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Abstract – Test (input) data generation is important for the 

algorithms/software/hardware testing. The previous re-

searches on test data generation motivate us to find some 

meaningful information of generated test data. In this paper, 

we differentiate the test (input) data space (i.e., problem in-

stance space) from the output data space (i.e., solution space), 

by examining the test data generated in terms of optimality 

(one of the performance measures). We investigate the prob-

lem instance space of the 0/1 knapsack problem, by calculat-

ing some kind of cost-distance correlation; the correlation 

was quite different from those in well-known combinatorial 

optimization problems. Also, we improved a greedy algorithm 

of the 0/1 knapsack problem by generated test data. The im-

proved algorithm showed superiority to the original one under 

10,000 random instances. This paper presents some promising 

values of the researches on the test data space and the test 

data generation for improving the tested module. 

Keywords: Problem instance space, 0/1 knapsack problem, 
greedy algorithm, algorithm performance analysis, cost-
distance correlation. 

 

 

1 Introduction 

 Test data generation or finding specific test data has been 
interest of many researchers in various fields. For the hard-
ware testing, Saab et al. [1], Srinvas et al. [2], and Rudnick et 

al. [3] tried to generate test data finding some faults of se-
quential or combinatorial circuits. Corno et al. [4] tried to 
generate a test bench for a microprocessor design validation 
in terms of statement coverage. About software test data gen-
eration, McMinn surveyed those trials [5] for structural testing, 
non-functional testing and grey box testing. In fact, the test 
data generation is an undecidable problem in general. In the 
test data generation fore-mentioned, in fact, researchers use 
some ideas based on the meta-heuristic search algorithms. 
Then one of the important things is what objective function is 
used for the test data. But the objective value calculation in 
some case depends on the hardware environment. Execution 

time is the one of the examples (refer to [5] for the worst case 
execution time testing).  
 Therefore it would be general approach to define objective 
function in more abstract manner so that the calculation of 
objective value is independent from the hardware environ-
ment. We regard a module of the software/hardware being 

tested as an algorithm. The meaning of test data becomes the 
best/worst case defined for given testing objective function 
(e.g., the number of covered statements, the number of basic 
operations, or the degree to which the output is close to op-
timal one). The worst/best case is just some test data maximiz-
ing/minimizing the objective value. In the field of algorithm 
studies, we can see those researches. Johnson and Kosoresow 
[6] tried to find the worst case, in terms of optimality, of algo-
rithms for online Taxicab problem. Cotta and Moscato [7] 
tried to find the worst case of the shell sort to approximate the 
worst-case time complexity. Hemert [8] tried to find the worst 
case of some algorithms for binary constraint satisfaction, 
Boolean satisfiability, and the travelling salesperson problem, 
in terms of time complexity. Jeon and Kim [9] tried to find the 
worst cases of well-known internal sorting algorithms as well 
as shell sort. They also tried to find the worst case, in terms of 
optimality, of algorithms for the 0/1 knapsack problem and 
the travelling salesperson problem. 
 Above researches give us some questions; this paper deals 
with two of those questions considering the 0/1 knapsack 
problem and the greedy algorithm as tested algorithm, as an 
extension of [9].  (From now on, the problem instances have 
the same meaning as the test data and we call problem in-
stances just instances) The first question is, how different is 
generating test data of algorithms from finding solutions of 
problems? As the previous researches have focused on the 
cost-distance correlation (CDC) of solution space, we will 
calculate cost-distance correlation to investigate problem 
instance space, which is the space of the test data (Section 2). 
This will show how the test data space can be different. Note 
that, to the best of our knowledge, we are the first researchers 
using CDC for the investigation of problem instance space. 
The other question is, can we use the performance test (input) 
data for improving the tested algorithm? Previous researches 
did not focus on this question. Someone may underestimate 
the importance of the test data and want to see just the per-



formance score. We will show the input data itself can be used 
for finding defects of the tested algorithm (Section 3). We 
observe the test data for which the tested greedy algorithm 
gives a far-from-optimal solution. Based on the observations, 
we devise an improved algorithm in terms of optimality. We 
make conclusions in Section 4. 

2 Analysis of Test Data Space 

 
U = list of all the given items; 
W = given capacity of knapsack; 
K = Ø; // items to be in the knapsack  
Sort U as an array by profit density in non-increasing order†; 

for each itemi ∈ U 
{  

if ( weight sum of K + weight of itemi  ≤ W ) 
Add itemi  to K;  

} 

return K; 

Figure 1. Pseudo-code for tested greedy algorithm 

†Put the lighter item at lower index when the same profit density 
occurs.  

 
// (problem) instance is given as an array of items 

for each i-th item 
{ 

// Let the i-th item be ‘(v,w)’; v is its value and w is its weight 
Consider its eight neighbors†: (v+1,w), (v−1,w), (v,w+1), 
 (v,w−1),(v+1,w+1), (v+1,w−1), (v−1,w+1), and (v−1,w−1) ; 
 Take the one improving the quality of the instance best; 
Update (v,w) to the new one; 

} 

Figure 2. Local optimizer for 0/1KP instances 

†We exclude any item of which the value or the weight is not in 
[1,100]. 

 

This section deals with the problem instance space of the 
0/1 knapsack problem (0/1KP). In 0/1KP, we are given a 
knapsack and items. The knapsack has the capacity and each 
item has its own value and weight. The objective of 0/1KP is 
to choose items making their value sum be the highest, at the 
same time the weight sum not exceed the capacity of the 
knapsack. 
 We take as the tested algorithm the greedy algorithm which 
was dealt with in [9] (see Figure 1). The algorithm first sorts 
the given items by their profit density (value per unit weight) 
in non-increasing order. The lighter item is put first when the 
same profit density occurs. The algorithm tries to choose 
items in the sorted order. If the chosen item does not exceed 
the capacity of the knapsack, it is put into the knapsack. Oth-
erwise, the algorithm tries to choose the next item according 
to the sorted order. The algorithm exits after considering the 
last item in the order. 
 This algorithm does not give an optimal solution in every 
case. As in [9], we define the quality of a problem instance as 
1−P/O, where P is the objective value of the solution obtained 
by the tested algorithm (the greedy algorithm fore-mentioned 
in this paper), O is the objective value obtained by the optimal 

algorithm (e.g., based on dynamic programming). In terms of 
optimality, an instance is the worst case if the quality is the 
highest. (This means the tested algorithm gives far-from-
optimal solution for the instance.) The best case has the low-
est quality. 
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(a) dOthers vs. quality 
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(b) dBest vs. quality 

Figure 3. Cost-distance correlation  

(20 items, weight coefficient 0.5) 

 

The method of getting cost-distance correlation is similar to 
one for the graph bi-partitioning problem given in [10]. Fore-
mentioned ‘quality’ plays the role ‘cost’ plays in cost- dis-
tance correlation. In the search space, all the problem in-
stances have the same number of items and the same weight 
coefficient. Here the weight coefficient is a real number in (0, 
1) and determines the capacity of the knapsack by ⌊(weight 

coefficient)×(weight sum of all the given items)⌋. (⌊.⌋ means 
“the floor of”.) Weights and values of items are limited to be 
integers in [1,100]. Observing the above constraints, we gen-
erate 10,000 instances randomly and take the local optimum 
of each by using the algorithm in Figure 2. Then we remove 
any redundant local optimum. For each local optimum, we 
calculate two kinds of numerical values. One is the average 
distance from all other local optima (we call it 'dOthers'). The 
other one is the distance to the best local optimum  (we call it 



Table 1. Some statistics obtained from the method of  [10] (# of local optima are 10,000)  

#items 
Weight 

coefficient 
best Q avg Q std Q max D min D  avg D std D  Corr(dOthers,Q) 

10 

0.25 0.389 0.035 0.054 271.708 0.346 23.185 24.241 −0.052 

0.5 0.207 0.019 0.031 274.740 0.247 23.160 24.202 −0.037 

0.75 0.156 0.010 0.019 271.610 0.234 23.169 24.216 0.010 

20 

0.25 0.176 0.021 0.024 301.207 0.858 37.670 30.634 −0.045 

0.5 0.088 0.012 0.014 304.889 0.924 37.591 30.587 −0.036 

0.75 0.058 0.006 0.008 301.276 0.884 37.677 30.631 −0.019 

30 

0.25 0.081 0.016 0.014 332.748 1.447 49.532 34.798 −0.035 

0.5 0.050 0.009 0.008 332.547 1.570 49.542 34.845 −0.019 

0.75 0.033 0.004 0.005 326.248 1.531 49.628 34.873 −0.015 

'Q' means the quality, 'D' means distance. All statistics are from local optima. Local optimizer operates to-
ward increasing the quality of the given instance. Corr(dOthers, Q) is the correlation coefficients between 
dOthers and quality. 

'dBest'). For getting the distance, we regard a problem in-
stance as an array of items, thus each item can be indexed. 
The definition of the distance is based on the Manhattan dis-
tance. We calculate the distance between A and B as follows: 

∑
=

−=

n

i

ii bpdapdBAd
1

)()(),( , (1) 

   
where ai and bi are the i-th items of instances A and B, respec-
tively. The function pd(.) returns the profit density of the 
given item. N is the number of items. (We denote '#items'.) 

As the local optimizer to take a local optimum, we use the 
algorithm as in [9] (see Figure 2). The local optimizer tries to 
change the weight or value of each item in sequence, and test 
whether or not the quality of the problem instance increases. If 
it is true, the change is applied to the instance. Otherwise, the 
algorithm then considers the next item. It stops after it consid-
ers the last item. The changed instance becomes the local 
optimum for input instance of the local optimizer.  
 As a representative case, Figure 3 shows the correlation 
when #items is 20 and the weight coefficient is 0.5. Other 
correlations are similar to this case. Instances with high dOth-

ers and dBest have low qualities. But the figures show differ-
ent shapes from solution spaces of well-known combinatorial 
optimization problems such as graph bi-partitioning (see the 
shapes in [10]). In [10], when the values of dBest are small, 
the costs of solutions are also small. But Figure 3 shows va-
riant qualities when the values of dBest are small. Instances 
with low dOthers and dBest could have low qualities. This 
indicates an obstacle in finding the worst case. On the other 
hand, there are many instances having the quality 0, which 
means the best case. This can be another obstacle in finding 
the worst case, because of the large number of the best cases. 
Also this result supports the result of [11]. In fact, [11] 
showed the distribution of this problem instance space is mul-
ti-modal. 
 Table 1 shows numerical data obtained by the fore-
mentioned method. We calculate the correlation according to 
#items and weight coefficient. In our experiments, no local 
optimum was redundant. The average quality of local optima 
was quite close to 0. For the fixed #items, the average quality 
was decreasing as the weight coefficient is increasing. The 

correlation coefficients are all close to 0. If the coefficients 
were strong negative values, the search for the worst case 
would be straightforward. 

 

3 Design of Improved Algorithm 

Table 2. Worst-case instances found by the GA of [9]  

(# of items is 10) 

Weight 
coefficient 

Quality 
Value sums obtained  

(Greedy algorithm / optimal one) 

0.25 0.960 4 / 101 

Instance 
(1,1) (1,1) (100,100) (1,35) (1,37) (1,37)  
(1, 41) (1,46) (1, 51) (1,52) 
Capacity of knapsack  = 101 

0.5 0.925 8 / 106 

Instance 
(1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (100,100) 
( 66,100) (1, 4) 
Capacity of knapsack  = 106 

0.75 0.916 9 / 107 

Instance 
(1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (100,100) 
(1,34) 
Capacity of knapsack  = 107 

*Items in each instance are represented by (value, weight). 

 
In this section we show the generated test data can be used 

to find weak points of the tested algorithm and present an 
improved algorithm. Note that the main points are not the 
method for finding, but the improved algorithm based on the 
found. For finding the worst-case problem instance (as defined 
in Section 2), we use the same method as Jeon and Kim [9] 
used; a hybrid genetic algorithm (hybrid GA), where the tested 
algorithm is the greedy algorithm described in Figure 1. Also 
the local optimizer used in the hybrid GA is the same one as in 
Figure 2. For the fixed #items and weight coefficient, the 
method repeats the hybrid GA 50 times independently to 
achieve the statistical reliability. Jeon and Kim took as the 
worst case the problem instance showing the highest quality 
among 50 runs. The results were superior to those obtained by 
a random testing method. 
 Table 2 shows some of the worst cases obtained by the 
fore-mentioned hybrid GA. In Table 2, each item is 
represented as two-dimensional coordinates (v, w); v is its 



value and w is its weight. As an example, suppose that the 
greedy algorithm tries to solve the worst case in Table 2 when 
the weight coefficient is 0.5. (Refer to Figure 1 to see how this 
greedy algorithm works.) In the case, the algorithm takes sev-
en (1,1)s and one (1,4). Then the value sum is 1×7+1×1=8. 
But six (1,1)s and one (100,100) makes the value sum 
1×6+100=106. Since the algorithm prefers lighter items when 
items have the same profit density, it chooses (1,1) first before 
considering (100,100). One may suggest the modified algo-
rithm that choose the item with higher value (although it is 
heavier item) first when considered items have the same profit 
density. His/her algorithm may overcome the problem instance 
in Table 2, but it does not perform better in every case than 
the original algorithm. Consider an instance having one 
(100,100), one (50,50), two (20,20)s, and four (1,73)s, with 
the weight coefficient 0.25 (the resulting capacity is 130). 
Then his/her algorithm will choose only one (100,100) whe-
reas the original algorithm choose one (50,50) and four 
(20,20)s, which is a better solution. So we suggest a way con-
ducting some post-processing after this algorithm, to perform 
better in every case than the original algorithm. 
 The proposed idea is as the following. (The pseudo-code is 
given in Figure 4.) Once the original greedy algorithm chooses 
items to be in the knapsack, the post-processing is done from 
the choice. It takes one of the subsets of the items in the knap-
sack, and swaps the subset for an item out of the knapsack, in 
the case that the swapping increases the value sum of the 
knapsack. Consider again the worst case in Table 2 when the 
weight coefficient is 0.5. In this case, the post-processing 
swaps (1,1) and (1,4) in the knapsack for (100,100) out of the 
knapsack; this achieves the increased value sum 106. This 
processing gives equal value sum to or higher value sum than 
one obtained by the original algorithm, at the same time it can 
overcome some of the worst cases of the original algorithm.  
 

U = list of all the given items; 
W = given capacity of knapsack; 

K = {x∈U | x is chosen by the original greedy algorithm}; 
Sort U−K as an array by profit density in non-increasing order†; 

for each itemi ∈ U−K  
{  

for each setj ⊂ K  

{ 

∆vj = value of  itemi − ∑(value of each item∈ setj ); 

∆wj = weight of itemi −∑(weight of each item∈ setj ); 
} 

if(∀j, '∆vj < 0' or ∑(weight of each item∈K )+∆wj > W )  

break;   
setB = setj  showing the highest ∆vj ;

‡ 
Let itemi be in K; 
Let setB be in U−K;  
// we put setB at the highest indices in U−K (unsorted) 

} 

return K; 

Figure 4. Pseudo-code for an improved greedy algorithm  
†Put lighter item at lower index when the same profit density 
occurs. 
‡When tie occurs, choose setj  showing the lowest ∆wj. 

Table 3. Comparison between two algorithms 

 
Greedy Greedy II 

#samples: 
10,000 

#items 
Weight 

coefficient 
avg Q 

sstd 
Q 

avg Q 
sstd 
Q 

p-value 

10 

0.25 0.022 0.043 0.004 0.018 4.716E−304 

0.5 0.013 0.025 0.002 0.009 0† 

0.75 0.006 0.015 0.001 0.004 4.219E−273 

20 

0.25 0.012 0.019 0.003 0.009 0† 

0.5 0.007 0.011 0.002 0.005 0† 

0.75 0.003 0.006 0.001 0.002 0† 

30 

0.25 0.008 0.011 0.003 0.006 0† 

0.5 0.005 0.006 0.001 0.003 0† 

0.75 0.002 0.004 0.000 0.001 0† 

†'0' means that it is quite less than 2.229E−308. 
'Q' means quality. ‘avg’ and ‘sstd’ mean average and sample 
standard deviation, respectively. We obtained p-values by one-
sided t-test. 

 
But, considering combinations of the items in the knapsack 
takes so long time that the new algorithm is too slower than 
the original algorithm. To reduce the time, we limit the maxi-
mum size of the subset being considered to be 2 (i.e., in Figure 
4, |setj| ≤ 2). Table 3 shows two kinds of the average quality of 
10,000 random instances for each classification; one is ob-
tained by taking the original algorithm (we denote ‘Greedy’) 
as the tested algorithm and the other one by taking the new 
algorithm (we denote ‘GreedyII’). The low quality means the 
tested algorithm gives the solution close to the optimal one. 
The average qualities in the table indicate that the new algo-
rithm is better than the original one. 
 

4 Conclusions 

 In the approach that defines the performance of algorithms 
in abstract manner, the algorithm being tested need not to be 
well-known algorithms; the algorithm might be any part of the 
software being tested. This paper just illustrates the approach 
by taking the well-known problem and the well-known algo-
rithm. (Of course, the problem and the algorithm we dealt 
with are important themselves and thus our experimental 
results can have some significance in the sense.) For our defi-
nition of the quality and given testing algorithm, the problem 
instance space was somewhat different from well-known solu-
tion space and seemed to be difficult to be searched. Also we 
showed how the test data can be used to devise an improved 
algorithm (in this paper, a greedy algorithm of the 0/1 knap-
sack problem); it could overcome some of the worst cases of 
the original greedy algorithm. Our results will accelerate fur-
ther researches about the test data generation or empirical 
analysis of algorithms by generating test data using meta-
heuristics. 
 We leave the following studies for future work: (i) finding 
again the worst case of the improved algorithm and examining 
the changes of the quality of the worst case, (ii) examining the 
cost-distance correlation of the improved algorithm, (iii) for 
the other problems and other definitions of the quality (e.g., 
one in terms of time complexity), investigating the problem 



instance space, (iv) applying different metrics and local opti-
mizers to take the cost-distance correlation and comparing to 
the original correlation, (v) improving heuristic search algo-
rithm by examining the problem instance space further and re-
defining the quality so that the landscape becomes more easy-
to-search shape, and (vi) finding large-sized worst-case in-
stances from small-sized ones to reduce the search time and 
the quality evaluation time. 
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