
An Application-Specific Approach in Automotive

Network Optimization

Martin Dohr and Bernd Eichberger

Institute of Electronics, Graz University of Technology, Austria

Abstract - The increasing number of automotive

functionalities becomes a significant challenge for in-car

communication and network architecture. Our approach

provides optimized network architectures by applying

evolutionary algorithms and application-specific

representations. In this paper, we present a new network

encoding supported by feasibility-preserving mutation

and routing operators. We show that well-established

algorithms can be extended with our operators to

efficiently optimize cost and complexity of automotive

networks.

Keywords: Evolutionary algorithm; automotive network;

optimization; network encoding; AUTOSAR;

1 Introduction

Increasing amounts of new functionality in modern cars

have over the last decade lead to ever more complex

architectures. This complexity presents new challenges

for the Original Equipment Manufacturers (OEMs) in

terms of the automotive development process and

especially for communication architecture. Those

challenges can be outlined as follows:

1.1 Automotive development process

The state of the art in automotive Electric/Electronic (EE)

systems comprises among others the following

complexities:

 Multiple bus systems and sub-bus systems

 Extensive gateway functionality between bus

systems

 Increased effort for testing and multiple variant

management

 Exponential growth of software costs.

To handle these complexities, positive experience from

software engineering suggests model driven

development and similar paradigms also for the

automotive domain [1]. Thus, initiatives like

AUTOSAR [2] are addressing a standardized software

architecture and model driven EE tools like

PREEvision [3] support the OEMs in early architecture

decisions and variant management. Furthermore, the

modeling of complex functionalities using tools like

Matlab/Simulink simplifies the interface from OEM to

supplier as well as testing and verification efforts. In

summary, a holistic and consistent top-down

architecture and development methodology is essential

to maintain automotive quality requirements.

1.2 Communication architecture

Nearly 20 years have passed since the introduction of

first bus-based communication in cars [4]. While new bus

systems like FlexRay [5] and Media Oriented Systems

Transport (MOST) [6] have addressed higher bandwidth

requirements for vehicle dynamics and multimedia

applications respectively, most basic applications still

utilize the well established Controller Area Network

(CAN) [7] bus. Additionally, sub-systems based on Local

Interconnect Network (LIN) [8] have been introduced to

reduce costs and complexity of the overall network.

When looking at the historical development of the

network topology, one can notice an organic growth of

buses around an ever more complex central gateway. The

reasons for this growth are the repeated usage of legacy

hardware combined with the introduction of new

functionality as individual Electronic Control Units

(ECUs) and bus systems. Another reason for this growth

is, that newly added features often lead to the installation

of a dedicated bus system while leaving existing

communication structures untouched due to bandwidth

limitations.

Figure 1. Example car network

Hence, a premium class car nowadays consists of several

independent bus systems for the domains powertrain,

chassis, body and comfort. In addition to those buses,

new features like drive by wire or active suspension

imply the need for a safety critical bus system like

FlexRay. Furthermore, the multimedia and infotainment

cluster is networked with the high-speed bus MOST.

With all those new systems it is clear that, apart from

power consumption, also the wiring costs have

dramatically increased during the last few years.

1.3 Motivation

As new network technologies like Ethernet are making

their way into the automotive domain [9], we must now

question the suitability of those old network architectures

and topologies. Furthermore we need to explore the

optimization potential of new topologies especially in the

light of cost reduction and complexity.

To explore the optimization potential, this paper

introduces a new heuristic for the following network

architecture tasks:

 Mapping of software components onto ECUs

 Layout of network topology

 Routing of communication and creation of

gateway tables

These tasks are done using multi objective evolutionary

algorithms (MOEAs) and application-specific network

encodings to efficiently handle constrains. To take

advantage of these encodings, new stochastic operators

for mutation and message routing are presented.

The presented methodology is compliant with the system

development tasks defined by AUTOSAR and supports

automotive development tool chains like PREEvision.

Therefore, the challenges of a consistent and model

driven automotive development process as described

above are met.

2 Related Work

2.1 Application specific encodings

A network encoding with focus on multicast networks

has been presented by Ahlswede et al. [10] and used for

deterministic topology design by Chi et al. [11]. The cost

modeling of automotive electrical architectures was

investigated by Quigley et al. [12].

Regarding constraint handling, Coello Coello gave a very

good survey in [13], also stating a constraint-consistent

GA approach proposed by Kowalczyk [14].

2.2 Automotive network optimization

An automated bus system synthesis for PREEvision was

presented by Heinz et al. [15]. Their method based on

Hierarchical Clustering and functional nearness of ECUs

without considering variations in application mapping.

In contrast to that, Lukasiewycz et al. [16] as well as

Glass et al. [17] optimized automotive networks with

respect to reliability using a binary Integer Linear

Program (ILP) [18].

Furthermore, Kim et al. [19] showed an efficient method

to optimize task allocation, ECU positioning and network

assignment using a repeated matching method and

simulated annealing.

3 Problem Formulation

3.1 Prerequisites

The network optimization problem at hand is defined by

a communication description, network constraints and

available hardware.

1) In every layered or model driven development, all

aspects the resulting product will have are defined by

functional and non-functional requirements. The first task

is to transform these requirements into technical features

and applications, so-called “Software Components” in

AUTOSAR. Already, these components form a logical

network based on communication requirements. At the

time of this task, the timing constraints and required

bandwidth of the communications are subject to

implementation and therefore not exactly known. We can

however approximate the requirements based on previous

implementations or estimations on data types and

frequency. Furthermore, multicast and broadcast

messages, together with their receivers and respective

update rates can be identified at this stage.

2) Another aspect of the optimization problem is defined

by local or supplier-specific constraints. Local constraints

state, that specific software components need to be

executed in vicinity to their relevant sensors or actuators.

Supplier-specific constraints come from the fact, that the

development of some features is often outsourced by the

OEM. This outsourcing implies, that the OEM needs to

integrate hardware without a reasonable opportunity to

manipulate the software components executing on those

ECUs. Therefore, some software components are locked

to specific ECUs and cannot be remapped.

3) The third input parameter describes the layout of

ECUs within the car; providing information about

processing unit, available memory, bus connections and

peripherals for each unit. It is also possible to consider

multiple hardware manifestations and their corresponding

costs for the same mounting location.

Figure 2. Design System process in AUTOSAR

Using those input parameters, the heuristic has to find a

feasible network topology while optimizing several

objectives. This process of finding a topology is

represented by the “Design System” task in the

AUTOSAR specification and metamodel.

3.2 Objectives

The Objectives evaluated by our algorithm are introduced

as follows:

 Monetary costs: Our main objective is to

minimize the amount of ECUs installed by

deploying several software components onto the

same ECU. Additional costs can be saved by

simplifying the bus structure. Thus, hardware

costs are modeled as a fixed amount for each

used ECU and additional costs for each

communication controller and bus coupler.

 Cable length: Reduces wiring costs as well as

overall weight and manufacturing time.

 Bandwidth reserves: Subsequent changes in

requirements and communication cannot be

ruled out during a typical development time of

several years. Therefore it is considered a good

practice to reserve some bandwidth for future

extensions on each bus system.

 Gateway complexity: Gateway routing tables

represent additional implementation and testing

effort. To minimize this effort we prefer

message routing within one network and want to

add gateway functionality to as few ECUs as

possible.

4 Implementation
The realization of our encodings and operators is written

in Java and based on the jMetal [20] framework. Due to

the extensible design of the framework, new solution

variables and operators can be added easily while

providing wide compatibility with already implemented

algorithms.

Figure 3. UML relationships between input, parameters,

solution and objectives

4.1 Descision variables

Each solution represents a full network and consists of 3

abstract variables.

 A class representing the mapping between each

software component and corresponding ECU.

 The definition of all used bus systems and their

connected nodes.

 The communication description for nodes and

gateway routing tables.

New solutions are created with all software components

randomly deployed on allowed ECUs and all network

nodes connected to the fastest available bus system. The

routing is then straight forward without any gateway

functionality. This solutions is always a feasible but very

expensive.

4.2 Stochastic Operators

Our approach comprises a set of mutation operators

specifically designed for our network optimization

problem:

 A mapping mutation deploys software

components onto different ECUs within their

allowed borders. To maintain feasibility, the

corresponding bus variable has to be repaired or

reinitialized.

 A bus mutation operator randomly adds ECUs to

a bus network. For the sake of simplicity it

cannot remove existing connections as this

would threaten the feasibility of the system.

 In every case the communication has to be re-

routed after changes in other variables. We

implemented an efficient algorithm to find the

cheapest possible route for each communication

requirement. The sequence by which the router

iterates through the messages is randomly

chosen to add another stochastic influence.

Furthermore, this influence allows us to use the

router as single operator in order to mutate an

existing communication.

Figure 4. Possible mutations

4.3 Algorithm workflow

Since our network representation is closely related to

jMetal´s software design, we could easily adapt

algorithms like the SPEA2 [21] for our purposes. The

most important adaption was in the algorithm´s variation

step. There, we removed the crossover operator and

added our own mutation and routing methodologies.

Apart from those changes in the variation step, the

existing software can be used unaltered. The evaluation

of solutions includes a deterministic reduction algorithm,

to delete unused bus connections and nodes.

Figure 5. Algorithm workflow

5 Experimental Results
In order to verify the functionality of the presented

implementation and characterize it´s behavior under

different conditions, experiments with test networks were

performed. All experiments were executed on an Intel

Core2 Duo T7500 CPU at 2.2GHz with 3 GB Ram

running Windows 7.

5.1 Test networks

We created various test networks with 10 to 80 nodes and

various constraints. The 10-node network has exactly one

known optimal solution and is used for performance

benchmarks. The latter 2 networks might represent a low-

end and high-end car respectively, but all communication

values are purely fictional. Due to their complexity, a

optimal solution or true pareto front is not known.

TABLE I. DIMENSIONS OF TEST NETWORKS

Test network 1 2 3

No. Nodes 10 40 80

Location constrained SW components 10 20 70

Unconstrained SW components 0 30 30

Gross bit rate [MBit/sec] 0.2 1 10

5.2 Convergence

Our first experiment series evaluated the mean

convergence speed of our optimization. First, we

executed 100 independent runs using test network 1. We

aborted each run after the optimal solution had been

found or 2000 solutions had been evaluated.

82% of our testruns hit the global optimum within 2000

evaluations while the rest was stuck in local optima and,

to our observation, would not have succeeded in

reasonable time. The results in Fig. 6 support this

assumption since the probability of finding the global

optimum within a run decreases after 500 evaluations.

TABLE II. CONVERGENCE EXPERIMENT 1

Test network model 1

Mutation probability
Software mapping 0.2

Bus connections 0.2

Archive size 20

Population size 20

Max. evaluations 2000

Runs 100

Optimum hit 82 %

Average execution time 0.68 s

Figure 6. Results for convergence experiment 1

To further examine the convergence behavior we

observed the best cost objective of the population while

optimizing test network 3. Figure 7 illustrates the

optimization process for 5 independent runs. The

execution time for each run has been significantly higher

due to the larger network model and data output during

execution.

TABLE III. CONVERGENCE EXPERIMENT 2

Test network model 3

Mutation

probability

Software mapping 0.2

Bus connections 0.2

Archive size 50

Population size 50

Max. evaluations 30000

Runs 5

Average execution time 36.4 s

Figure 7. Results for convergence experiment 2

5.3 Performance

In a final step we have studied the influence of archive

size and number of evaluations on calculation time.

Therefore, for each setting we measured the average

execution time of 10 independent runs using test network

2. The results in Fig 8 show that the archive size only

influences the overall execution time for large numbers

of evaluations. The significant difference in performance

for 15.000 and 20.000 evaluations is subject to further

investigations.

Figure 8. Calculation performance for different amounts

of evaluations

6 Conclusion and Further Work
In this paper, we presented a novel approach for

automotive network encoding and optimization using

evolutionary algorithms.

First, we introduced typical initial situations and

challenges for network architects at OEMs and

automotive suppliers. Subsequently, we listed

requirements and constraints which have to be taken into

consideration when developing a new communication

network. This network development can be described as a

series of tasks: After defining atomic software

components and logical links representing transmission

requirements, we want to effectively deploy those

software components onto corresponding ECUs.

Simultaneously to the deployment, we need to interlink

these ECUs using automotive specific bus systems while

keeping hardware costs, wiring effort and network

complexity low.

These tasks can be optimized using our new encoding

scheme. In our encoding, we presented 3 objects to

represent bus connections, software mapping and

network communication respectively. Those objects are

varied using established evolutionary algorithms like the

SPEA2 to obtain near-optimal network solutions. We

ensure the technical feasibility of our solutions by

implementing problem specific mutation operators and

routing algorithms.

0

5

10

15

20

25

30

35

40

45

250 500 750 1000 1250 1500

N
u

m
b

e
r
 o

f
r
u

n
s

Evaluations until optimum is found

340

350

360

370

380

390

400

410

420

430

0 5000 10000 15000 20000 25000 30000

C
o
st

 o
b

je
ct

iv
e

Evaluated solutions

Run 1

Run 2

Run 3

Run 4

Run 5

0

2000

4000

6000

8000

10000

12000

14000

16000

0 50 100 150 200

E
x
ec

u
ti

o
n

 t
im

e
[m

s]

Archive Size

20000 15000

10000 5000
Evaluations:

We have shown that the SPEA2 algorithm, as already

implemented in the jMetal framework, can easily be

adopted to optimize our test networks. Additionally,

initial experiments have confirmed a fast and reliable

convergence towards optimal results.

Further work will include the introduction of a crossover

operator as well as benchmarks regarding common

quality indicators used in evolutionary algorithms.

Another interesting task will be the implementation of

algorithms like differential evolution [22] or particle

swarm optimization [23] since our encodings were

designed to utilize different optimization strategies.

We also want to compare our algorithm´s results with

currently established car networks to explore the potential

of cost optimization in the automotive domain.

7 References

[1] M. Broy, "Challenges in automotive software

engineering," New York, NY, USA, 2006.

[2] Automotive Open System Architecture, [Online].

Available: http://www.autosar.org.

[3] Aquintos PREEvision, [Online]. Available:

http://www.aquintos.com/.

[4] L. Vlacic, M. Parent and F. Harashima, Intelligent

Vehicle Technologies, Butterworth-Heinemann,

2001.

[5] FlexRay, [Online]. Available:

http://www.flexray.com/.

[6] MOST Coorperation, [Online]. Available:

http://www.mostcooperation.com/home/index.html.

[7] Bosch Controller Area Network, [Online].

Available:

http://www.semiconductors.bosch.de/en/ipmodules/

can/can.asp.

[8] Local Interconnect Network, [Online]. Available:

http://www.lin-subbus.org/.

[9] H.-T. Lim, L. Volker and D. Herrscher, "Challenges

in a future IP/Ethernet-based in-car network for

real-time applications," 2011.

[10] R. Ahlswede, N. Cai, S. y. Robert and R. W.

Yeung, "Network Information Flow," IEEE

TRANSACTIONS ON INFORMATION THEORY,

vol. 46, no. 4, pp. 1204-1216, 2000.

[11] K. Chi, X. Jiang, S. Horiguchi and M. Guo,

"Topology Design of Network-Coding-Based

Multicast Networks," IEEE Trans. Parallel Distrib.

Syst., vol. 19, no. 5, pp. 627-640, #may# 2008.

[12] C. Quigley, R. McMurran, R. Jones and P.

Faithfull, "An Investigation into Cost Modelling for

Design of Distributed Automotive Electrical

Architectures," 2007.

[13] C. A. Coello, "A Survey of Constraint Handling

Techniques used with Evolutionary Algorithms,"

1999.

[14] R. Kowalczyk, "Constraint consistent genetic

algorithms," 1997.

[15] M. Heinz, M. Hillenbrand, K. Klindworth and K.-

D. Mueller-Glaser, "Rapid automotive bus system

synthesis based on communication requirements,"

2011.

[16] M. Lukasiewycz, M. Glass, C. Haubelt, J. Teich, R.

Regler and B. Lang, "Concurrent topology and

routing optimization in automotive network

integration," 2008.

[17] M. Glass, M. Lukasiewycz, R. Wanka, C. Haubelt

and J. Teich, "Multi-objective routing and topology

optimization in networked embedded systems,"

2008.

[18] M. Lukasiewycz, M. Glass, C. Haubelt and J.

Teich, "SAT-decoding in evolutionary algorithms

for discrete constrained optimization problems,"

2007.

[19] S. Kim, E. Lee, M. Choi, H. Jeong and S. Seo,

"Design Optimization of Vehicle Control

Networks," Vehicular Technology, IEEE

Transactions on, vol. 60, no. 7, pp. 3002-3016, sept.

2011.

[20] J. J. Durillo and A. J. Nebro, "jMetal: A Java

framework for multi-objective optimization,"

Advances in Engineering Software, vol. 42, pp.

760-771, 2011.

[21] E. Zitzler, M. Laumanns and L. Thiele, "SPEA2:

Improving the Strength Pareto Evolutionary

Algorithm," 2001.

[22] R. Storn and K. Price, "Differential Evolution – A

Simple and Efficient Heuristic for global

Optimization over Continuous Spaces," Journal of

Global Optimization, vol. 11, pp. 341-359, 1997.

[23] J. Kennedy and R. Eberhart, "Particle swarm

optimization," 1995.

