpich2/
Accessed March 2012.

[12] Pettey, C. adn Leuze, M., "A Theoretical Investigation
of a Parallel Genetic Algorithm," Proceedings of the Third
International Conference on Genetic Algorithms, 1989.

[13] Pettey, C., An Analysis of a Parallel Genetic
Algorithm, PhD dissertation, Vanderbilt University, May,
1990.

[14] Tiobe Programming Community Index for February
2012
http://www.tiobe.com/index.php/content/paperinfo/tpci/inde
x.html Accessed March 2012.

http://www.scidacreview.org/1002/html/adlb.html

