
COMPARATIVE STUDY OF SOFTWARE

COMPLEXITIES OF TREE SEARCH

ALGORITHMS

Salako R.J. and Aremu D.R.

Department of Computer Science, University of Ilorin, Ilorin, Nigeria.

Abstract - This research paper studies the complexities of four tree search algorithms in order to determine the

most efficient programming language for implementing each of the algorithms. Each the tree search algorithm

was implemented in C, C++, Pascal, and Visual BASIC programming languages. The codes were empirically

analysed using Halstead Volume and Cyclomatic number. The result of the analysis revealed that Pascal

programming language is the best language for implementing breadth-first, depth-first, and depth-limited search

algorithms while C language was isolated as the best for implementing A-Star search algorithm.

Keywords: Tree search, implementation, complexity metrics, software complexity

1. Introduction

Given two or more software that solve a

particular problem, a programmer is faced with the

problem of choice of the most efficient one in terms

of quantitative measure of quality, understanding,

difficulty of testing and maintenance, as well as the

measure of ease of using the software. The analysis

of algorithm is a major task in computing. A

computer scientist, most especially a programmer,

who is faced with the problem of choosing an

appropriate algorithm to solve his problem from

myriad of available ones, may have his problem

solved by analyzing the complexity of each of these

algorithms in order to know the most efficient one.

This is a nontrivial issue that leads to the analysis of

algorithms and the means by which they can be

compared. The aim of this paper is to study the

complexities of four tree search algorithms in order

to determine the most efficient programming

language for implementing each of the algorithms.

The objective to achieve this aim was to study tree

search algorithms such as breadth-first, depth-first,

and depth-limited, and to implement each search

algorithm in C C++, Pascal, and Visual Basic

programming languages. We analysed the codes of

each of the algorithms empirically using Halstead

Volume and Cyclomatic number. The result of the

analysis showed that Pascal programming language

is the best language for implementing breadth-first,

depth-first, and depth-limited search algorithms,

while C language was best for implementing A-Star

search algorithm.

The rest of the paper is organized as

follows: Section 2 presented the related work, while

section 3 discussed complexity measurement. In

section 4, we discussed the tree search algorithms.

Section 5 presented the results of the complexity

measurements, while section 6 concluded the paper.

2. Related Work

Algorithms are frequently assessed by the

execution time, memory demand, and by the

accuracy or optimality of the results. For practical

use, another important aspect is the implementation

complex. An algorithm which is complex to

implement required skilled developers, longer

implementation time, and has a higher risk of

implementation errors. Moreover, complicated

algorithms tend to be highly specialized and they do

not necessarily work well when the problem

changes Akkanen. et al, (2000).

Algorithm analysis is an important part of

a broader computational complexity theory, which

provides theoretical estimate for the resources needed

by any algorithm which solve a given computational

problem. These estimates provide an insight into

reasonable direction of search of efficient algorithms

Jimmy Waks, (2000).

Algorithm can be studied theoretically or empirically.

Theoretical analysis allows mathematical proofs of

the execution time of algorithms which studies how

an algorithm behaves with typical inputs. It is

therefore tend to focus on the execution time and

optimality of the result Sedgewick, (1995).

Complexities of tree search algorithms have been

mostly evaluated either mathematically or by

computing the computer execution time. Neither of

the two approaches is good enough for practical and

realistic purpose especially in the situation where

more than one algorithm exists for solving a given

problem or class of problems. There is a need

therefore to seek for pragmatic means of computing

complexity of algorithms. Empirical analysis focuses

on the implementation complexity by using software

complexity measures available. In the realm of

software metrics, code is looked at as output of

labour. The complexity of a piece of software is

thought of in the same way as the complexity of an

automobile; the number of parts and the nature of the

assembly may affect the amount of labour and time

needed to create the end product.

Parse And Oman, (1995) applied a

maintenance metrics index to measure the

maintainability of C source code before and after

maintenance activities. This technique allows the

project engineers to track health of the code as it was

being maintained. Maintainability is accessed but not

in term of risk assessment.

Stark, (1996) collected and analyzed metrics in the

categories of customer satisfaction, cost, and

schedule with the objective of focusing

management’s attention on improvement areas and

tracking improvements over time. This approach

aided management in deciding whether to include

changes in the current release, with possible schedule

slippage, or include the changes in the next release.

However, the author did not relate these metrics to

risk assessment.

Okeyinka, (2003) designed a scan machine

(software) that could evaluate the complexity of

computer programs written in pascal language. The

tool designed can be used to identify the most

efficient algorithm from among myriad of algorithms

solving the same problem.

3. Complexity Measurement

Complexity of an algorithm is the

determination of the amount of resources such as

time and storage necessary to develop, maintain, and

execute the algorithm. Other items to be considered

under resources are: (a) Man-hours needed to

supervise, comprehend code, test, maintain, and

change software. (b) Travel expenses, (c) The amount

of re-used code modules, (d) Secretarial and technical

support, etc. In this section, we presented a brief

review of algorithm complexities measurement.

3.1 HALSTEAD Complexity Measure

Halstead complexity measure was

developed to measure a program module’s

complexity directly from source code, with

emphasis on computational complexity. The

measures were developed by the late Maurice

Halstead as a means of determining a quantitative

measure of complexity directly from the operators

and operands in the module (Halstead, 1977). The

Halstead measures are based on four scalar

numbers derived directly from a program’s source

code. n1 = the number of distinct operators, n2 = the

number of distinct operands

N1 = the total number of operators, N2 = total

number of operands

Table 1 : Complexity Measurement

Measure Symbol Formula

Program Length N N = N1 + N2

Program Vocabulary N n = n1 + n2

Program Volume V V = N*(LOG2n)

Program Difficulty D D = (n1/2)*(N2/n2)

Program Effort E E = D*V

3.2 Cyclomatic Complexity Measure

Cyclomatic complexity directly measures

the number of linearly independent paths through a

program’s source code. Cyclomatic complexity is

computed using a graph that describes the control

flow of the program. The nodes of the graph

correspond to the program. A directed edge

connects two nodes if the second command might

be executed immediately after the first command.

Cyclomatic complexity, v(G), is derived from a

flow graph and is mathematically computed using

graph theory. More simply stated, it is found by

determining the number of decision statements in a

program: v (G) = e – n + p

v(G) is a cyclomatic complexity.

e is the number of edges in the flow graph

n is the number of nodes in the flow graph, and p is

the connected components.

4. Tree Search Algorithms

In this section, we presented tree search

algorithms for consideration of algorithm

complexity measurement.

4.1 Breadth-first Search

A tree-search in which the adjacency lists

of the vertices of T are considered on a first-come

first-served basis, that is, in increasing order of their

time of incorporation into T, is known as breadth-

first search. In order to implement this algorithm

efficiently, vertices in the tree are kept in a queue;

this is just a list Q which is updated either by

adding a new element to one end (the tail of Q) or

removing an element from the other end (the head

of Q). At any moment, the queue Q comprises all

vertices from which the current tree could

potentially be grown. Initially, at time t = 0, the

queue Q is empty. Whenever a new vertex is added

to the tree, it joins Q. At each stage, the adjacency

list of the vertex at the head of Q is scanned for a

neighbour to add to the tree. If every neighbour is

already in the tree, this vertex is removed from Q.

The algorithm terminates when Q is once more

empty.

Algorithm Of Breadth-First Search

procedure bfs (v)

q: = make_queue()

enqueue (q, v)

mark v as visited

while q is not empty

v = dequeue (q)

process v

for all unvisited vertices v’ adjacent to v

mark v’ as visited

enqueue (q, v’)

 (Thomas H Cormen et al, 2001).

4.2 Depth-first Search

Formally, DFS is an uninformed search

that progresses by expanding the first child node of

the search tree that appears and thus going deeper

and deeper until a goal node is found, or until it hits

a node that has no children. Then the search

backtracks, returning to the most recent node it had

not finished exploring. In a non-recursive

implementation, all freshly expanded nodes are

added to a last- in-first- out (LIFO) stack for

expansion.

Algorithm Of Depth-First Search

dfs (graph G)

{

list L = empty

tree T = empty

choose a starting vertex x

search (x)

while (L is not empty)

remove edge (v, w)from end of L

if w not yet visited

{

add (v, w) to T

search (w)

}

}

search (vertex)

{

visit v

for each edge (v, w0

add edge (v, w) to end of L

} (Thomas H Cormen el al, 2001)

4.3 Depth-limited Search

Like the normal depth-first search, depth-

limited search is an uninformed search. It works

exactly like depth-first search, but avoids its

drawbacks regarding completeness by imposing a

maximum limit on the depth of the search. Even if

the search cold still expand a vertex beyond that

depth, it will not do so and thereby it will not

follow infinitely deep paths or get stuck in cycles.

Algorithm Of Depth-Limited search

DLS (node, goal, depth)

{

if (node = = goal)

return node;

else

{

stack ;= expand (node)

while (stack is not empty)

{

node’ := pop (stack);

if (node’ . depth () < depth);

DLS(node’, goal, depth);

Else

;// no operation

}

}

4.4 A* Search

A* (Pronounced ‘A star’) is a tree search

algorithm that finds a path from a given initial node

to a given goal node. It employs a heuristic estimate

that ranks each node by an estimate of the best

route that goes through that node. It visits the nodes

in order of this heuristic estimate. The A* algorithm

is therefore an example of a best-first search (Hart

P.E. et, 1968).

Algorithm Of A* Search

function A* (start, goal)

var closed := the empty set

var q := make_queue 9path (star))

while q is not empty

var p:= remove_ first (q)

var x:= the last node of p

if x in closed

continue

f x= goal

return p

add x to closed

foreach y in successors (p)

if the last node of y not in closed

enqueue (q,y)

5 Results

The results of complexities measurement for

each of the above tree search algorithms

implemented using C, C++, Pascal, and Visual

Basic programming languages are presented as

shown in Tables 2 – 5 bellow.

Table 2: Results For Breadth First Tree Search Algorithm

LANGUAGES PROGRAM VOL (V) PROGRAM
DIFFIC (D)

PROGRAM
EFFORT (E)

CYCLOMATIC NUMBER

C

C++

PASCAL

Visual BASIC

733

723

558

1045

20

18

17

22

14660

13014

9486

22990

5

5

3

6

Table 3: Results For Depth-First Tree Search Algorithm

LANGUAGES PROGRAM VOL (V) PROGRAM
DIFFIC (D)

PROGRAM
EFFORT (E)

CYCLOMATIC NUMBER

C

C++

PASCAL

Visual BASIC

459

481

454

883

20

21

11

15

9180

10101

4994

13245

5

5

5

6

Table 4: Results For Depth-Limited Search ALGORITHM

LANGUAGES PROGRAM VOL (V) PROGRAM

DIFFIC (D)

PROGRAM

EFFORT (E)

CYCLOMATIC NUMBER

C

C++

PASCAL

Visual BASIC

595

544

626

1297

21

19

14

22

12495

10569

8764

28534

5

5

5

7

Table 5: A-Star Search Algorithm Complexity Measures

LANGUAGES PROGRAM VOL (V) PROGRAM

DIFFIC (D)

PROGRAM

EFFORT (E)

CYCLOMATIC NUMBER

C

C++

PASCAL

Visual BASIC

459

481

454

883

20

21

11

15

9180

10101

4994

13245

5

5

5

6

6 Conclusion

It was observed from the results of implementation (Tables 2 – 5) that Pascal programming language

perform best for implementing breadth-first search, depth-first search, and depth-limited search algorithms,

while C programming language is the best implementation language for A* search algorithm. We therefore

conclude from these results that Pascal programming language is the best language for implementing breadth-

first search, depth-first search, and depth-limited search algorithms but C language is the best implementation

language for A* search algorithm.

Furthermore, it is apparently concluded that the choice of programming languages affects

the complexities of programs of tree search algorithms.

References

Akanmu, T.A.(2009): An explanatory study of software complexity

 measure of Breadth-first search Algorithm. Journal of

 Science& Technology vol 1

Alfred, V.A., John, E, and Jeffrey, P.U(1974): The Design And

 Analysis Of Computer Algorithms. New York. Addison-

 Wesley Publishing Company.

Floyd, R.W. (1962): “Algorithm 97: Shortest Path” Communication of
 the ACM5 (6) 345. DOI: 10. 1145/367766.368168.

 Geer, Daniel et al (2003): Cyber security: The cost of

 monopoly(PDF)2004

Halstead, M (1977): “Elements of software science, operating, and

 Programming systems” series volume 7. New York, NY:

 Elsevier, 1977.

Hart, P.E. Nilsson, N.J, and Raphael, B.(1968): Correction to: “A

 Formal For the Heuristics Determination Of Minimum Cost

 Paths”, SIGART Newsletter 37: pp. 28-29

McCabe, T.J.(1994): Software complexity. Crosstalk, vol 7, no 12.

 Okeyinka, E.A. (2000): Design of a scan Machine for complexity
 Measure of computer program. Journal of Science & Technology vol 1

 No 1 pp70-77

 Olabiisi, S.O.(2005): ’’Universal Machine For Complexity

 Measurement Of Computer Programs’’ PhD Thesis,

 Department Of Pure And Applied Mathematics, LAUTECH, Ogbomoso.

 Oman, P and Hagemeister, J.: Construction And Testing of Polynomials

 Predicting Software maintainability Journal Of System And

 Software 24, March 1994: 251-266

 Robert E. Park(2006): Software Size Measurement: A framework For

 Counting Source Statements. Technical Report CMU/SEI-92-

 TR-20

 Russell, S.J., Norvig P (2003): Artificial Intelligence: A modern
 approach, pp. 97-104

 Shola, P.B.(2008): Data structure And Algorithm Using C++. Reflect

 Publishing house, Ibadan.

 Thomas, H.C. (2000): Introduction to algorithms. McGraw-Hill

 companies, New York.

