
Modeling and Analysis of Agent Oriented System: Petri Net
Based Approach

Rajib Kr. Chatterjee1, Anirban Sarkar2, Swapan Bhattacharya3

1Department of Computer Centre, National Institute of Technology, Durgapur, India
2Department of Computer Applications, National Institute of Technology, Durgapur, India

 3Department of Computer Science & Engineering, Jadavpur University, Kolkata, India
{chatterjee.rajib@gmail.com , sarkar.anirban@gmail.com , bswapan2000@yahoo.co.in}

Abstract - Large and complex system are now a days
conceptualized using Agent Oriented Paradigm. Agent
oriented systems are dynamic in nature. In this paper, we have
proposed a conceptual framework for agent to conceptualize
the artifacts of such system. The paper also has proposed a
Petri Net based model and analysis methodology based on
that conceptual framework to analyze the crucial behavioral
feature of such system which is also dynamic in nature.

Keywords: Agent, Agent Oriented System, Petri Net,
Dynamic Modeling, Behavior Analysis.

1 Introduction
Over the last decades, software engineers have derived a

progressively easy and better perception of the characteristics
of large and complex software. Among others, such software
is characterized by dynamically interacting components to
provide wide range of services. In this context, Agent
Oriented System (AgOS) recently emerged as powerful
technology to handle the dynamism of component level
interactions for large and complex information system. AgOS
based computing promotes, designing and developing
applications in terms of autonomous software entities
(agents), situated in an environment, and that can flexibly
achieve their goals by interacting with one another
dynamically in terms of high-level protocols or languages [3].

In large information system, agent refers to a software
component that situates within some environments, operates
autonomously and cooperates with similar entities to achieve
a set of preset goals. An agent also may associate with its
mental state that can be composed of components like belief,
knowledge, capabilities, choices and commitments [6]. The
critical features of agent are as follows,
• Autonomous: Agent is composed of some predetermined

states and is able to take any decisions based on those states
without any direct intervention of actors of the
environment.

• Goal oriented: Agent always acts or works to achieve or
reach the preset target or goal. If an AgOS composed of

multiple agents then they together can achieve the goal
through the cooperative activities.

• Capabilities: Each agent is capable to perform certain
activities towards achieving the goal. These activities are
often characterized by set of well defined services which
may be provided by the agent. The agent capabilities can be
defined using these set of services.

• Situatedness: An agent performs its activities while situated
in a particular environment and it is able to sense and affect
such environment.

• Proactive/Reactive: Agent not only acts in response to the
events of the environment where it is situated but they may
also become active autonomously. Besides this proactive
nature, agent may act dynamically to understand the
environment, apprehend any changes in this environment
and respond timely to the changes that may occur.

• Knowledge Driven: An agent can have the ability to acquire
new knowledge about the environment in which it is
deployed and can update dynamically.

• Condition/Constraint: The environmental constraints may
affect the activities of agent. Moreover such constraint may
be imposed by actors of the environment and which can be
adopted dynamically by the agent.

Several of these features have been summarized in recent
literatures [1, 3, 6]. Along with these agent level
characteristics, the crucial features for AgOS can be
summarized as follows,

• Agent Social: An AgOS may be comprised of multiple
agents which are supposed to operate together in an open
operational environment. Hence they can interact with each
other, share their resources and knowledge, and also can
collaborate with each others to achieve the preset goals.

• Resource Driven: Agent acts on environmental resources.
Any agent of AgOS can hold, use and release resources of
the environment where it is situated. The activities can
change the state of the resources to fulfill predetermined
goal or objective.

• Event Driven: Agents of AgOS response on events occurred
in the environment. Events may occur due to some state

changes or achieving certain condition or achieving certain
goal or certain interaction of actors. Even more events may
occur due to certain changes in environment. An AgOS
achieve any goals using a series of events occurrences and
the ongoing events may determine the system behavior.

• Dynamic: Due to event driven nature of AgOS and with the
feature like autonomous and reactiveness of agent, such
systems are truly dynamic. Moreover, the knowledge of any
agent can be dynamic in nature. Further, the series of events
and its corresponding responses may occur dynamically
from such system. Designer simply set the initial state,
knowledge and goals, on next, AgOS manage the things
dynamically to achieve the goal.

• Heterogeneous: Several agents of AgOS may be
heterogeneous in nature in terms of their features. They may
initially belong to different environment. Any agent may be
reused to cooperate with other set of agents to achieve some
goals in new environment. These facts require migrating of
some specific agent from one environment to another in pre
determined fashion. This also characterizes the mobility of
agent.

While modeling of AgOS, designer must also ensure that,
(i) system will achieve the goal with finite number of events
or interactions, (ii) system will be able to handle the situation
where goal will not be achieved after certain set of events,
(iii) system will operate in deadlock free way, as the system
will be handling the resources from the environment, (iv)
system and environment should transform in acceptable states
with the occurrences of events and (v) the knowledge and the
state of the resources are dynamically manageable. These all
are very crucial features of the dynamic behavior of AgOS. In
view of these features, Petri Net [2] is obvious tool choice for
modeling the dynamic behavior of AgOS. Conceptual
modeling of AgOS in this respect, defines the components and
their inter relationship to conceptualize the environment,
agent, related events and interactions. This specifies the static
part of the AgOS. Petri Net based tools will be useful to
complement the dynamic part of such system and analyze the
states and behavior of agents in the environment.

Several researches in last decade have been done to
devise conceptual model for AgOS [4, 5, 6, 7, 8, 9, 11].
Among those proposed approaches, [4, 6, 9, 11] have
extended the Unified Modeling (UML) notations to
conceptualize the AgOS using object oriented paradigm. In
[10], a detail study has been done on these proposed
approaches and raised the demand of new paradigm beyond
the object oriented paradigm to conceptualize the AgOS. It
also states that agent architecture is far more complex than the
object architecture, especially because of the dynamic aspects
of AgOS. But majority of those proposed approaches have not
been dealt with the dynamic behavior of AgOS. In [5], a
formal frame work for AgOS has been devised using ObjectZ
notation and the semantic of behavior has been represented
using state chart diagram. But it lacks the methodology for

dynamic behavior analysis of such model, which is crucial for
the successful deployment of AgOS.

In [12], a high level Petri Net has been defined to
formalize the AgOS. It is efficient to model the external
behavior (interaction with the environment) of the AgOS
comprises with homogeneous set of multiple agents. But it
lacks to exhibit the dynamism of internal behavior (within the
agents) of the system which comprises of heterogeneous set
of agents. Moreover, several crucial properties related to
dynamic behavior have not been analyzed using the proposed
high level Petri Net.

The focus of this paper is two folds. Firstly, it proposes a
conceptual framework for Agent and AgOS to conceptualize
its artifacts. Secondly, based on the proposed conceptual
framework, the dynamic behavior analysis of AgOS has been
done using classical Petri Net. For the purpose, we have
proposed a generic Petri Net representation for the conceptual
framework of agent. Moreover, Petri Net based analysis has
been used to ensure the correctness of the crucial
characteristics of dynamic behavior of the agent.

2 Proposed Conceptual Framework for
Agent
In this section a conceptual framework for AgOS has

been proposed. A conceptual model of AgOS deals with high
level representation of the candidate environment in order to
capture the user ideas using rich set of semantic constructs
and interrelationship thereof. Such conceptual model will
separate the intention of designer from the implementation
and also will provide a better insight about the effective
design of AgOS. The framework has been drawn from the
system features discussed in the last section.

An environment Env where the agents will work can be
realized using four tuples. It can be defined as Env = [Res,
Actor, Agent, Relation], where, in the given environment Res
is the set of resources, Actors are the users, Agent is the set of
autonomous entities with pre specified goal and Relation is set
of semantic association among them.

In the context of Env, an agent will apprehend the
occurrences of events automatically and response towards the
environment with a set of activities or services, those are
within its capability. An agent will also be able to verify the
environmental conditions / constraints associated with the
services or occurrence of any events. Moreover, any agent
acts on the environmental resources Res and is able to create /
maintain the knowledge base for the states of resources. The
states of agent can be realized using a set of attribute
associated with that agent.

Formally an agent Ag in the environment Env can be
defined as, Ag, = [E, C, R, PR, K, S] where,
• E is the set of events {e1, e2, e3, …, ep} on which the agent

will response. The events may occur from the Actor or
changes in states of Res or on achieving some condition.

• C is a set of environmental conditions or constraints {c1, c2,
…, cq} to be checked in order to response on some event.

• R is a set of environmental resources those are available and
necessary for fulfillment of the goal of the agents. Also R ⊂
Res.

• PR is the set of agent properties which will hold the state of
the agent and also will maintain the state of the resources R
on which the agent is acting.

• K is the set of information that forms the main knowledge
base. Initially it comprises of the states of available
resources that the agent will use to response on some event.
The K can be updated dynamically.

• S is the set of services that the agent can provide. The set S
is used to conceptualize the capability of the agent. The
agent may provide the service si ∈ S to the environment on
the occurrences of some set of events E′∈ E to achieve the
pre specified goal.

A Multi Agent System in this context can be defined as
MAS = [A, I], where A is the set of agents and I is the set of
interactions among those agents. The set I determines
cooperation and collaboration among the agents and also it
can operate either in two modes namely, asynchronous or
synchronous.

From the above definitions we can represent the
conceptual framework of an agent graphically as shown in
Figure 1.

2.1 Illustration of Conceptual Framework of
Agent with Example

In this sub section we have illustrated the conceptual
framework of agent using a real world example. Let consider
an environment comprised of set Computers with different
types of Operating System (OS) connected with network. The
environment also contains an autonomous Agent to act on the
Computers. After initiation, the goal of the agent is to search
the Computers with MS Windows OS and to shutdown it

automatically. The agent will also maintain a time delay of 15
seconds while performing the shutdown activities on the next
target Computer. Users are allowed to interrupt the agent
responses at any point of time. The number of Computers,
their OS, Network Addresses (IP addresses) and the Port
Numbers (through which agent can communicate with
Computer) are well known in the environment.

For the given environment, an agent can be designed
using the proposed conceptual framework are given below.
For the purpose one need to define all the components of the
agent definitions of that said framework to achieve the given
goal.
i) The set of events E will be,e1 = Initiate, e2 = User Interrupt,
e3 = User Resume, e4 = User Cancel Job, e5 = Search, e6 =
Target Computer Found, e7 = Service Initiate, e8 = Service
Resume, e9 = Service Completed, e10 = Service Interrupt, e11 =
Service Revoked, e12 = Timer start, e13 = Terminate, e14 = No
Action.

Those events may occur after satisfying some
environmental constraints C. The agent will response due to
some events based on some specific constraint.
ii) The set of constraints C are, c1 = Time Delay of 15 second,
c2 = Operating System is MS WINDOWS, c3 = Next IP
address to be processed.

After the verification of the constraints, the agent may
acts on a set of resources from the environment. For the
purpose, it performs some activities on those resources to
achieve the goal.
iii) The set of resources R are, r1 = The network services, r2 =
Computers, r3 = The OS port where the agent will interact, r4
= The timer to keep track of the time delay of 15 seconds

Now the agent will use several properties to hold the state
of the resources and the states of the agent itself. An agent
may changes its state based some events and the state of
resources may change based on the activities performed by
that agent.
iv) The set of properties PR are, pr1 = Computers identity
with MS Windows OS, pr2 = OS type of the current
Computer, pr3 = Time Elapsed. Its initial value will be 0, pr4 =
Status type of the agent and it can be of the following types,
a) “INIT”, b) “INTERRUPT”, c) “COMPLETED”, d)
“CANCELLED” and e) “RESUME”.

Agent starts working with the minimal set of knowledge
of the environment to render the services. The knowledge
base accumulates the initial facts of the resource states which
are static in nature. The knowledge base can be updated
dynamically once the agent starts working.
v) The set of knowledge K are, k1 = IP Addresses list of the
Computers, k2 = OS of the Computers, k3 = Selected Port
Numbers of the Computers.

To achieve the pre specified goal, agent acts on
environmental resources with certain activities. These
activities are realized using a set of services.

K
N

O
W

L
E

D
G

E

Set Values

EVENTS

PROPERTIES

RESOURCES

SERVICES

E
N

V
IR

O
N

M
E

N
T

AGENT

CONSTRAINT

Figure 1: Conceptual Framework of AGENT

vi) The set of services S are, s1 = Seek OS type from the
computer, s2 = Action Shutdown, s3 = Action Paused (Act on
agent itself), s4 = Action Revoked (Act on agent itself), s5 =
Seek Port Number, s6 = Set Port Number, s7 = Action
Terminate (Act on agent itself), s8 = Action resume (Act on
agent itself).

As a result of the triggered events, some set of services
will be performed by the agent based on the certain values of
the properties and constraints. It will use the resources which
are all accessible from the knowledge base. Thus with all
these components a generic and autonomous agent will be
able to perform the pre specified goal to shutdown all the
Computers with MS Windows OS in the given environment.

3 Petri Net based Modeling of
Conceptual Agent

AgOS behavior is dynamic in nature. Also several crucial
features are required to ensure while designing such system.
Since, agent response on series of events and provide services
to the environment in autonomous way. For the purpose it
holds the resources and makes changes in its states. Petri Net
(PN) is a suitable tool to model the behavior of such system.
Moreover, several features of AgOS like, occurrence of finite
number of events, deadlock free operations, achievement of
goals through firing of events etc. can be analyzed through the
analysis of PN properties like, safeness, boundedness,
liveness, reachability etc. Further, the PN based analysis will
give detail insight about the internal behavior of the agent.

In this context, a PN is a particular kind of bipartite
directed graph, populated by three kinds of objects namely,
places, transitions and directed arcs connecting places to
transitions and transitions to places. An enabled transition
removes one token from each of the input places, and adds
one token to each of its output places. This is called the firing
rule. The PN graph also has an initial state called the initial
marking M0. Formally, a PN is a 5 tuple, PN = {P, T, F, W,
M0} where, P = {p1, p2, …,pm}is a finite set of places, T =
{t1,t2, …, tn} is a finite set of transitions, F is a set of arcs such
that F ∈ (P X T) U (T X P), W is a weight function W: F
{1, 2, …}, M0 is the initial marking M0: P {1,2,3,…} is the
initial marking. As stated earlier, the behavioral properties of
the target system can be analyzed using the properties like
reachability, boundedness, liveness, coverability, persistence,
reversibility, fairness etc.

3.1 Components Wise Mapping from
Conceptual Framework to Petri Net

In the proposed conceptual framework, agent definition
has various components namely events, constraints, resources,
properties, knowledge and services. All these are the
individual items which together make AgOS successful to
achieve the pre specified goal. In this sub section we have

mapped the different components of agent definition in PN
components called places and transitions.

A place P in PN comprises of set of tokens Tk belongs to
constraints, resources, properties, knowledge and services of
any agent. Formally, P Tk where, Tk ∈ C∪K∪PR∪K∪S.
All the events of any agent will be mapped as transitions T of
a PN. Formally, T E.

The graphical notation of place and transition are
represented as usual notation of PN and those are Circle and
Bar respectively.

Also it is important to note that, in a PN of AgOS, due to
firing of any transition T, all the sub components of the output
place P will be affected simultaneously. Hence for any place
in resulted PN one can set the mark as 0 or 1.

3.2 Generic PN Representation of Conceptual
Framework

As discussed earlier, an AgOS is event driven system,
where agent is an autonomous entity. Irrespective of any
environment, any agent in AgOS will have certain generic set
of services which will be used in response to a generic set of
events. Further, we have also proposed the mapping rules for
the components of any agent to resultant PN for the system.
These facts will result the formation of Generic PN for the
analysis of agent’s dynamic behavior.

A generic set of events associated with any agent can be
Initiate (e1), Search for knowledge (e2), service provided (e3),
Interrupt from the environment or actors (e4), Activity resume
(e5), Activity cancel (e6). Further these events can be mapped
into the transitions of Generic PN will be t1, t2, t3, t4, t5 and t6
respectively. Similarly a generic set of services can be

t3

P2
t4

t6

Found Target, Hold Resource

Knowledge Base

Service Complete

Release Resource

Hold Resource

t7

t1

t2

USER

P5
P3

P4

P1

t3

Figure 2: Generic PN Representation of Conceptual

Framework

performed by any generic agent and those are Initiate (s1),
Handle resources (s2), Handle knowledge (s3), Handle
constraints (s4), Handle properties (s5) and Goal completed
(s6). Those can be mapped into p1, p2, p3, p4, p5 and p6
respectively. The Generic PN with the specified generic set of
transitions and places has been shown in Figure 2.

4 Behavioral Analysis of Conceptual
Agent

The behavioral aspect of an AgOS can be studied once
the resulted PN can be developed for that system. For the
purpose first we need to map the components of the
conceptual agents of such system into the well defined places
and transitions. The mapping rules for that have been
discussed in section 3. On next the several properties of the
resulted PN can be studied to analyze the crucial behavioral
features of the AgOS in respect to the target environment. The
analysis can be performed using the incidence matrix and
reachability graph of the resulted PN.

For the example described in the section 2.1, the places
and transitions have been summarized in Table 1 and Table 2
respectively. The proposed mapping rules have been used to
devise the said places and transitions.

Using the Table 1 and Table 2, we can draw the required
PN for the system as shown in Figure 3. The process starts
from a place p0 which is the user initiate and after a transition
t1 will reach a place p1. The process continues further on and
we finally arrive at the place p12. Serially as the transitions
occur the process moves on to each of the places as explained
in the tables. If the process is interrupted then from place p3 it
will follow the path of places p7, p8, p9 for the transition t7, t8,
t9, t10 respectively. If the process is cancelled then the path of
places p10, p11, p12 will be followed for the transitions t11, t12,
t13 respectively. If during the process no IP address is left to
be processed then because of the transition t13 the place p12 is
reached. If unprocessed IP address is still found then the
process follows the path of place p6, p1 via transition t10.

Table 1: Places for PN
Places Components Of The Place

p0. It consists of the Agent User.
p1 Knowledge k1
p2 Service s1; Property pr2; resource r2 on hold
p3 Service s5 s6 s8; Knowledge k3 and resource r3 updated
p4 Service s2; Property pr1 and pr4 updated

p5
Resource r2 ,r3 released and r4 restarted; Property pr4

updated; check constraint c3 from k1
p6 Check c1 from r4; release r4; set property pr3.
p7 Hold property r1, r2, r3
p8 Service s3
p9 Update property pr4
p10 Release r1 r2 r3 r4
p11 Service s4; Property pr4 updated
p12 Service s7

Table 2: Transition for PN
Transitions Details Of The Events / Transitions

t1 for e1 Initiate.
t2 for e2 User Interrupt.
t3 for e3 User Resume.
t4 for e4 User Cancel Job.
t5 for e5 Search.
t6 for e6 Target Computer Found.
t7 for e7 Service Init.
t8 for e8 Service Resume.
t9 for e9 Service Completed.

t10 for e10 Service Interrupt.
t11 for e11 Service Revoked.
t12 for e12 Timer start.
t13 for e13 Terminate.
t14 for e14 No Action.

4.1 Incidence Matrices of PN Model
There is a pre-incidence matrix (Table 3) representing the

initial state, Post-incidence matrix (Table 4) representing
operational state after firing of the set of events of the agent
and the combined matrix (Table 5) representing the token
status at any instance after initiating the process of some
agent. Each of these matrix has been formed using the row
constituents p0, p1, …, p12 and the column constituents t1, t2,
…., t14.

In the resulted PN model, among the places p0, p1, p2, p3,
p4, p5, p6, p7, p8, p9, p10, p11, p12 none of them are covered and
hence the net is not covered by P invariants. The same is the
case for the transitions and the net is not covered by T
invariants.

t1

t2

P0

P1

P2

P10
P7

P8

P9

P11

P3

P4

P5

P6

t3

t4

t5

t6

t7

t8

t9

t10

t11

t12

t13

t14

P12

END

Figure 3: PN for the Agent Based Example

Table 3: Pre-incidence matrix for PN Model
 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14
p0 1 1 0 0 0 0 0 0 0 0 0 0 0 1
p1 0 0 1 0 0 0 0 0 0 0 0 0 0 0
p2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
p3 0 0 0 1 0 0 1 0 0 0 1 0 0 0
p4 0 0 0 0 1 0 0 0 0 0 0 0 0 0
p5 0 0 0 0 0 1 0 0 0 0 0 0 0 0
p6 1 0 0 0 0 0 0 0 0 0 0 0 0 0
p7 0 0 0 0 0 0 0 1 0 0 0 0 0 0
p8 0 0 0 0 0 0 0 0 1 0 0 0 0 0
p9 0 0 0 0 0 0 0 0 0 1 0 0 0 0
p10 0 0 0 0 0 0 0 0 0 0 0 1 0 0
p11 0 0 0 0 0 0 0 0 0 0 0 0 1 0
p12 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 4: Post-incidence Matrix for PN Model
 t1 T2 T3 t4 T5 t6 t7 t8 t9 t10 T11 t12 t13 t14
p0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
p1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
p2 0 1 0 0 0 0 0 0 0 0 0 0 0 0
p3 0 0 1 0 0 0 0 0 0 1 0 0 0 0
p4 0 0 0 1 0 0 0 0 0 0 0 0 0 0
p5 0 0 0 0 1 0 0 0 0 0 0 0 0 0
p6 0 0 0 0 0 1 0 0 0 0 0 0 0 0
p7 0 0 0 0 0 0 1 0 0 0 0 0 0 0
p8 0 0 0 0 0 0 0 1 0 0 0 0 0 0
p9 0 0 0 0 0 0 0 0 1 0 0 0 0 0
p10 0 0 0 0 0 0 0 0 0 0 1 0 0 0
p11 0 0 0 0 0 0 0 0 0 0 0 1 0 0
p12 0 0 0 0 0 0 0 0 0 0 0 0 1 1

Table 5: Combined Matrix for PN Model
 t1 T2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14
p0 -1 0 0 0 0 0 0 0 0 0 0 0 0 -1
p1 1 -1 0 0 0 0 0 0 0 0 0 0 0 0
p2 0 1 0 0 0 0 0 0 0 0 0 0 0 0
p3 0 0 1 -1 0 0 -1 0 0 0 -1 0 0 0
p4 0 0 0 1 -1 0 0 0 0 0 0 0 0 0
p5 0 0 0 0 1 -1 0 0 0 0 0 0 -1 0
p6 -1 0 0 0 0 1 0 0 0 0 0 0 0 0
p7 0 0 0 0 0 0 1 -1 0 0 0 0 0 0
p8 0 0 0 0 0 0 0 1 -1 0 0 0 0 0
p9 0 0 0 0 0 0 0 0 1 -1 0 0 0 0
p10 0 0 0 0 0 0 0 0 0 0 1 -1 0 0
p11 0 0 0 0 0 0 0 0 0 0 0 1 -1 0
p12 0 0 0 0 0 0 0 0 0 0 0 0 1 1

4.2 Reachability Graph
The reachable place of a PN can be expressed by the

reachability graph, which is a directed graph. The nodes of the
graph are identified as markings of the net R(N, M0), where
M0 is the initial marking and the arcs are represented by the
transitions of N. The graph is used to define a given PN N and
marking M, where M belongs to R(N). Each initial marking
M0 has an associated Reachability set. This set consists of all
the markings that can be reached from M0 through the firing
of one or more transitions. In our PN model the reachability
graph starts with initial marking M0 = [1 0 0 0 0 0 0 0 0 0 0 0
0]T and finally reach to state M12 = [0 0 0 0 0 0 0 0 0 0 0 1
1]T, where we conclude the agent session for the current
process of shutdown. The reachability graph has been shown
in Figure 4.

As stated earlier, the mark of each place in P of PN model
will be treated as 1 or 0 because all the agent related sub
components of any output place pi ∈ P will be affected
simultaneously.

4.3 Analysis of PN Model
In this sub section some of the crucial properties and

behavior of the PN model of the example agent have been
analyzed using the PN model and Reachability Graph
presented in Figure 4 and Figure 5 respectively.
(a) Safeness: Any place of a Reachability graph is declared
safe, if the number of tokens at that place is either 0 or 1. In
our PN model, the graph clearly shows that any of the places
within p0 to p12 represents a combination of 0 (no token) and 1
(token), which implies that if the firing occurs there will be a
token at the position bit otherwise no token. Thus it shows
each of the places has a maximum token count 1 or 0 and is
declare safe. Also as all the places in the net are safe, the net
as a whole can be declared safe.
(b) Boundedness: The boundedness is a generalized property
of safeness. The limitation of token numbers in a place is
restricted to 1 in case it is safe. It may enhance to some
integer i, where i is known before hand for a place or we call
it as a constraint to check the overflow condition at any stage
calculated once the agent process start. When there is no
overflow at any place, then the design guarantees the
boundedness of the model. In our case there is no deadlock
and at any stage within p0 to p12 and hence it is bounded.
(c) Reachable: Reachability is a fundamental basis for
studying the dynamic properties of any system. The firing of
an enabled transition will change the token distribution

P0

P1

P2

P3

P4

P5

P6

P7

P8

P9

P10

P11

P12

M0=1000000000000

M1=0100000000000

M2=0010000000000

M3=000ω000000000

M4=0000100000000

M5=0000010000000

M6=0000001000000

M12=0000000000011

M9=0000000001000

M10=0000000000100

M11=0000000000010

M
7=

00
00

00
01

00
00

0

M
8=

00
00

00
00

10
00

0

Figure 4: Reachability Graph for PN Model

(markings) in a net according to the transition rules. A
sequence of firings will result in a sequence of markings. A
marking Mn is reachable from some marking M0, if there exist
a sequence of transitions that transforms M0 to Mn. In our
example all the markings are reachable starting from any
marking in the net and hence reachability exists. This
guarantees that the PN model for the AgOS will meet the pre-
specified goal.
(d) Liveness: The liveness property of a PN is used to show
continuous operation of the net model and ensure that the
system will not get into a deadlock state as the process of
interrupt or cancel or initiate needs to perform some
transitions. If any marking exists in the graph such that no
transitions are enabled from that marking, then that marking
represents a deadlocked state, and the PN lacks the liveness
property. Otherwise it is declared live. In our case there is no
such deadlocked state or marking present in the net due to a
series of events for the specified agent. Hence the net is live.
Also in the example, if we have k computers to be shutdown
then it means that transition t can be fired at least k number of
times in some firing sequence. Hence the PN model is L2 live.
(e) Conservativeness: Conservation property of a PN model
checks the number of tokens remains constant before and
after the execution. The process is to count the sum of all
tokens at their initial markings and again after the execution.
If all the markings in the reachability graph have the same
sum of tokens then the Petri net is declared to be strictly
conservative. The PN model of AgOS example is also strictly
conservative.

5 Conclusion
In this paper, a methodology has been proposed to

analyze the dynamic behavior of AgOS. Any such system
comprises of autonomous entity called agent. They are highly
dynamic in nature in terms of its interactions with the
environments, handling of environmental resources, activities
to achieve the pre specified goal and acquisition of
knowledge. Petri net is best suitable tools to model and
analyze such system behavior. To conceptualize the agent
based system one need to follow entirely new paradigm than
the object oriented paradigm. In this paper, firstly, we have
proposed a conceptual level framework for agent as well as
for such system to represent AgOS in simpler form and which
can comply with the crucial features of such system. On next,
to model the dynamic behavior of agent, we have used
classical Petri Net as tool. A set of mapping rules also have
been proposed for presenting the elements of conceptual
framework for agent into the Petri net components. It also
resulted a Generic Petri Net model for the agent oriented
system. Finally we have used the Petri net model and its
reachability graph to analyze the dynamic features of agent
oriented system.

The model works fine for the system composed of simple
agents. The proposed methodology also is useful for the
analysis of external and internal behavior of agents. But the

methodology will become less expressive for large system
comprised of multiple agents and with complex agent level
interactions. Future work includes, the development of a
mechanism for more expressive behavioral analysis model of
agent oriented system using High Level Petri Net by
extending the proposed model.

6 References
[1] M. Wooldridge, P. Ciancarini, “Agent-Oriented Software

Engineering: The State of the Art”, Book Title: Agent-
Oriented Software Engineering, Springer – Verlag
Lecture Notes in AI, Vol. 1957, pp 1-28, January 2001.

[2] Tadao Murata, “Petri Nets: Properties, Analysis and
Applications”, Proceedings of the IEEE, Vol. 77, No. 4,
pp 541 – 580, April 1989.

[3] F. Zambonelli, A. Omicini, “Challenges and Research
Directions in Agent-Oriented Software Engineering”, Jnl.
of Autonomous Agents and Multi-Agent Systems, Vol. 9,
pp 253–283, 2004.

[4] B. Bauer, J. P. Müller, J. Odell, “Agent UML: A
Formalism for Specifying Multiagent Software Systems”,
International Journal of Software Engineering and
Knowledge Engineering, Vol 11, No. 3, pp.1-24, 2001.

[5] P. Gruer, V. Hilaire, A. Koukam and K. Cetnarowicz, “A
Formal Framework for Multi-Agent Systems Analysis
and Design”, Journal of Expert Systems with
Applications, Vol. 23, No. 4, pp. 349–355, 2002.

[6] P. K. Biswas, “Towards an agent-oriented approach to
conceptualization”, Journal of Applied Soft Computing,
Vol. 8, No. 1, pp 127-139, January 2008.

[7] F. Zambonelli, N. R. Jennings, M. Wooldridge,
“Developing Multiagent Systems: The Gaia
Methodology”, ACM Trans. on Software Engineering
and Methodology, Vol. 12, No. 3, pp 317 – 370, 2003.

[8] S. A. Deloach, M. F. Wood, C. H. Sparkman,
“Multiagent Systems Engineering”, International Journal
of Software Engineering and Knowledge Engineering,
Vol. 11, No. 3, pp 231 – 258, 2001.

[9] F. Giunchiglia, J. Mylopoulos, A. Perini, “The Tropos
Software Development Methodology: Processes, Models
and Diagrams”, 3rd Intl. Conference on Agent-Oriented
Software Engineering (AOSE'02), pp 162-173, 2003.

[10] Jürgen Lind, “Issues in Agent-Oriented Software
Engineering”, Transaction on Agent-Oriented Software
Engineering, Springer-Verlag pp 45-58, June 2009 .

[11] B. Bauer, J. P. Muller, J. Odell, “Agent Uml: A formalism
for specifying Multiagent Software Systems”,
International Journal of Software Engineering and
Knowledge Engineering, Vol. 11, No. 3, pp 1 – 24, 2001.

[12] B. Marzougui, K. Hassine, K. Barkaoui, “A New
Formalism for Modeling a Multi Agent Systems: Agent
Petri Nets”, Journal of Software Engineering and
Applications, Vol. 3, No. 12, pp 1118-1124, 2010.

