
Novel Video Transcoding System to Efficiently Realize
Combinations of Use Cases

Hicham Layachi1 and Stéphane Coulombe1
1Dept. of Software and IT Engineering, École de technologie supérieure, Université du Québec, Canada

Abstract— In this paper, we propose a novel heterogeneous
video transcoding system that is not only capable of per-
forming the major operations expected of a transcoder, i.e.
bit rate adaptation, spatial and temporal resolution scaling,
format conversion between the most often used standards
on the market, but also any combination of operations. In
addition, we propose novel transcoding algorithms to reduce
the number of candidate modes and motion estimation
refinement operations, leading to improved quality as well
as reduced computational complexity. The unified system
is implemented using Intel IPP Code Sample. The results
show that the proposed unified system can, depending on
the use case, be more than 2 times faster than the cascade
transcoder, with small video quality degradation.

Keywords: Video transcoding, bit rate adaptation, format adap-
tation, H.264, MPEG-4.

1. Introduction
Transcoding consists of modifying and adapting the con-

tent of a precompressed bitstream into another video bit-
stream [1]–[3]. Each bit-stream is characterized by a group
of properties: the bit rate, the spatial resolution, the frame
rate, and the format used to encode the video bit-stream. The
role of the transcoder is becoming crucial in our modern life
for maintaining a high level of interoperability in multimedia
systems [1], [2] where each component might have its own
features and capabilities. The cascaded architecture that con-
sists of decoding the compressed video stream, performing
manipulations in the pixel domain (scaling, logo insertion,
etc.), and re-encoding to meet the output requirements is the
straightforward method for performing any video transcod-
ing use case or group of use cases. Unfortunately, since
the computationally intensive motion estimation (ME) and
mode decision must be redone, the cascaded transcoder is
quite expensive in terms of computational complexity, and is
thus problematic for real-time applications and commercial
software. In the literature, several efficient video transcoding
architectures have been proposed [1]–[3], in the pixel domain
or in the DCT domain, to perform bit rate adaptation,
spatial resolution adaptation, frame rate adaptation, logo

This work was supported in part by Vantrix Corporation and in part by
the Natural Sciences and Engineering Research Council of Canada under
the Collaborative Research and Developement Program (CRD 326637-05).

insertion, and format conversion. Nevertheless, the majority
of these transcoders are standalone devices and address the
implementation of a single use case. Thus, in some works,
bit rate reduction has been implemented [4], [5], motion
vector (MV) determination and mode mapping being the
major problems of interest. Spatial resolution adaptation
was presented in [1], [2], [6]–[10], where resampling, MVs
and mode mapping were the main issues addressed. The
process of MV derivation for the newly generated frames
was presented in [8], [11], [12] for adapting the frame rate
to the desired temporal resolution. The conversion from
one format to another has been studied in [2], [8], [9], [13],
[14]. These works addressed the issues of modes and MV
mapping, as well as syntax conversion.

Despite the fact that many video transcoding architectures
and algorithms have been proposed, only a few works have
studied the possibility of integrating the majority of the
transcoding use cases in the same transcoder. In [8], the
authors implemented a heterogeneous transcoder for format
conversion of MPEG-1/2 to lower bit rate H.261/H.263.
Even though the algorithm of each use case was detailed in
depth in this work, a procedure for performing the proposed
use cases in combination was missing. In [9], the authors
proposed an architecture for performing transcoding from
an interlaced MPEG-2 to MPEG-4 visual simple profile
(VSP) with spatio-temporal resolution reduction. However,
this work provided a small number of experimental results
to validate the proposed transcoder. Unfortunately, these few
transcoders were limited to performing a specific group of
use cases (spatio-temporal resolution reduction with format
conversion), where the format conversion was performed be-
tween two specific standards (MPEG-2 to H.263, or MPEG-2
to MPEG-4). In addition, they lack flexibility (they perform
either the proposed group of use cases or nothing at all; they
cannot select a sub-group of these use cases).

State-of-the-art algorithms use a mode mapping table
derived from experiments to determine the most probable
mode(s) for each input mode [5], [14]. This table allows
reducing computational complexity without significantly af-
fecting quality. But such methods have not been proposed for
each transcoding use case. Also, they either reuse directly the
MVs (reducing computational complexity as well as quality)
or refine every MV (increasing quality and complexity). But
a method offering good quality at reduced complexity by
performing conditional MV refinement is lacking.



Entropy 

Decoding
IDCTIQ1

Entropy 

Coding
DCT Q2

Frame

Store
MC

IDCT

IQ2

Frame

Store
MC

+

Spatial Domain Adaptation:

1. Frame rate adaptation 

2. Spatial resolution 

adaptation 

3. Logo/Watermark insertion

4. Bit rate adaptation, re-

encoding and rate control

Rate Control

Logo 

Insertion

_

MVs, 

modes

MVs, 

modes

Coding Parameters 

Mapping and Refinement:

Mode mapping

MV mapping & refinement

QP mapping

+ +

+MVs, 

modes, 

QPs, etc.

Decoding Adaptation for the set of parameters

Metadata

Fig. 1: The architecture of the proposed unified video transcoding system.

In this paper, we propose a new heterogeneous video
transcoder capable of efficiently realizing a single video
transcoding use case, (or transcoding operation) or a combi-
nation of these use cases. The proposed transcoder exploits
the incoming metadata retrieved from the decoding process
to adapt the video content to the desired output character-
istics. We also propose novel or improved mode mapping
algorithms for more use cases and new motion estimation
(ME) algorithms that refine the MVs under certain condi-
tions to reduce complexity while maintaining good quality.
This paper is organized as follows. The proposed unified
video architecture for transcoding is introduced in section
2. In section 3, we describe in depth the algorithms used
in each combination of operations. The experimental results
are presented in section 4. Section 5 summarizes the paper’s
results and outlines future work.

2. Proposed architecture
As mentioned previously, there is an urgent need to unify

the results of the various research efforts and develop an
architecture that supports several use cases in the same
transcoder. This seems a feasible target, considering that the
proposed transcoding architectures use the same approach (1.
decoding; 2. video adaptation, and 3. re-encoding) and the
same blocks of operations (quantization, transform, entropy
coding, ME, etc.). We expect that a unified architecture
will lead to more efficient transcoding system development
and maintenance, along with improved extensibility. More
specifically, the novel unified video transcoding architecture
we propose in this paper, and shown in Fig. 1, is aimed at:

1) Efficiently supporting a single transcoding use case,
or set of use cases, while providing the best quality. This
is achieved by exploiting the metadata extracted from the
decoder and reusing them for the adapted video at output.
We propose the intelligent reuse of the stored metadata to
reduce the computational complexity by reusing the MVs
and refining them under certain conditions;

2) Reducing the effort required for software development
and maintenance by centralizing several use cases in the

same transcoder and improving software component reuse;
3) Achieving extensibility by allowing the easy addition

of new transcoding operations and their combinations.
To meet these goals, the proposed unified architecture is

developed in the pixel domain. This allows to: 1) avoid the
drift error and allow maximum flexibility of the re-encoder;
2) support all the codecs, especially H.264, which cannot
implement its deblocking filter in the DCT domain [15]; 3)
integrate other use cases that may be added in the future.

In transcoding a video, the incoming video stream is
completely decoded in the pixel domain and the necessary
metadata are stored. These metadata primarily encompass:
frame types (I, P, B, etc.) and slice types, MB modes
and sub-modes, MVs, quantization parameters (QP); and
coded block patterns (CBP). The decoded video content
is then adapted to the desired output properties using the
spatial domain adaptation block and the coding parameter
mapping and refinement block illustrated in Fig. 1. Finally,
the adapted video is re-encoded with rate control.

As shown in Fig. 1, the novel unified video transcoding
architecture is similar to the cascaded spatial domain archi-
tecture, but with the addition of the following blocks:
1) The metadata block: used to store the metadata extracted

from the decoding stage.
2) The spatial domain adaptation block: used to perform the

desired use case or group of use cases; it is adapted in
accordance with the video’s input/output characteristics.

3) The coding parameter mapping and refinement block:
used to select the mapping algorithms and refinement
methods to be used by looking at the input and output
properties of the video. The mapping algorithms take the
MVs and modes retrieved from the decoder and map
them to the output MVs and modes to be used for the re-
encoding following an optional MV refinement process.

Fig. 2 illustrates the proposed approach to implementing
a group of video transcoding use cases, the order of which
is as follows:
1) Decoding: we decode the input video stream to the pixel

domain entirely, and then store the metadata.



Fig. 2: Flowchart of the operations of the proposed unified
video transcoding system.

2) Temporal resolution adaptation: if a temporal resolution
adaptation is required, we map the decoded frames, MVs,
and modes to new MVs and modes suitable for the new
temp. resolution, in accordance with the input standard.

3) Spatial resolution adaptation: if a spatial resolution adap-
tation is required, we map the decoded frame resolutions,
MVs, and modes to new frame resolutions, MVs and
modes, in accordance with the output standard.

4) Logo/watermark insertion: if a logo/watermark is re-
quired, only the logo MBs will be affected and will be
processed in accordance with the output standard.

5) Bit rate adaptation, re-encoding, and rate control.
This processing order is the result of our analysis of several
video transcoding architectures which have been presented
in the literature. Each processing step (or use case) can be
either invoked or skipped, depending on the desired output
characteristics. Thus, any combination of use cases could be
performed. A single use case is invoked when all the other
use cases are skipped.

If all the use cases are required, the proposed unified
architecture behaves as follows. The temporal resolution
adaptation is performed first, using the input format, so
that we can work on the right number of frames, whether
an increase or decrease of the frame rate is desired. The
resulting MVs and MB modes constitute the input of the

next phase. Then, the remaining operations are performed,
and the MV and mode mapping are completed in a single
step, because logo/watermark insertion affects only a few
MBs in the frame. We adjust the spatial resolution, insert
the logo/watermark at the desired locations, and adapt the bit
rate. The MV and mode decisions are mapped in accordance
with the output format for the entire group of operations.
Finally, we re-encode, using the output standard syntax and
bit rate. At this final stage, the rate is controlled.

When a combination containing fewer operations is re-
quired, the architecture will simply skip the unwanted use
cases. For example, if a spatial resolution adaptation with
logo insertion is needed, the proposed transcoder decodes the
video and extracts the metadata. After that, the transcoder
performs a single MV and mode mapping for both operations
and performs MV refinement, if needed. Finally, it re-
encodes the video. It should be noted that, when all the
use cases are needed, MV mapping is achieved in two
stages. For the first stage, a one-to-one mapping is performed
for the temporal resolution adaptation, in accordance with
the input format. For the remaining operations, a one-to-
many mapping is performed (i.e. one MV and mode can
generate multiple candidate MVs and modes). This reduces
the complexity of the proposed architecture. Otherwise,
when the temporal resolution adapt. is not needed for a group
of use cases, the mapping can be achieved in one stage.

3. Proposed algorithms
In this section, we present the proposed algorithms for

the two possible video transcoding scenarios: a single use
case, and a set of use cases. For a single use case, we
focus, in this work, on bit rate adaptation using the most
complicated video standard, H.264 (section 3.1), and the
spatial resolution adaptation, also using H.264 (section 3.2).
Then, for the set of use cases, we present H.264 Baseline
Profile (BP) to the MPEG-4 part 2 Visual Simple Profile
(VSP) format adaptation with bit rate adaptation (section
3.3). The proposed algorithms address new use cases or
improve over existing ones in terms of speed and quality.
These algorithms are implemented using Intel Integrated
Performance Primitive Code Samples, version 5.3 [16]. The
proposed architecture can be applied to other combinations
of operations as well. Because of the limited space in this
paper, we could not validate our architecture with more use
cases but the reader can verify that it can accommodate
various other combinations of use cases.

3.1 Bit rate adaptation
In all standards, bit rate reduction transcoding relies on

MV and mode decision mapping from the input to the output
bit-stream. The H.264/AVC standard has become the leading
standard for different multimedia applications, like video
streaming, broadcasting, DVD, Blu-ray, etc. Moreover, its
predecessors are considered as a subset of it, and thus any
algorithm developed for H.264 can easily be adapted to other



Skip

MVs

P16x16

P16x8 P8x16

P8x8

MV2

MV3

MV1
MV1

MV1

MV2

MV1 MV2

8x8
8x4

8x4

4
x
8

4
x
8 4x44x4

4x44x4

MV4

Fig. 3: Inter modes and motion vectors for H.264.

standards. For these reasons, in this work, we implement bit
rate adaptation in H.264, and the proposed algorithm can be
adapted to VC-1, MPEG-4 part 2, etc.

Compared to the state-of-the-art algorithms [5], ours,
called candidate mapping (CM) , does not test 8×8 sub-
partitions (P8×4, P4×8, and P4×4), because their use is
computationally high, with no significant quality gain at
lower bit rates. In addition, not all output modes are checked
(RDO is not used), owing to the use of Intel IPP Code
Sample, which uses predefined thresholds for mode selec-
tion. Moreover, we have derived a second algorithm, called
candidate mapping with conditional refinement (CMWCR),
by further exploiting input sub-pixel precision. The CM
algorithm for intra and inter frames is shown in Table 1.
In this paper, in all the mode mapping tables, we will refer
to the inter modes and MV numbering shown in Fig. 3. Inter
modes begin with P (e.g. P16×16) and intra modes with I
(e.g. I4×4). The input column shows the various modes and
MVs received while the output column shows the modes to
test, separated by +, along with MV parameters to use. Also,
the following notations will be used: MVz denotes the zero
MV (i.e. (0, 0)), MVp denotes the predicted MV (typically
computed based on neighbouring MVs), MVs denotes the
MV implicitly associated with the skip mode (e.g. MVz

for MPEG-4 part 2 and MVp for H.264), AVG(MVi=1,2,3,4)
denotes the average of MV1 to MV4. When multiple MVs
are evaluated (considered) in a candidate partition, we use
a comma to separate them (e.g. P16×16(MV1,MV2) to test
both MV1 and MV2 on the P16×16 partition). When MVs
are associated to specific partitions, we use a semi-column
to separate them (e.g. P16×8(MV1;MV2) to test MV1 on
the top P16×8 partition and MV2 on the bottom P16×8
partition). When a mode is tested conditionally, we specify
the condition. For instance, I16×16 + I4×4 if SAD(I16×16)
> T1 means that I16×16 is always tested while I4×4 is only
tested if the SAD associated with I16×16 exceeds a threshold
T1. These thresholds are either predefined in the Intel IPP
codec or compatible with them.

For inter frames, when input modes are I16×16 or I4×4,
re-encoding the intra MBs directly as intra MBs resulted in
degraded quality. Also, when input modes are P16×16, we
could have tested the predicted MV as well but it did not
noticeably impact the performance. It is important to note
that, for all the methods and all the use cases presented in

Table 1: Proposed H.264 bit rate adapt. mode mapping.
Input Output (modes + MVs to check)
Intra frame
I16×16 I16×16
I4×4 I16×16 + I4×4 if SAD(I16×16)>T1

Inter frame
Skip(MVs) Skip(MVs) + P16×16(MVp)
P16×16(MV1) Skip(MVs) + P16×16(MV1)
P16×8(MV1;MV2) Skip(MVs) + P16×16(AVG(MV1,MV2)) +

P16×8(MV1;MV2)
P8×16(MV1;MV2) Skip(MVs) + P16×16(AVG(MV1,MV2)) +

P8×16(MV1;MV2)
P8×8(MV1;MV2;
MV3;MV4)

Skip(MVs) + P16×16(AVG(MVi=1,2,3,4))
+ P16×8(AVG(MVi=1,2);AVG(MVi=3,4)) +
P8×16(AVG(MVi=1,3);AVG(MVi=2,4)) +
P8×8(MV1;MV2;MV3;MV4)

I16×16 Skip(MVs) + P16×16(MVz) + I16×16 if
MIN(SAD(Skip(MVs)),SAD(P16×16(MVz)))>T2

I4×4 Skip(MVs) + P16×16(MVz) + I16×16 if
MIN(SAD(Skip(MVs)),SAD(P16×16(MVz)))>T2

+ I4×4 if SAD(I16×16)>T1

In: 4 MBs Out: 1 MB

Downsizing
MB2

Mode 2

MV2

MB3

Mode 3

MV3

MB1

Mode 1

MV1

MB4

Mode 4

MV4

MB

Mode ?

MVi ?

Fig. 4: The problem of mode and MV mapping in spatial
resolution reduction by an integer factor of 2.

this paper, the candidate MVs for each candidate mode are
tested at integer pel precision (i.e. input MVs are rounded to
the nearest integer pel before evaluating the lagrangian cost
function). It is also important to note that modes are tested
in the following order for H.264: skip, P16×16, P8×8, P16×8,
P8×16, I16×16, and I4×4 (for MPEG-4 part 2, the order will
be skip, P16×16, P8×8, intra). Also, when testing multiple
candidate modes, if the lagrangian cost function of a mode is
below a certain threshold, subsequent modes are not tested.
Again, throughout this paper, for each candidate mode, once
the best candidate MV is identified, we perform sub-pixel
refinement using two techniques. In the first CM, a ±1 search
window (at quarter-pel precision) is tested to determine the
final MVs. For the second, CMWCR, we use the quarter pixel
precision of the input MV corresponding to the best integer
pel candidate. However, if the best candidate is the predicted
MV, then the predicted MV is refined using ±1 search
window (at quarter-pel precision). This has a remarkable
effect on the speed-up of the proposed transcoder, while
maintaining the same level of quality as our CM algorithm.

3.2 Spatial resolution adaptation
Fig. 4 illustrates the spatial resolution reduction problem

when downsizing by an integer factor of 2. Our proposed
algorithm is developed using H.264, and can easily be
adapted to VC-1, MPEG-4 part 2, etc. The filter used for
pixel sub-sampling is an integrated filter in Intel IPP.

Compared to the state-of-the-art algorithms [10], our
candidate mapping algorithm proposes a direct mapping



Table 2: Proposed H.264 resolution adapt. mode mapping.
Input Output (modes + MVs to check)
Intra frame
I16×16 or I4×4 I16×16 + I4×4
Inter frame
4 skip(MVs,1;MVs,2;
MVs,3;MVs,4)

Skip(MVs) +
P16×16

(
1
2

AVG(MVs,i=1,2,3,4)
)

4 P16×16(MV1;MV2;
MV3;MV4)

Skip(MVs) +
P16×16

(
1
2

AVG(MVi=1,2,3,4)
)

4 inter (hetero-
geneous inter
modes except 4
skip or 4 P16×16)
(MV1;MV2;MV3;MV4)

Skip(MVs) +
P16×16

(
1
2

AVG(MVi=1,2,3,4)
)

+
P16×8

(
1
2

AVG(MVi=1,2); 1
2

AVG(MVi=3,4)
)

+ P8×16
(
1
2

AVG(MVi=1,3); 1
2

AVG(MVi=2,4)
)

+ P8×8
(
1
2

MV1; 1
2

MV2; 1
2

MV3; 1
2

MV4

)
nb_mb_intra4×4>1 or
nb_mb_intra16×16>1

Same candidates as the 4 inter case (see
previous case) + I16×16 + I4×4

when the four input MBs are either four skip or four
P16×16, and does not test 8×8 sub-partitions, because they
lead to higher complexity without significant quality ben-
efits. As before, not all output modes are checked (RDO
is not used). Moreover, we derived two additional algo-
rithms, called CMWCR and candidate mapping with no
refinement (CMWNR), by further exploiting the input sub-
pixel precision. The proposed CM algorithm, computed from
mode mapping statistics of several sequences, is shown in
Table 2. For inter frames, 8×8 input sub-partitions are first
transformed into 8×8 blocks, i.e. 8×4, 4×8, and 4×4 sub-
partitions are merged into an 8×8 block via MV averaging
of sub-partitions. Then, each MB (MB1, MB2, MB3, and
MB4 in Fig. 4) is changed to P16×16. This is achieved by
merging two P16×8 or P8×16 via MV averaging, or four P8×8
via MV averaging; or by taking the skipped MV (MVs) or
P16×16 MV. The input MVs in Table 2 refer to these merged
MVs for each 16×16 partition shown in Fig. 4. It should be
noted that all input MVs are downsized by half (divided
by 2). For P16×16, the four MVs can be individually tested
instead of testing only the average. But the gain in quality in
not significant compared to the increase in computationally
complexity. Similar conclusions are reached when testing
the two corresponding MVs for each partition, for P16×8
and P8×16. For P8×8, sub-partition blocks are not used in
the proposed method, because, with a lower bit rate, the
encoder uses fewer small partitions.

3.3 Format adaptation with bit rate adaptation
As part of the proposed unified architecture, we propose

a novel algorithm for format adaptation from H.264 BP to
MPEG-4 VSP. This latter has limited features compared to
H.264. For inter MBs, only 16×16 and 8×8 partitions are
supported with skip mode limited to the zero MV. For intra
MBs, only intra16×16 is supported. In addition, MPEG-4
VSP adopts half-pixel MV precision. So, we first need to
alter the input quarter-pel MVs to half-pel MVs.

The CM algorithm is a variant of state-of-the-art methods
found in [14]. Furthermore, we do not use RDO (not all out-
put modes are checked), owing to the use of Intel IPP, which
uses predefined thresholds for mode selection. Moreover,

Table 3: Proposed format adaptation mode mapping from
H.264 to MPEG-4 part 2.

Input Output (modes + MVs to check)
Intra frame
I16×16 or I4×4 intra
Inter frame
Skip(MVs) Skip(MVz) + P16×16(MVp,MVz)
P16×16(MV1) Skip(MVz) + P16×16(MVp,MV1)
P16×8(MV1;MV2) Skip(MVz) + P16×16(MVp,AVG(MV1,MV2))
P16×8(MV1;MV2) Skip(MVz) + P16×16(MVp,AVG(MV1,MV2))
P8×8(MV1;MV2;
MV3;MV4)

Skip(MVz) + P16×16(MVp,AVG(MVi=1,2,3,4)) +
P8×8(MV1;MV2;MV3;MV4)

I16×16 or I4×4 Skip(MVz) + P16×16(MVp,MVz) + intra

we derived a second algorithm called CMWCR by further
exploiting input half-pixel precision. The CM algorithm is
presented in Table 3. As described before, we first convert
the sub-partitions to 8×8 blocks using MV averaging. As
before in the case of bit rate adaptation, two techniques
are used for the sub-pel refinement (but using Table 3 and
half-pel instead of quarter-pel precision). The CM and the
CMWCR algorithms can be used for format conversion from
H.264 to MPEG-4 part 2 with bit rate adaptation.

4. Experimental results
In order to evaluate the proposed unified video transcoding

system, three sets of experiments were performed for the
proposed video transcoding operations: 1) bit rate adaptation,
2) spatial resolution adaptation, and 3) format adaptation.
These experiments were performed using Intel Performance
Primitives (Intel IPP) Code Samples [16], which supports
the H.264 BP [17] and the MPEG-4 VSP [18]. Unlike
the reference software, JM [19] and MoMuSys [20], that
uses a rate distortion optimization RDO loop to obtain
the best quality and the lowest bit rate possible for each
MB, and are computationally expensive, real-time software
and much commercial software use predictive algorithms
to rapidly determine the MB mode using the SAD/SATD
or other metrics (IPP uses SATD). This provides us with
a good approximation of the speed benefits that can be
achieved by the proposed architecture and algorithms in
real-time transcoders. A total of 9 CIF sequences with low,
medium, and high motion were tested (but only 6 are shown
in the tables). Only one reference frame was used in the
simulations. IPP proposes several ME algorithms for each
video codec. Within the scope of this work, the EPZS
algorithm (option 3) was used for H.264, and the logarithmic
ME algorithm (option 4) was used for MPEG-4 part 2.
No full search was used. The speed-up obtained and the
quality degradation are given for each method compared
with the cascaded method. This latter does not use RDO,
but a predictive algorithm based on predefined thresholds
for inter or intra modes. We used Intel’s default thresholds.

In Tables 4 to 6, we present the experimental results of the
bit rate reduction for H.264, the spatial resolution reduction
for H.264, and the format adaptation from H.264 BP to
MPEG-4 VSP using various CIF sequences (similar results



were obtained with QCIF sequences). For the cascaded
approach, the PSNR between the input and the transcoded
video sequences is computed. For the other methods, the
PSNR results show the PSNR differences between each
alternative algorithm and the cascaded approach. Speed-
up is defined as the ratio between the transcoding time
required by the cascaded approach and that required by
each algorithm. The sequences were encoded at 512 or 256
kbps with one intra frame in every 100 frames. For all the
experiments, in the statistics method, only the input modes
are transmitted to the encoder, which selects the best output
mode using Table 1, 2, or 3, depending on the use case.
But unlike CM and CMWCR, the MVs are obtained from a
new ME performed in the pixel domain to show the speed
improvements and quality degradation due to the proposed
mode mappings only.

For bit rate adaptation, the statistics method is, on average,
60% faster than the cascaded method while the CM algo-
rithm is more than twice as fast as the cascaded method. The
quality obtained by the CM algorithm is, on average, similar
to that obtained by the cascaded approach for higher input
and output bit rates. But the quality difference increases with
a reduction of these input and output bit rates. For H.264
spatial resolution reduction, the statistics method is, on
average, 18% faster than the cascaded method while the CM
algorithm is approximately 1.5 times faster than the cascaded
method with a reasonable PSNR degradation of about 0.3dB.
The CMWCR algorithm performs 17% faster than the CM
algorithm, but adds another 0.3dB in quality deterioration.
The CMWNR algorithm is the fastest algorithm (more than
twice as fast), but with a high quality loss of 1dB, showing
that refinement affects significantly the quality. For format
adaptation from H.264 BP to MPEG-4 VSP, the statistics
method is, on average, 22 to 32% faster than the cascaded
method while the CM algorithm is 1.34 to 1.84 times faster
than the cascaded method. The reason why the speed-ups
obtained are less impressive than those of the previous
operations is that MPEG-4 part 2 has only 2 inter modes and
1 intra mode, compared to H.264 (4 inter modes and 4 sub-
partitions for the fourth mode, and 2 intra modes with several
directional predictions). As Intel IPP is highly optimized,
the speed-ups obtained are quite acceptable. Meanwhile,
the resulting quality degradation is, on average, close to
1dB, compared with the cascaded approach. Therefore, the
CM algorithm is significantly faster than the cascaded and
statistics methods, but this benefit comes with a significant
penalty in terms of quality. The CMWCR method performs
faster than the CM method, but degrades quality even more.
These results show that the statistics method using the
proposed mode mappings improves speed without affecting
significantly the quality. Further speed-ups can be obtained
by refining MVs but such refinements need to be adapted to
each use case (e.g. size of refinement region, performing it
conditionnally or not) in order to maintain good quality.

5. Conclusion
In this paper, we proposed a unified video system capable

of performing a group of video transcoding use cases. Such
system would reduce the cost of developing the software dra-
matically, and decrease the effort required for maintenance
and updating. Moreover, it allows to easily integrate new use
cases that could be required in the future, instead of devel-
oping new stand-alone architectures to support them. New
mode and MVs mapping algorithms for several stand-alone
operations and groups of operations were also proposed. The
results show that the proposed unified system can, depending
on the use case, be more than 2 times faster than the cascaded
transcoder, with small video quality degradation. Although,
for some use cases, MV ref. algorithms need to be improved,
this paper showed the capabilities of the proposed system.

References
[1] A. Vetro, C. Christopoulos, and H. Sun, “Video transcoding archi-

tectures and techniques: an overview,” Signal Processing Magazine,
IEEE, vol. 20, no. 2, pp. 18 – 29, Mar. 2003.

[2] I. Ahmad, X. Wei, Y. Sun, and Y.-Q. Zhang, “Video transcoding:
an overview of various techniques and research issues,” Multimedia,
IEEE Transactions on, vol. 7, no. 5, pp. 793 – 804, Oct. 2005.

[3] J. Xin, C.-W. Lin, and M.-T. Sun, “Digital video transcoding,”
Proceedings of the IEEE, vol. 93, no. 1, pp. 84 –97, Jan. 2005.

[4] H. Sun, W. Kwok, and J. Zdepski, “Architectures for MPEG com-
pressed bitstream scaling,” Circuits and Systems for Video Technology,
IEEE Transactions on, vol. 6, no. 2, pp. 191 –199, Apr. 1996.

[5] Z. Peng, H. Qing-Ming, and G. Wen, “Key techniques of bit rate
reduction for H.264 streams,” in Proc. Pacific-Rim Conf. Multimedia
(PCM 2004), vol. 3332/2005, Nov. 2004, pp. 985 –92.

[6] W. Zhu, K. H. Yang, and M. J. Beacken, “CIF-to-QCIF video
bitstream down-conversion in the dct domain,” Bell Labs Technical
Journal, vol. 3, pp. 21 – 29, Feb. 1998.

[7] N. Bjork and C. Christopoulos, “Transcoder architectures for video
coding,” Consumer Electronics, IEEE Transactions on, vol. 44, no. 1,
pp. 88 –98, Feb. 1998.

[8] T. Shanableh and M. Ghanbari, “Heterogeneous video transcoding
to lower spatio-temporal resolutions and different encoding formats,”
Multimedia, IEEE Trans. on, vol. 2, no. 2, pp. 101 –110, June 2000.

[9] X. Jun, S. Ming-Ting, and C. Kangwook, “Motion re-estimation for
MPEG-2 to MPEG-4 simple profile transcoding,” in Int. Packet Video
Workshop, Apr. 2002.

[10] L. Chih-Hung, W. Chung-Neng, and C. Tihao, “A fast downsizing
video transcoder based on H.264/AVC standard,” in Pacific-Rim Conf.
Multimedia (PCM) 2004, Nov. 2004, pp. 215–23.

[11] Y. Jeongnam, S. Ming-Ting, and L. Chia-Wen, “Motion vector refine-
ment for high-performance transcoding,” Multimedia, IEEE Transac-
tions on, vol. 1, no. 1, pp. 30 –40, Mar. 1999.

[12] L. Qiang, L. Xiaodong, and D. Qionghai, “Motion information ex-
ploitation in H.264 frame skipping transcoding,” in 9th Intl Conf. on
Advanced Concepts for Intelligent Vision Systems, ACIVS 2007, vol.
vol. 4678 NCS: Springer Verlag, Aug. 2007, pp. 768–776.

[13] I. Metoevi and S. Coulombe, “Efficient MPEG-4 to H.264 transcoding
exploiting MPEG-4 block modes, motion vectors, and residuals,” in
Communications and Information Technology, 2009. ISCIT 2009. 9th
Intl Symposium on, Sept. 2009, pp. 224 –229.

[14] J.-H. Hur and Y.-L. Lee, “H.264 to MPEG-4 transcoding using block
type information,” in TENCON 2005 2005 IEEE Region 10, Nov.
2005, pp. 1 –6.

[15] P. List, A. Joch, J. Lainema, G. Bjontegaard, and M. Karczewicz,
“Adaptive deblocking filter,” Circuits and Systems for Video Technol-
ogy, IEEE Transactions on, vol. 13, no. 7, pp. 614 –619, July 2003.

[16] “Intel Integrated Performance Primitives 5.3 - Code Samples.”
2008, [Online] http://software.intel.com/en-us/articles/intel-integrated-
performance-primitives-code-samples/.



Table 4: Acceleration and PSNR variation (dB) for H.264 BP bit rate reduction using CIF videos compared to the cascaded
method for 512 to 384 kbps, 256 to 192 kbps, and 256 to 128 kbps. Average contains also news, silent and stefan sequences.

512 to 384 kbps 256 to 192 kbps 256 to 128 kbps
CIF videos Cascade Stats CM CMWCR Cascade Sta- CM CMWCR Cascade Stats CM CMWCR

container Accel. 1 1.6 1.87 1.99 1 1.43 1.75 1.79 1 1.47 1.8 1.76
PSNR 41.71 0 -0.16 -0.15 39.83 0.15 -0.01 -0.01 36.57 -0.04 -0.23 -0.24

flower Accel. 1 1.59 2.4 2.55 1 1.7 2.31 2.65 1 1.65 2.41 2.68
PSNR 30.7 -0.09 0.01 -0.08 28.54 -0.1 -0.25 -0.3 25.56 -0.09 -0.33 -0.51

foreman Accel. 1 1.69 2.53 2.89 1 1.57 2.31 2.52 1 1.53 2.15 2.45
PSNR 38.55 -0.14 0.06 0.02 35.76 -0.19 -0.04 -0.11 32.56 -0.08 -0.29 -0.48

mobile Accel. 1 1.74 2.61 2.77 1 1.63 2.34 2.5 1 1.61 2.26 2.48
PSNR 30.81 -0.08 -0.2 -0.24 28.33 0.05 -0.26 -0.32 25.14 -0.02 -0.29 -0.49

tempete Accel. 1 1.72 2.59 2.88 1 1.65 2.44 2.67 1 1.56 2.25 2.45
PSNR 33.26 -0.07 0 -0.05 30.86 -0.06 -0.16 -0.31 27.95 -0.01 -0.32 -0.56

waterfall Accel. 1 1.88 2.77 3 1 1.71 2.5 2.74 1 1.73 2.55 2.75
PSNR 38.8 -0.07 -0.18 -0.2 35.81 0.01 -0.35 -0.39 32.73 0.14 -0.26 -0.39

Average Accel. 1 1.66 2.39 2.6 1 1.58 2.19 2.42 1 1.53 2.13 2.32
PSNR 36.91 -0.05 -0.06 -0.12 34.18 0 -0.12 -0.2 30.91 -0.01 -0.27 -0.43

Table 5: Acceleration and PSNR variation (dB) for H.264 BP spatial resolution reduction from CIF to QCIF compared to
the cascaded method for 512 to 256 kbps, and 256 to 128 kbps. Average contains also news, silent and stefan sequences.

512 to 256 kbps 256 to 128 kbps
CIF videos Cascade Stats CM CMWCR CMWNR Cascade Stats CM CMWCR CMWNR

container Accel. 1 1.18 1.29 1.43 1.56 1 1.14 1.25 1.32 1.65
PSNR 40.41 -0.14 -0.19 -0.35 -0.66 37.47 -0.08 -0.27 -0.44 -0.8

flower Accel. 1 1.19 1.54 1.93 2.24 1 1.19 1.52 1.83 2.18
PSNR 26.79 -0.15 -0.2 -0.44 -0.79 24.85 -0.13 -0.24 -0.6 -1

foreman Accel. 1 1.32 1.81 2.33 2.74 1 1.21 1.8 2.22 2.32
PSNR 35.17 -0.3 -0.64 -1 -1.23 32.98 -0.27 -0.56 -0.97 -1.21

mobile Accel. 1 1.17 1.68 2.1 2.28 1 1.09 1.58 1.79 2.2
PSNR 24.2 -0.07 -0.15 -0.44 -1.06 22.81 -0.04 -0.14 -0.51 -1.22

tempete Accel. 1 1.2 1.65 1.98 2.28 1 1.1 1.53 1.81 2.1
PSNR 29.12 -0.09 -0.1 -0.31 -0.71 27.45 -0.02 -0.04 -0.32 -0.79

waterfall Accel. 1 1.17 1.59 1.81 2.19 1 1.09 1.5 1.77 2.09
PSNR 33.42 -0.06 -0.07 -0.34 -1.05 31.8 -0.06 -0.12 -0.44 -1.2

Average Accel. 1 1.23 1.6 1.91 2.14 1 1.14 1.52 1.78 2.04
PSNR 33.5 -0.2 -0.32 -0.57 -0.95 30.94 -0.16 -0.3 -0.62 -1.04

Table 6: Acceleration and PSNR variation (dB) for format conversion from H.264 BP to MPEG-4 VSP using CIF sequences
from 512 to 256, 256 to 256 kbps, and 256 to 128 kbps. Average contains also news, silent and stefan sequences.

512 to 256 kbps 256 to 256 kbps 256 to 128 kbps
CIF videos Cascade Stats CM CMWCR Cascade Stats CM CMWCR Cascade Stats CM CMWCR

container Accel. 1 1.37 1.74 1.91 1 1.37 1.64 1.95 1 1.29 1.62 1.65
PSNR 35.81 -0.04 -0.22 -1.89 36.87 -0.07 -0.25 -1.97 33.54 -0.05 -0.36 -2.54

flower Accel. 1 1.36 1.74 1.79 1 1.44 1.84 1.89 1 1.44 1.83 2
PSNR 25.92 -0.12 -1.09 -1.59 27.29 -0.22 -0.71 -1.62 24.94 -0.02 -0.17 -0.51

foreman Accel. 1 1.2 1.48 1.76 1 1.12 1.59 1.7 1 1.1 1.52 1.5
PSNR 33.77 -0.19 -1.77 -2.29 34.95 -0.25 -1.29 -2.07 31.12 -0.14 -1.12 -1.78

mobile Accel. 1 1.34 1.84 1.94 1 1.43 1.9 2 1 1.28 1.46 1.72
PSNR 24.34 -0.06 -0.58 -0.84 25.35 -0.06 -0.48 -1.05 24.15 0 -0.1 -0.32

tempete Accel. 1 1.32 1.64 1.71 1 1.27 1.62 1.65 1 1.17 1.47 1.69
PSNR 28.46 -0.03 -0.61 -1.07 29.7 -0.07 -0.41 -1.19 26.89 -0.02 -0.32 -0.73

waterfall Accel. 1 1.4 1.77 1.87 1 1.34 1.66 1.83 1 1.12 1.38 1.65
PSNR 32.36 -0.11 -0.43 -1.65 33.16 -0.1 -0.28 -1.67 30.36 -0.05 -0.21 -1.54

Average Accel. 1 1.32 1.7 1.82 1 1.3 1.66 1.79 1 1.22 1.54 1.7
PSNR 31.37 -0.09 -0.99 -1.58 32.44 -0.14 -0.79 -1.61 29.34 -0.06 -0.53 -1.23

[17] “ISO/IEC 14496-10:2009- Information technology – Coding of audio-
visual objects – Part 10: Advanced Video Coding,” ISO, 2009.

[18] “ISO/IEC 14496-2:2004 - Information technology – Coding of audio-
visual objects – Part 2: Visual,” ISO, 2004.

[19] “H.264/AVC Reference Software JM 16.1,” 2009, [Online]

http://iphome.hhi.de/suehring/tml/.
[20] “ISO/IEC 14496-5:2005- Information technology – Coding of audio-

visual objects – Part 5: Reference Software,” ISO, 2005.


