

A Process for Collecting and Analyzing Chronological
Data for CS1 Programming Assignments

Raymond Pettit1, Ryan Clements1, Susan Mengel2
1School of IT and Computing, Abilene Christian University, Abilene, TX, USA

2Computer Science, Texas Tech University, Lubbock, TX, USA

Abstract - In this paper, the use of chronological data is
explored in analyzing students’ submitted programming
assignments. By capturing intermediate versions of a
student’s program during development, the progression of
steps can be seen that the student took in attempting to solve
the problem. This chronological data can be used to give
instructors additional meaningful information as to a
student’s understanding of programming concepts and yet
does not add any additional burden to the student while
completing the assignment.

Keywords: CS1, program assignments, computational
thinking, assessment

1 Introduction
It is a challenge to access the mastery of concepts in

college-level entry programming courses. Students come to a
CS1 course from a diverse set of backgrounds. Some
students have had much exposure to programming in high
school, while others have had none.

The failure rate in college-level introductory
computer science courses may be 30% or higher [1][2]. This
failure rate found in a college’s CS1 course may be one of
the higher failure rates across campus. One of the
contributing factors is that it is often difficult for an
instructor to make an accurate assessment of what a student
really understands at any given point in the course [5].

As programming skills are usually a goal of a CS1
course, instructors typically assign work in the form of
programming assignments in which students must write a
small, but fully functioning program that meets certain
requirements. For a thorough discussion of ways to assess
mastery of CS1 concepts, see [6].

For instructors, often only the end product of the
student’s efforts is examined; i.e., the completed program.
From this completed program, correctly working or not, an
assessment of the student’s mastery over the given material
is made.

One problem with only looking at the end product is
missing the student’s journey to get to the end, which can
show quite a bit about the student’s level of understanding,
especially with regards to higher-level concepts and problem
solving. An instructor who observed a student throughout the
assignment would have more information from which to
make an assessment of that student’s mastery.

In order to capture the data of the student's journey to
complete a programming assignment, the authors propose a
process described in this paper as an experiment to capture
some of that data and to see if it could be beneficial in
assessing students. If the process is proved feasible and
beneficial, it could be incorporated into many assignments in
the future.

2 Background
In the CS1 course in which the experiment took place,

the programming assignments were divided into two groups,
in-class assignments and out-of-class assignments. Control
could not be exercised over the resources that students used
to complete an out-of-class assignment. Resource availability
for in-class assignments, however, was strictly controlled.
The in-class programming assignments consisted of both the
non-computer-based write-out-the-program-on-paper style
and the computer-based write-and-run assignments. Both of
these styles were used for exams, quizzes, and in-class
practice.

Part of the motivation of this work besides looking
more into the student's problem solving process is to begin to
develop a set of instruments to measure the student's ability
to perform computational thinking [7] as introduced by
Jeannette Wing. She defined computational thinking as
embodying the skills of abstraction and automation.
Subsequent work [8] has expanded upon the definition to
include algorithms and design. To gain insight into the
students algorithmic and design processes would be
facilitated by observing how they solve problems.

Another part of the motivation of this work comes
from observing students in lab who haven’t truly mastered

the material, but who can often produce a correctly working
program, either through sheer luck or trying a multitude of
approaches until something works. It is because of these
motivations that the authors do not want to rely entirely on
the finished product (the correctly working competed
program) to assess the skill of the student.

3 Related Work
Work has been done to evaluate student progress

within a single programming assignment by capturing and
examining each compilation attempt [3]. Information
captured this way can aid in analyzing the most difficult
sections of the program and also point to areas of frustration.
The authors automated the process of examining compiled
submissions, but needed a substantial amount of training data
for reasonable accuracy. Data examined included average
number of consecutive compilations with the same edit
location, average number of consecutive pairs with the same
error, the average time between compilations, and average
number of errors.

Intention-based scoring is a similar strategy that
attempts to use students’ intermediate submitted work (in the
form of compile attempts) [4]. The goal of the process is to
assess how close a student’s initial attempt is to the correct
solution. Examination of the intermediate forms was done
manually and resulted in the classification of the bugs found.

4 Methodology
4.1 Participants

This experiment was performed during the Fall 2011
and Spring 2012 semesters in a required class, CS115:
Introduction to Programming Using Scripting, for students in
the following majors: Information Technology, Information
Systems, Digital Entertainment Technology, and Math
Education. The class consisted primarily of students from
one of these four majors. The programming language used in
this course was Python 3. No prior experience in
programming was required to enroll in this course.

In the Fall 2012 semester, 26 students were given the
assignment. There were 23 students who were given this
assignment in the Spring 2012 semester. In both cases, this
assignment was given as an in-class quiz which had a small
(1%-2%) impact on the student’s final grade. All students
who were in attendance on the scheduled day took part in the
assignment as a standard required quiz.

4.2 Procedure
Several methods for collecting chronological data

during a programming assignment were explored. One
method was to create a custom editor that the students would
be required to use while completing the assignment. The
custom editor would store data as the user entered it. This
custom editor would give a great deal of flexibility and

power to record all of the data that was wanted, but would
require a significant amount of effort to build and deploy.

Another possibility was to do direct keystroke logging
during the quiz period. The data could then be reconstructed
and analyzed later offline. While keystroke logging programs
are available, there would have been a significant amount of
manual effort in implementation and processing the data
received.

Fortunately, it was not necessary to capture every
keystroke to obtain the information that was desired. The
main concern was with the ordering of steps while
completing the assignment. All that was needed was a lower
resolution “playback” of the programming session. To this
end, the authors experimented with the built-in archiving
capabilities of the Google Documents editor. The Google
Documents editor saves a new copy of a file after any 10
seconds of inactivity. Each of these intermediate versions can
be easily accessed at a later time. By using Google
Documents, the authors would also have the ability to collect
assignments easily from the students when they finished and
be able to store a permanent archive that could be accessed in
the future.

In order to prepare for the experiment, a shared
Google Document was created for each student. As the
campus where the trial took place is a Google Apps Campus,
all student user accounts are already connected to Google
Documents. Creating a shared Google Document for each
student, therefore, was a straightforward effort and took
about one minute per student to accomplish. The authors are
exploring ways to make shared document creation more of
an automated process in the future. Even if students do not
already have a Google account, they can create one for free.

On the day of the quiz, students simply looked at their
Google Documents folder and found the shared document
bearing the chosen name (i.e., CS115.01_Quiz_4.txt). This
document opened as an empty document within Google’s
web-based text editor. Students were then given the problem
description and directed to use the editor to write the
solution.

This assignment was very similar to a paper and
pencil- based programming test in that students did not have
access to an integrated development environment (IDE),
compiler, or interpreter. They were not allowed to do trial
runs of the program and iterate on the feedback given in
order to capture a more accurate picture of what the student
fully understood.

The only benefit provided by the editor was the
ability to manipulate text in standard ways such as deleting
or moving previously typed lines. Although students can
delete previously input text, the deleted versions are still
saved as part of the Google Documents archiving process.

4.3 Data Collection
Data was collected in the form of intermediate

versions of the modified text file. A researcher then stepped
through the intermediate forms of a student’s completed
coding assignment while recording the order in which
designated milestones were accomplished. Within Google
Documents, a document owner can choose to view a detailed
revision history of a given file. Once the beginning version
of the file is selected, then it is a simple matter of stepping

through the various revisions until the final version is
reached. For example, typically one to two lines of new code
per revision was seen.

Before the submitted programs were opened, the
researcher analyzed the assignment and designated certain
required milestones that must be present in a correctly
working program. Milestones included: collecting input,
printing output, declaring a function, calling a function, and
performing a calculation.

CS115, Quiz 4, Castle Defense

You’re in charge of the castle’s perimeter defenses. Your first round of defense is catapults, but they will only kill a
certain percentage of the enemies. After the enemies get past the catapults, your second line of defense is archers, but
they will only kill a certain percentage of the enemies that had gotten past the catapults.

Write a program that will help you to predict the number of enemies that will get past both defenses (so you can plan
for the boiling oil). The program should ask the user for the number of enemies, the expected catapult kill percentage,
and the expected archer kill percentage.

Print out the total number of enemies expected to make it past both defenses and through to the castle (round the
answer to the closest whole number). For values of 1000 or more, insert commas in your output.
Ex. 1,000 or 15,324 etc.

Define a main function exactly as shown here- def main():
From within the main function, ask for data from the user and do the printing. There should not be any user input or
printing in any function besides main(). Do not use global variables in the program. Any call to the left_standing
function should be done from within the main function.

Create a function that, given the number of people in a group and a kill rate, will return the number of people that
survived. Include all mathematical calculations in this function. Do not do any mathematical calculations outside of
this function. Define this function exactly as shown here- def left_standing(group, kill_rate):

Sample Runs
Castle defense
Enter number of enemies: 100
Enter catapult kill percentage: 40
Enter archer kill percentage: 50
Total enemies remaining: 30

Castle defense
Enter number of enemies: 10
Enter catapult kill percentage: 50
Enter archer kill percentage: 50
Total enemies remaining: 2

Castle defense
Enter number of enemies: 12345
Enter catapult kill percentage: 10
Enter archer kill percentage: 20
Total enemies remaining: 8,888

Figure 1: The Castle Defense Assignment

For the assignment later described in this paper
(about 15 lines of code and 8 milestones), it took a student
researcher about one minute to step through a single
student’s assignment and record the ordering of the
milestones. In the future, it may be possible to automate this
process by specifying variable and/or function names and
using a program that analyzes text.

At the end of this data collection process, a
spreadsheet containing a milestone ordering for each student
is filled out. From there, the data can be analyzed in a
variety of ways as given below.

5 The Sample Problem
The process described in this paper has been used for

two semesters in a CS1 course at Abilene Christian
University. The first assignment that was given in this way
is titled “Castle Defense.” This assignment was given in the
Fall 2011 semester and the Spring 2012 semester. The
Castle Defense assignment as it was given to the students is
shown in Figure 1.

This assignment was created to test understanding of
functions and their use. By restricting the student to only use
the function definitions given in the problem statement, the
student must see the calculation required as composed of
two similar calculations that can be performed to get the
correct answer. Many students only see functions as a means
of taking code from one part of a program and putting it in
another section. They may have difficulty in understanding
the value of having a function which can receive values,
process them, and return a resultant value. They would not
initially see a function as something that could be called
multiple times. It is because of this misperception of
functions that this assignment is of value in helping
instructors understand deficiencies in students' perceptions
of functions.

In order to assess a student's completed assignment
as objectively as possible, a rubric was created for grading
the assignment. This rubric was used strictly to analyze the
final version of the program that the students completed.
Each student earned weighted points for each of the 22
conditions that were accomplished successfully. The rubric
is shown in Table 1.

In order to record the chronological data for this
assignment, milestone markers were created. These
milestones are required accomplishments along the way to
completing the program correctly. However, these
milestones could be achieved in any order and still produce
a correct end product. It is through this analysis of the
ordering that instructors can gain insights into the level of
conceptual understanding of a student and their ability to
design. These milestones are:

1.) Student opened file
2.) Function main() is defined
3.) Function left_standing() is defined
4.) Function left_standing() is called the 1st time
5.) Function left_standing() is called the 2nd time
6.) Input is requested of the user
7.) Print statement shows final result
8.) Body of left_standing() started

Table 1: Grading Rubric

 Castle Defense Grading Criteria CS115.01
Quiz 4 weighting

1.) Both functions declared as stated 4

2.) Mathematical calculations are only in
left_standing() 4

3.) Input calls are only done from main()
function 4

4.) Ouput is only done from within main() 4

5.) left_standing() is not called outside of
main() 4

6.) main() is called 2

7.) Proper output for header text ('Castle
defense') 2

8.) Values returned from input statements are
stored or used 6

9.) Input values are converted to number types 5

10.) An attempt is made to print the final result 5

11.) The final result is formated properly (text
and commas) 3

12.) left_standing is called at least once 7

13.) left_standing() is called properly the first
time 4

14.) The value returned from the first call to
left_standing() is stored or used 7

15.) left_standing is called twice 7

16.) left_standing() is called properly the second
time 4

17.) The value returned from the second call to
left_standing() is stored or printed 7

18.) left_standing() contains correct
mathematical calculation 4

19.) left_standing() returns a calculated value 5

20.) All referenced variables are in scope (not
including undeclared variables) (B) 5

21.) All variables used have been declared (B) 5

22.) All variables declared are used (B) 2

 Total 100

The first milestone simply gives a way to record the
time at which the programmer opened the file for editing.
Including 1) as a milestone allows for keeping elapsed times
between milestones. The second milestone is fulfilled when
the programmer completes the official function definition
for the main() function. The third milestone is fulfilled when
the left_standing() function is officially defined. In order to
complete this programming quiz successfully, the
left_standing() function must be called twice. Milestones 4
and 5 are fulfilled when these functions are officially called.
Milestone 6 is fulfilled when the programmer uses the
input() function to request input of the user. Milestone 7 is
fulfilled when the program attempts to print out the final
answer. The result may not be calculated yet, but the call to
print the answer is made. The final milestone, 8, is fulfilled
when the body of the left_standing() function has been
started. The body included any work on the left_standing()
function besides its definition or a blank return statement.

6 Results
6.1 Summary Data

For each student, an analysis was made as to the
order in which the milestones were accomplished. These
individual orderings were summed and the average taken.
The summary information for the assignment given in the
Fall 2011 semester and the Spring 2012 semester is shown
in Tables 2 and 3.

The ordering summary data indicates that the two
different groups of students, on average, completed the
problem in similar progressions. As well, the standard
deviation for a given milestone is not significantly different
from one semester to the next.

Elapsed time ranged from a few minutes to a little
over 10 minutes on each milestone. Grades ranged from as
low as 20 to as high as 100 using the grading rubric in Table
2.

Table 2: Ordering Summary for
Fall 2011 (n=26)

Milestone Average Standard Deviation

Student Opened File 1.00 0.000

main() defined 2.88 0.927

left_standing() defined 3.22 1.808

left_standing() 1st call 5.85 0.988

left_standing() 2nd call 7.08 0.793

Input gathered 3.80 0.957

Print final result 5.40 1.414

Body of left_standing() started 6.05 1.588

Table 3: Ordering Summary for
Spring 2012 (n=23)

Milestone Average Standard Deviation

Student Opened File 1.00 0.000

main() defined 2.87 1.014

left_standing() defined 3.57 1.619

left_standing() 1st call 6.10 1.044

left_standing() 2nd call 7.36 0.809

Input gathered 3.74 1.096

Print final result 5.56 1.562

Body of left_standing() started 5.36 1.590

6.2 Comparison to Expected Orderings
There are many different orderings of these

milestones that show a logical progression through the
program. The authors created two straightforward orderings,
to see if these were indeed the most popular. The first
ordering suggestion is based on a novice following the flow
of control of a program and basing their ordering of code
completion on the program’s flow. The second suggestion is
based on what the more experienced programmers indicated
as their preferred progression through the code. This
ordering involved creating and finishing the main function,
including calling the auxiliary function, before creating the
auxiliary function. These two orderings are shown in Table
4.

Table 4: Suggested Orderings

Milestone Flow of Control Experienced

Student Opened File 1 1

main() defined 2 2

left_standing() defined 5 7

left_standing() 1st call 4 4

left_standing() 2nd call 7 5

Input gathered 3 3

Print final result 8 6

Body of left_standing() started 6 8

The summary results show that after defining the
main() function, the next step (on average) was to define the
left_standing() function. This is likely due to the student’s
beginning the assignment by including the problem
constraints first. As the ordering of the defining of the
left_standing() function may not be an indicator of the
student’s thought process, the authors later added the eighth
milestone which better records when a student was giving
their attention to the left_standing() function.

6.3 Exploring One Student’s Data
As the authors began analyzing the collected

ordering data and comparing it to grades earned in the
assignment, a few surprises were uncovered. One of these
surprises involved a student that scored a much higher grade
on this assignment than his course average would have
predicted. The student in question had a course grade that
placed him as the 19th out of 23 students in the course. The
instructor’s subjective assessment of this student’s
performance concurred with this student’s low ranking. The
surprise was that this student was one of only eight students
to score a grade of ‘A’ on this assignment (according to the
grading rubric shown in Table 1). The ordering for this
student’s assignment is shown in Table 5.

This ordering reflects that the student had not fully
thought out his approach to the problem beforehand as main
was not completely defined before work began on the
left_standing() function. It also raises questions as to his
overall approach since he went back and forth between main
and the left_standing() function. When the particular student
learned of his ‘A’ grade on this assignment, he expressed
surprise and stated that he was very unsure of how to create
a program to achieve the desired goal.

Table 5: An Individual Student’s
Curious Orderings

Milestone Flow of Control

Student Opened File 1

main() defined 2

left_standing() defined 4

left_standing() 1st call 7

left_standing() 2nd call 8

Input gathered 3

Print final result 6

Body of left_standing() started 5

Additional analysis showed that 16% of the students
in Fall 2011 and 21% of the students in Spring 2012
addressed the body of the function left_standing() at steps
four or below. The average grade of the Fall students was
61 and the average grade of the Spring students was 58.2 out
of 100. In Fall, 60% of the students addressed the body of
the function at steps 6 to 8, and in Spring, 43%. The
average grade was 79 in the Fall and 78 in the Spring for
those students. Clearly, students who follow the ordering
suggested in Table 4 tend to do better than those who might
follow a different ordering.

There are other interesting cases that have given
additional insight into the reasoning of the students as they
completed this assignment. The authors would like to create
some template ordering patterns that reflect a good approach

to this assignment and a poor approach to this assignment. If
accomplished, the instructor could receive an automatically
generated assessment of the likelihood that a student showed
mastery of the concepts in question. This template could be
used by the instructor to look deeper into the work of certain
students and help identify deficiencies in learning, such as
using a more random pattern of orderings in accomplishing
assignments and insufficient numbers of students able to
complete portions of an assignment.

7 Future Work
Outlined in this paper is an early implementation of a

technique for recording additional data that students produce
while completing a programming assignment. Currently, it
can be a time intensive process to set up an assignment for
capture using Google Docs, especially with large numbers
of students. Additional work needs to be done to have a
more automated means of setting up and collecting data
from larger numbers of students.

Analysis of the data is currently done manually and
requires a researcher to step though the intermediate
versions of a student’s code. The process could be improved
by feeding these intermediate versions into a program that
could assign the orderings automatically.

Work needs to be done to produce template patterns
for more or less desirable orderings. To create templates,
several assignments will need to be given to students and a
comparison of orderings of experienced to novice students
made to gain more insight into how orderings should be
done. Certainly, much care must be taken when creating the
assignment and selecting the milestones as there likely will
be just a small subset of the milestones that are of interest in
testing the mastery of a given concept.

8 References
[1] Theresa Beaubouef and John Mason. 2005. “Why the

high attrition rate for computer science students: some
thoughts and observations”. SIGCSE Bulletin 37, 2
(June 2005), 103-106.

[2] Dawn McKinney and Leo F. Denton. 2004. “Houston,
we have a problem: there's a leak in the CS1 affective
oxygen tank”. SIGCSE Bulletin. 36, 1 (March 2004),
236-239.

 [3] Ma. Mercedes, T. Rodrigo, and Ryan S.J.D. Baker.
2009. “Coarse-grained detection of student frustration
in an introductory programming course”.
In Proceedings of the Fifth International Workshop on
Computing Education Research Workshop (ICER '09).
ACM, New York, NY, USA, 75-80.

[4] H. Chad Lane and Kurt VanLehn. 2005. “Intention-
based scoring: an approach to measuring success at
solving the composition problem”. SIGCSE Bulletin 37,
1 (February 2005), 373-377.

[5] João Paulo Barros. 2010. “Assessment and grading for
CS1: towards a complete toolbox of criteria and
techniques. In Proceedings of the 10th Koli Calling
International Conference on Computing Education
Research (Koli Calling '10). ACM, New York, NY,
USA, 106-111.

[6] Anne Venables, Grace Tan, and Raymond Lister. 2009.
“A closer look at tracing, explaining and code writing
skills in the novice programmer”. In Proceedings of the
Fifth International Workshop on Computing Education
Research Workshop (ICER '09). ACM, New York, NY,
USA, 117-128.

[7] Jeannette Wing. 2008. “Computational thinking and
thinking about computing”. Philosophical Transactions
of the Royal Society, 366, 3717-3725.

[8] Ljubomir Perković, Amber Settle, Sungsoon Hwang,
and Joshua Jones. 2010. “A Framework for
Computational Thinking Across the Curriculum”. In
Proceedings of the 15th Annual Conference on
Innovation and Technology in Computer Science
Education (ITiCSE 2010). ACM, New York, NY,
USA, 123-127.

	1 Introduction
	2 Background
	3 Related Work
	4 Methodology
	4.1 Participants
	4.2 Procedure
	4.3 Data Collection
	Sample Runs

	Figure 1: The Castle Defense Assignment
	5 The Sample Problem
	Table 1: Grading Rubric
	6 Results
	6.1 Summary Data

	Table 2: Ordering Summary for
	Fall 2011 (n=26)
	Table 3: Ordering Summary for
	Spring 2012 (n=23)
	6.2 Comparison to Expected Orderings

	Table 4: Suggested Orderings
	6.3 Exploring One Student’s Data

	Table 5: An Individual Student’s
	Curious Orderings
	7 Future Work
	8 References

