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Abstract - The increasing number of automotive 

functionalities becomes a significant challenge for in-car 

communication and network architecture. Our approach 

provides optimized network architectures by applying 

evolutionary algorithms and application-specific 

representations. In this paper, we present a new network 

encoding supported by feasibility-preserving mutation 

and routing operators. We show that well-established 

algorithms can be extended with our operators to 

efficiently optimize cost and complexity of automotive 

networks. 
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1  Introduction 

Increasing amounts of new functionality in modern cars 

have over the last decade lead to ever more complex 

architectures. This complexity presents new challenges 

for the Original Equipment Manufacturers (OEMs) in 

terms of the automotive development process and 

especially for communication architecture. Those 

challenges can be outlined as follows: 

1.1 Automotive development process 

The state of the art in automotive Electric/Electronic (EE) 

systems comprises among others the following 

complexities: 

 Multiple bus systems and sub-bus systems 

 Extensive gateway functionality between bus 

systems 

 Increased effort for testing and multiple variant 

management 

 Exponential growth of software costs. 

To handle these complexities, positive experience from 

software engineering suggests model driven 

development and similar paradigms also for the 

automotive domain [1]. Thus, initiatives like 

AUTOSAR [2] are addressing a standardized software 

architecture and model driven EE tools like 

PREEvision [3] support the OEMs in early architecture 

decisions and variant management. Furthermore, the 

modeling of complex functionalities using tools like 

Matlab/Simulink simplifies the interface from OEM to 

supplier as well as testing and verification efforts. In 

summary, a holistic and consistent top-down 

architecture and development methodology is essential 

to maintain automotive quality requirements. 

 

1.2 Communication architecture 

Nearly 20 years have passed since the introduction of 

first bus-based communication in cars [4]. While new bus 

systems like FlexRay [5] and Media Oriented Systems 

Transport (MOST) [6] have addressed higher bandwidth 

requirements for vehicle dynamics and multimedia 

applications respectively, most basic applications still 

utilize the well established Controller Area Network 

(CAN) [7] bus. Additionally, sub-systems based on Local 

Interconnect Network (LIN) [8] have been introduced to 

reduce costs and complexity of the overall network. 

When looking at the historical development of the 

network topology, one can notice an organic growth of 

buses around an ever more complex central gateway. The 

reasons for this growth are the repeated usage of legacy 

hardware combined with the introduction of new 

functionality as individual Electronic Control Units 

(ECUs) and bus systems. Another reason for this growth 

is, that newly added features often lead to the installation 

of a dedicated bus system while leaving existing 

communication structures untouched due to bandwidth 

limitations. 

 

Figure 1. Example car network 

 

Hence, a premium class car nowadays consists of several 

independent bus systems for the domains powertrain, 

chassis, body and comfort. In addition to those buses, 

new features like drive by wire or active suspension 

imply the need for a safety critical bus system like 

FlexRay. Furthermore, the multimedia and infotainment 

cluster is networked with the high-speed bus MOST. 

With all those new systems it is clear that, apart from 

power consumption, also the wiring costs have 

dramatically increased during the last few years. 

1.3 Motivation 

As new network technologies like Ethernet are making 

their way into the automotive domain [9], we must now 

question the suitability of those old network architectures 

and topologies. Furthermore we need to explore the 



optimization potential of new topologies especially in the 

light of cost reduction and complexity. 

To explore the optimization potential, this paper 

introduces a new heuristic for the following network 

architecture tasks: 

 Mapping of software components onto ECUs 

 Layout of network topology 

 Routing of communication and creation of 

gateway tables 

These tasks are done using multi objective evolutionary 

algorithms (MOEAs) and application-specific network 

encodings to efficiently handle constrains. To take 

advantage of these encodings, new stochastic operators 

for mutation and message routing are presented. 

The presented methodology is compliant with the system 

development tasks defined by AUTOSAR and supports 

automotive development tool chains like PREEvision. 

Therefore, the challenges of a consistent and model 

driven automotive development process as described 

above are met. 

2 Related Work 

2.1 Application specific encodings 

A network encoding with focus on multicast networks 

has been presented by Ahlswede et al. [10] and used for 

deterministic topology design by Chi et al. [11]. The cost 

modeling of automotive electrical architectures was 

investigated by Quigley et al. [12]. 

Regarding constraint handling, Coello Coello gave a very 

good survey in [13], also stating a constraint-consistent 

GA approach proposed by Kowalczyk [14].  

2.2 Automotive network optimization 

An automated bus system synthesis for PREEvision was 

presented by Heinz et al. [15]. Their method based on 

Hierarchical Clustering and functional nearness of ECUs 

without considering variations in application mapping. 

In contrast to that, Lukasiewycz et al. [16] as well as 

Glass et al. [17] optimized automotive networks with 

respect to reliability using a binary Integer Linear 

Program (ILP) [18]. 

Furthermore, Kim et al. [19] showed an efficient method 

to optimize task allocation, ECU positioning and network 

assignment using a repeated matching method and 

simulated annealing.  

3 Problem Formulation 

3.1 Prerequisites 

The network optimization problem at hand is defined by 

a communication description, network constraints and 

available hardware. 

1) In every layered or model driven development, all 

aspects the resulting product will have are defined by 

functional and non-functional requirements. The first task 

is to transform these requirements into technical features 

and applications, so-called “Software Components” in 

AUTOSAR. Already, these components form a logical 

network based on communication requirements. At the 

time of this task, the timing constraints and required 

bandwidth of the communications are subject to 

implementation and therefore not exactly known. We can 

however approximate the requirements based on previous 

implementations or estimations on data types and 

frequency. Furthermore, multicast and broadcast 

messages, together with their receivers and respective 

update rates can be identified at this stage. 

2) Another aspect of the optimization problem is defined 

by local or supplier-specific constraints. Local constraints 

state, that specific software components need to be 

executed in vicinity to their relevant sensors or actuators. 

Supplier-specific constraints come from the fact, that the 

development of some features is often outsourced by the 

OEM. This outsourcing implies, that the OEM needs to 

integrate hardware without a reasonable opportunity to 

manipulate the software components executing on those 

ECUs. Therefore, some software components are locked 

to specific ECUs and cannot be remapped. 

3) The third input parameter describes the layout of 

ECUs within the car; providing information about 

processing unit, available memory, bus connections and 

peripherals for each unit. It is also possible to consider 

multiple hardware manifestations and their corresponding 

costs for the same mounting location. 

 

Figure 2. Design System process in AUTOSAR 

 

Using those input parameters, the heuristic has to find a 

feasible network topology while optimizing several 

objectives. This process of finding a topology is 

represented by the “Design System” task in the 

AUTOSAR specification and metamodel. 

3.2 Objectives 

The Objectives evaluated by our algorithm are introduced 

as follows: 



 Monetary costs: Our main objective is to 

minimize the amount of ECUs installed by 

deploying several software components onto the 

same ECU. Additional costs can be saved by 

simplifying the bus structure. Thus, hardware 

costs are modeled as a fixed amount for each 

used ECU and additional costs for each 

communication controller and bus coupler. 

 Cable length: Reduces wiring costs as well as 

overall weight and manufacturing time.  

 Bandwidth reserves: Subsequent changes in 

requirements and communication cannot be 

ruled out during a typical development time of 

several years. Therefore it is considered a good 

practice to reserve some bandwidth for future 

extensions on each bus system. 

 Gateway complexity: Gateway routing tables 

represent additional implementation and testing 

effort. To minimize this effort we prefer 

message routing within one network and want to 

add gateway functionality to as few ECUs as 

possible. 

4 Implementation 
The realization of our encodings and operators is written 

in Java and based on the jMetal [20] framework. Due to 

the extensible design of the framework, new solution 

variables and operators can be added easily while 

providing wide compatibility with already implemented 

algorithms. 

 

 

Figure 3. UML relationships between input, parameters, 

solution and objectives 

 

4.1 Descision variables 

Each solution represents a full network and consists of 3 

abstract variables. 

 A class representing the mapping between each 

software component and corresponding ECU. 

 The definition of all used bus systems and their 

connected nodes. 

 The communication description for nodes and 

gateway routing tables. 

New solutions are created with all software components 

randomly deployed on allowed ECUs and all network 

nodes connected to the fastest available bus system. The 

routing is then straight forward without any gateway 

functionality. This solutions is always a feasible but very 

expensive. 

4.2 Stochastic Operators 

Our approach comprises a set of mutation operators 

specifically designed for our network optimization 

problem: 

 A mapping mutation deploys software 

components onto different ECUs within their 

allowed borders. To maintain feasibility, the 

corresponding bus variable has to be repaired or 

reinitialized. 

 A bus mutation operator randomly adds ECUs to 

a bus network. For the sake of simplicity it 

cannot remove existing connections as this 

would threaten the feasibility of the system. 

 In every case the communication has to be re-

routed after changes in other variables. We 

implemented an efficient algorithm to find the 

cheapest possible route for each communication 

requirement. The sequence by which the router 

iterates through the messages is randomly 

chosen to add another stochastic influence. 

Furthermore, this influence allows us to use the 

router as single operator in order to mutate an 

existing communication. 

 

Figure 4. Possible mutations 



4.3 Algorithm workflow 

Since our network representation is closely related to 

jMetal´s software design, we could easily adapt 

algorithms like the SPEA2 [21] for our purposes. The 

most important adaption was in the algorithm´s variation 

step. There, we removed the crossover operator and 

added our own mutation and routing methodologies. 

Apart from those changes in the variation step, the 

existing software can be used unaltered. The evaluation 

of solutions includes a deterministic reduction algorithm, 

to delete unused bus connections and nodes. 

 

 

Figure 5. Algorithm workflow 

5 Experimental Results 
In order to verify the functionality of the presented 

implementation and characterize it´s behavior under 

different conditions, experiments with test networks were 

performed. All experiments were executed on an Intel 

Core2 Duo T7500 CPU at 2.2GHz with 3 GB Ram 

running Windows 7. 

5.1 Test networks 

We created various test networks with 10 to 80 nodes and 

various constraints. The 10-node network has exactly one 

known optimal solution and is used for performance 

benchmarks. The latter 2 networks might represent a low-

end and high-end car respectively, but all communication 

values are purely fictional. Due to their complexity, a 

optimal solution or true pareto front is not known. 

 

TABLE I.  DIMENSIONS OF TEST NETWORKS 

Test network 1 2 3 

No. Nodes 10 40 80 

Location constrained SW components 10 20 70 

Unconstrained SW components 0 30 30 

Gross bit rate [MBit/sec] 0.2 1 10 

5.2 Convergence 

Our first experiment series evaluated the mean 

convergence speed of our optimization. First, we 

executed 100 independent runs using test network 1. We 

aborted each run after the optimal solution had been 

found or 2000 solutions had been evaluated. 

82% of our testruns hit the global optimum within 2000 

evaluations while the rest was stuck in local optima and, 

to our observation, would not have succeeded in 

reasonable time. The results in Fig. 6 support this 

assumption since the probability of finding the global 

optimum within a run decreases after 500 evaluations. 

TABLE II.  CONVERGENCE EXPERIMENT 1 

Test network model 1 

Mutation probability 
Software mapping 0.2 

Bus connections 0.2 

Archive size 20 

Population size 20 

Max. evaluations 2000 

Runs 100 

Optimum hit 82 % 

Average execution time 0.68 s 



 

 

Figure 6. Results for convergence experiment 1 

 

To further examine the convergence behavior we 

observed the best cost objective of the population while 

optimizing test network 3. Figure 7 illustrates the 

optimization process for 5 independent runs. The 

execution time for each run has been significantly higher 

due to the larger network model and data output during 

execution. 

TABLE III.  CONVERGENCE EXPERIMENT 2 

Test network model 3 

Mutation 

probability 

Software mapping 0.2 

Bus connections 0.2 

Archive size 50 

Population size 50 

Max. evaluations 30000 

Runs 5 

Average execution time 36.4 s 

 

 

Figure 7. Results for convergence experiment 2 

 

5.3 Performance 

In a final step we have studied the influence of archive 

size and number of evaluations on calculation time. 

Therefore, for each setting we measured the average 

execution time of 10 independent runs using test network 

2. The results in Fig 8 show that the archive size only 

influences the overall execution time for large numbers 

of evaluations. The significant difference in performance 

for 15.000 and 20.000 evaluations is subject to further 

investigations. 

 

 

Figure 8. Calculation performance for different amounts 

of evaluations 

6 Conclusion and Further Work 
In this paper, we presented a novel approach for 

automotive network encoding and optimization using 

evolutionary algorithms. 

First, we introduced typical initial situations and 

challenges for network architects at OEMs and 

automotive suppliers. Subsequently, we listed 

requirements and constraints which have to be taken into 

consideration when developing a new communication 

network. This network development can be described as a 

series of tasks: After defining atomic software 

components and logical links representing transmission 

requirements, we want to effectively deploy those 

software components onto corresponding ECUs. 

Simultaneously to the deployment, we need to interlink 

these ECUs using automotive specific bus systems while 

keeping hardware costs, wiring effort and network 

complexity low. 

These tasks can be optimized using our new encoding 

scheme. In our encoding, we presented 3 objects to 

represent bus connections, software mapping and 

network communication respectively. Those objects are 

varied using established evolutionary algorithms like the 

SPEA2 to obtain near-optimal network solutions. We 

ensure the technical feasibility of our solutions by 

implementing problem specific mutation operators and 

routing algorithms. 
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We have shown that the SPEA2 algorithm, as already 

implemented in the jMetal framework, can easily be 

adopted to optimize our test networks. Additionally, 

initial experiments have confirmed a fast and reliable 

convergence towards optimal results. 

Further work will include the introduction of a crossover 

operator as well as benchmarks regarding common 

quality indicators used in evolutionary algorithms. 

Another interesting task will be the implementation of 

algorithms like differential evolution [22] or particle 

swarm optimization [23] since our encodings were 

designed to utilize different optimization strategies. 

We also want to compare our algorithm´s results with 

currently established car networks to explore the potential 

of cost optimization in the automotive domain. 
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