
Grid Resource Discovery using Tree Data Structure for
Multi-Trait Requests

Leyli Mohammad Khanli1, Saeed Kargar2, Ali Kazemi Niari2

1 CS Department, University of Tabriz, Tabriz, Iran
2Department of Computer Engineering, Islamic Azad University, Tabriz Branch, Tabriz, Iran

Abstract - Grid is an extensive environment in which different
resources are dispersed geographically. A user may need a
resource or a combination of resources in order to solve a
problem. The task to find such a resource is borne by resource
discovery algorithms. Therefore, the resource discovery
algorithms are of high importance in grids. The methods
proposed to resource discovery so far have not suggested a
method to discover several resources simultaneously in the
form of a request.
 In this paper, we have proposed a method that is able to
discover simultaneously the desired number of the resources
for the user. In our proposed algorithm, the cost of the
resource discovery is very low. By means of this method, a
user will be able to request several resources simultaneously
in one format.
 The results of simulations indicate that fewer numbers of
nodes meet in the resource discovery stages in this method
than that in the other suggested methods. Compared to other
methods, this method also creates less traffic in the network.

Keywords: Grid, Resource Discovery, Multi-Trait Requests

1 Introduction
 Grid is a new technology that enables the users to share
different resources from long distance by using network and
communication infrastructures. These resources can be
heterogeneous and far from one another geographically [1].
Different methods have been suggested for resource
discovery. Centralized methods [2-4] are among the methods
that have been used. These methods have a central server that
manages all nodes. In such environments as grids where there
is a large number of users, there has been mounted a
bottleneck in the server region, which reduces the system
efficiency. The other methods are decentralized. There is not
a centralized server in these methods which can manage all
nodes. Flooding-based and Random-based are instances of
this method. Although these methods have removed many
faults of the previous methods, the system efficiency reduces
with the increase in the number of nodes and with the
variation in the resources.

Recently, there have been introduced distributed
methods that use tree structure for resource discovery. These
methods are more optimal in terms of the number of the

produced traffic, etc. However, in none of these methods
occurs the discovery of several resources simultaneously in
one format. “A resource discovery tree using bitmap for grids”
[5] and “FRDT: Footprint Resource Discovery Tree for grids”
[6] and the methods proposed in [7-8] are instances of this
method.

This paper proposes a method for resource discovery that
uses a weighted tree structure as the method [6] does with this
difference that the former makes it possible for the user to
search for several resources simultaneously. The simulations
show that the algorithms suggested in this paper find one or
more resource for users without recourse to unnecessary and
extra nodes, creating less traffic.

Below are discussed some of the works done with regard
to the resource discovery so far. Section 3 is concerned with
the explanation of the method suggested in this paper. Section
4 is associated with the results of the simulations. Finally,
section 5 concerns Conclusion and further studies.

2 Related work
Various methods have been proposed as regards the

resource discovery in the grid. Below are presented some of
these methods.

Matchmaking is one of these methods [9] in which
matchmaking service find a correspondence between requests
and entities. Most methods use this algorithm [10-13].

Another group of methods uses a Semantic Communities
among the nodes in the grid [14-17].

 Juan Li. [18] has proposed a resource discovery method
based on the Semantic Communities. In this method, a
Semantic structure is used to group the similar nodes;
therefore, the request for the resource discovery is sent to the
related nodes only.

There is another method suggested recently for the
resource discovery which makes use of tree structure [5]. A
series of bitmaps have been used in the nodes. Upon the
resource discovery, the user's requests are transformed to these
formats and delivered to one of the nodes existing in the
environment. These nodes utilizes AND operation to discover
the resources required by the users.

In the previous work by the authors [6], a weighted tree
structure had been used for the resource discovery. In this
method are used a series of bitmaps that maintain the path to

the target in addition to keep the information of the resources
existing in the environment.

In contrary to all previous methods, the method proposed
in this work is able to discover a combination of the resources
for the users at the same time. Another advantage of this
method is that it is able to perform resource discovery without
recourse to unnecessary nodes.

3 Our proposed method
As mentioned earlier, this method is based on a

weighted tree structure. The information of the resources
in the nodes will be stored in the form of a tree data
structure called “Resource-Tree” (RT). Through RT, the
information of the combined resources will be stored in the
nodes, and the user's requests will be guided to the
appropriate paths in the environment. To get more familiar
with this method, the general structure of RT and the
format that is stored in each field RT will be discussed in
the later subsection, and then the resource discovery will
be discussed in next subsections.

3.1 Resource-Tree (RT)

 As pointed out before, the method proposed in this paper
uses a tree data structure called RT. The size of RT depends
on the type of the resources in the environment. RT includes
fields in which the information related to the local node
resource and/or the information of the children of this node
will be stored. Fig. 1 shows an instance of RT. This RT is
devised for an environment which shares 3 kinds of Operating
Systems (OS) and 2 kinds of RAM. It is noted that the general
structure of RT is known for all nodes in the environment. Not
all nodes in the environment will use all fields in RT, but they
will use some of these fields depending on the resources at
hand. A sample of field RT is shown in Fig. 2. This field
consists of two columns called “Resource” and “Children”.
The meaning of the numbers stored in these columns is
explained through an example.

Fig. 1: An example of Resource-Tree (RT).

Fig. 2: The content of the highlighted field in Fig. 1.

Assume that the field in Fig. 2 has been stored in the
place highlighted in Fig. 1. In Resource column, the number
11 has been stores. This means that this node possesses the
resource level 1 (OS) and the resource level 2 (RAM).
Considering the place where is stored in RT, it possesses
Linux and RAM 4G. For better comprehension, you can look
at Fig. 3 and Fig. 4. Fig 3 illustrates the assumed environment
of our grid on a weighted tree structure. As seen in the figure,
each node shares a resource or a combination of resources in
the environment. How the resource information is stored
inside some of the nodes is clearly seen in Fig. 4.

Fig. 3. An example of typical grid environment on a weighted
tree.

Each part of Fig. 4 is explained subsequently. Just for
simplification, O1, O2, O3, R1 and R2 will be used to refer to
MacOS, Seven, Linux, RAM 2G and RAM 4G respectively.
In Fig. 4(a), the RT stored in the nodes J and K are shown. As
both nodes share the resources Mac OS and RAM 2G in the
environment, they have similar RTs. Number 11 stored in
Resource column means that in this place exists the
information related to a combinational resource that possesses
both OS and RAM, and they are Mac OS and RAM 2G with
consideration of the place where they are stored. The mark “---
” in the Children column indicates that these resources are the
local resources of the node itself.

For another example, look at Fig. 4(b) related to the node
G in Fig. 3. This node which receives information from its
own children in addition to its own local information will store
all this information in its RT as shown in Fig. 4(b). This node
itself consists of O1 and R1 which will store the information
of which as 11 in Resource column and mark “---” in Children

(a)

(b)

Fig. 4. The stored RTs in the (a) nodes J and K; (b) node G.

column, but will store the information related to children (O1
and R1 from both children) in the related place (number 11 in
Resource column). Number 01 stored in Children column
means that because this node has two children; therefore, it
allocated at least 2 bits to each node, which is 0 and 1 as in
Fig. 3. Since it receives similar information from both its
children, the children's weight; that is 0 and 1 is written beside
Children column (01).

It is pointed out that the information the method
proposed here is stored in nodes distributary. This reduces the
volume of the information stored in the nodes.

3.2 Multi-resource discovery

As seen in Fig. 5, there is a sample of the request form.
The request form consists of two columns, Location and
Resource. Resource Column resembles the column with the
same title in RT, and its bits indicate the existence or non-
existence of resources. The other column; that is, Location
column, indicates a field to which referral will be made in
every node in the course of the resource discovery.

Fig. 5. A sample of Request form.

For example in Fig. 5, when the user needs a resource
R1, the information related to R1 in RTs may be stored in
each of three fields at the address of 000, 010 and 100 (Fig.
1). That is to say, for the applicant R1, the resource level 1;

i.e., OS is not important, and only the second path ending in
RAM is of importance.

As such, in Location column, sign XX (X means an
unimportant state) is stored, and any field that receives this
request searches for three fields at 000, 010 and 100.

In Fig. 6, a sample of the resource discovery is shown.
As seen in this figure, a user needs the resources O1 and R1
simultaneously, and delivers a requested form as shown in this
figure to the node D in the tree. Receiving this form, this node
immediately refers to the same column in its RT using the
position written in Location column, and compares Resource
columns. But as it is seen, this position does not exist in the
RT of node D. Thus, it passes the request to its parent node.
Referring to a place in its RT, node A compares Resource
column of the request with Resource column in the related
place and finds a correspondence in the second line and sends
the request to a child with weight 00. Node B, too, repeats this
process, and delivers the request form to node G. Finding a
correspondence in the related field and referring to Children
column, node G notices this resource in children with edge 0
and 1 and sends the request to one of the nodes selectively
(node J here). Finally, node J finds the requested resource for
the user and reserves O1 and R1, and then sends a successful
response to the origin node. As seen, the resource discovery
method suggested in this paper is simple and does not meet
any extra nodes.

Fig. 6. An example of resource discovery in our method.

4 Simulation results
The simulations required for this work have been

performed in MATLAB environment. The resources have
been distributed randomly in this environment, and the
requests, too, have been delivered to every tree node
randomly. The height of the trees has been assumed 4 as in
[5,6,19].

Since we did not find a method that can discover several
resources in one format at the same time, we compared our
method with other available methods with one resource. To
compare multi-resources, we assumed that other methods
discover the users' requested resources altogether in one place.

In the first simulations, we compared our method with
"A resource discovery tree using bitmap for grids "[5] (which
is called tree method), "Using Matrix indexes for Resource
Discovery in Grid Environment" [8] (which is called UMIRD)
and " FRDT: Footprint Resource Discovery Tree for grids "[6]
methods. In Fig. 7, we supposed that the user requested
different number of resources. In these tests, it is supposed
that the 100 of the users, requested different number of
resources. In our method, 100 requests will be sent but in
other ones, for example for request six resources (Fig. 7(b)),
600 separate requests should be sent. As observed in the Fig.
7, the number of the nodes visited in our method is lower than
other methods.

(a)

(b)

Fig. 7. The number of the nodes met by the users' requests
during the resource discovery that the user requests; (a) two
resources; (b) six resources.

In the next simulations, the traffic produced by the
methods tree method, UMIRD, FRDT and our method upon
resource discovery was compare, which is shown in Fig. 8. In
these tests, it is supposed that the 300 of the users, requested
different number of resources. As shown, our method is able
to discover a desired number of resources for the user
producing the least traffic and not referring to unnecessary
nodes. Therefore, this method is more effective in the grid
environment with many resources.

(a)

(b)

Fig. 8. The traffic produced by the different methods during
the resource discovery for 300 users that each user requests:
(a) three resources; (b) seven resources.

In the last tests, our method was compared with methods
flooding-based, MMO [20-21], Tree method [5] and FRDT
[6]. In this experiment, the mean of the number of met nodes
was compared in different methods. It was assumed that any
user would request only one resource (Fig. 9).

0

500

1000

1500

2000

2500

3000

3500

4000

15 40 85 156 259 400

Tree method

FRDT

UMIRD

Oue method

0

2000

4000

6000

8000

10000

12000

15 40 85 156259400

Tree method

FRDT

UMIRD

Oue method

0 10000 20000

85

156

259

400

Our method

UMIRD

FRDT

Tree method

0 20000 40000

85

156

259

400

Our method

UMIRD

FRDT

Tree method

Fig. 9. The mean of the number of met nodes by different methods.

5 Conclusions and future work
As discussed earlier, we have proposed a method that is

able to discover simultaneously the desired number of the
resources for the user. In our proposed algorithm, the cost of
the resource discovery is very low. The results of simulations
indicate that our method is more efficient than other methods.
In the future, the researchers will try to suggest a method
which takes into account such factors as the cost, geographical
distance, etc. for the resource discovery.

6 References
[1] I. Foster and C. Kesselman. “The Grid 2: Blueprint for a
New Computing Infrastructure”. Morgan Kaufmann
Publishers Inc., San Francisco, CA, 2003.

[2] A. A. Chien, B. Calder, S. Elbert, K. Bhatia, “Entropia:
Architecture and performance of an enterprise desktop grid
system”, J. Parallel Distrib. Comput. (Elsevier), vol. 63, pp.
597-610,2003.

[3] F. Berman, et al., “Adaptive computing on the grid using
AppLeS”, TPDS, vol. 14, pp.369-382, 2003.

[4] M.O. Neary, S.P. Brydon, P. Kmiec, S. Rollins, P.
Capello. “JavelinCC: Scalability issues in global computing”.
Journal of Future Gener. Comput. Syst. (Elsevier), Vol. 15,
pp. 659-674, 1999.

[5] Chang, R-.S. and M-.S .Hu. “A resource discovery tree
using bitmap for grids”. Future Generation Computer Systems
(Elsevier), vol. 26, pp. 29-37, 2010.

[6] L.M Khanli, and S. Kargar. “FRDT: Footprint Resource
Discovery Tree for grids”. Future Gener. Comput. Syst.
(Elsevier), vol. 27, pp. 148–156, 2011.

[7] L.M Khanli, A. Kazemi Niari and S. Kargar. “An
Efficient Resource Discovery Mechanism Based on Tree
Structure”. In the 16th International Symposium on Computer
Science and Software Engineering (CSSE 2011), p. 48-53,
2011.

[8] Leyli Mohammad Khanli, Saeed Kargar, Ali Kazemi
Niari. “Using Matrix indexes for Resource Discovery in Grid
Environment”. In the 2011 International Conference on Grid
Computing and Applications (GCA’11), Las Vegas, Nevada,
USA, pp. 38-43, 2011.

[9] R. Raman, M. Livny, M. Solomon, “Matchmaking:
distributed resource management for high throughput
computing”, In the Seventh IEEE International Symposium on
High Performance Distributed Computing (HPDC-7’98), pp.
140, 1998.

[10] Ye Zhu, Junzhou Luo, Teng Ma, “Dividing Grid Service
Discovery into 2-stage matchmaking”, ISPA 2004 (LNCS),
vol. 3358, pp. 372–381, 2004.

[11] Sanya Tangpongprasit, Takahiro Katagiri, Hiroki
Honda, Toshitsugu Yuba, “A time-to-live based reservation
algorithm on fully decentralized Resource Discovery in Grid
computing”, Parallel Computing (Elsevier), vol. 31, pp. 529-
543, 2005.

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

Flooding-based MMO Tree height 4 FRDT our method

85

156

259

400

[12] Simone A. Ludwig, S.M.S. Reyhani, “Introduction of
semantic matchmaking to Grid computing”, J. Parallel Distrib.
Comput. (Elsevier), vol. 65, pp.1533 – 1541, 2005.

[13] Ami T.Choksi, Devesh Jinwala, “Improving Semantic
Matching of Grid Resources Using refined Ontology with
Complement Class”, Journal of AICIT, vol. 2, no. 5, pp.129-
139, 2010.

[14] J. Li. and Son Vuong, “Grid resource discovery using
semantic communities”. In the proceedings of the 4th International
Conference on Grid and Cooperative Computing, Beijing, China,
2005.

[15] Juan Li, Son Vuong, “Semantic overlay network for
Grid Resource Discovery”, In Grid Computing Workshop,
2005.

[16] Cheng Zhu, Zhong Liu, Weiming Zhang, Weidong Xiao,
Zhenning Xu, Dongsheng Yang, “Decentralized Grid
Resource Discovery based on Resource Information
Community”, Journal of Grid Computing (Springer), vol.
2,no. 3, pp. 261-277,2004.

[17] Thamarai Selvi Somasundaram, R.A. Balachandar,
Vijayakumar Kandasamy, Rajkumar Buyya, Rajagopalan
Raman, N. Mohanram, S. Varun, “Semantic based Grid
Resource Discovery and its integration with the Grid Service
Broker”, In the proceedings of 14th International Conference
on Advanced Computing & Communications (ADCOM
2006), pp. 84–89, 2006.

[18] J. Li, “Grid resource discovery based on semantically linked
virtual organizations”. Future Gener. Comput. Syst. Vol. 26, pp.
361–373, 2010.

[19] Mastroianni, C., D. Talia and O. Versta. “Evaluating resource
discovery protocols for hierarchical and super-peer grid information
systems”. In the proceedings of the 15th EUROMICRO
International Conference on Parallel, Distributed and Network-
Based Processing, PDP’07, February 7– 9, pp. 147–154, 2007.

[20] Marzolla, M., M. Mordacchini and S. Orlando. “Resource
discovery in a dynamic environment”. In the proceedings of the 16th
International Workshop on Database and Expert Systems
Applications, DEXA’05, September 3–7, pp. 356–360, 2005.

[21] Marzolla, M., M. Mordacchini and S. Orlando. “Peer-to-peer
systems for discovering resources in a dynamic grid”. Parallel
Comput. Vol. 33, pp. 339–358, 2007.

