Multi-agent System Simulation in Scala:
An Evaluation of Actors for Parallel Simulation

Aaron B. Todd', Amara K. Keller?, Mark C. Lewis’ and Martin G. Kelly®
'Department of Computer Science, Grinnell College, Grinnell, 1A, USA
2Department of Computer Science, Trinity University, San Antonio, TX, USA
3Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA

Abstract— Multi-agent system (MAS) simulation, a grow-
ing field within artificial intelligence, requires the creation
of high-performance, parallel, and user-friendly simulation
frameworks. The standard approach is to use threads and
shared memory. The drawbacks of this approach are the
common concurrency pitfalls of race conditions and perfor-
mance loss due to synchronization. Our goal was to evaluate
the feasibility of an alternate model of concurrency, actors.
An actor can be thought of as a very lightweight thread
that does not share memory with other threads, instead
communicating only through message passing. Actors seem
to be a natural fit for this task, since agents are concurrently
processed objects that communicate with each other through
message passing. We write an actor framework and an equiv-
alent threaded framework in the modern object-functional
JVM language Scala and compare their performance. We
conclude that the actor model seems like a natural fit, but
its performance is inferior to that of the threaded model.
Despite this drawback, it shows great promise due to its
elegance and simplicity. When scaling to multiple machines,
the advantages of actors will almost certainly outweigh any
performance costs.

Keywords: MAS, Scala, Parallel Simulation, Actors, Al

1. Introduction and Background

An important simulation problem is that of multi-agent
systems (MAS). A MAS “can be defined as a loosely
coupled network of problem solvers that interact to solve
problems that are beyond the individual capabilities or
knowledge of each problem solver. These problem solvers,
often called agents, are autonomous and can be heteroge-
neous in nature” [1]. Because the definition of an agent is
so broad, MAS can model many different situations, such as
economic, social, and political activity. Of course, creating
realistic simulations is not easy and requires collaboration
with economics and/or other social sciences. However, MAS
provide the technological framework to make such modeling
possible.

Implementations of MAS frameworks vary widely, but
the core parallelization model behind many of them is
that of threads and shared memory. Although this approach
can work, it suffers from the hazards of concurrent data

modification and other race conditions. These issues make
testing and debugging of the frameworks very difficult,
and solutions to these problems typically incur performance
penalties and programmer headaches.

Another approach to parallel programming is the actor
model [2]. An actor can be defined as a lightweight process
that communicates with other actors through message pass-
ing. These messages are buffered in the actors’ mailboxes
for the actor to respond to. Actors do not share any memory
with other actors, and they all process concurrently. Message
passing is asynchronous. This model avoids the numerous
shared memory pitfalls associated with the conventional
threaded model of concurrency. The best known actor imple-
mentation is in the language Erlang, a functional language
designed for efficient fault-tolerant distributed systems [3].

A MAS framework based on this actor model would
avoid many of the concurrency issues afflicting the threaded
frameworks. In such a framework, it would be natural for
each agent to be an actor. Communication between agents
would then be done by the actor’s message passing methods
and the simulation would be implicitly parallel. While it
would help eliminate many reliability issues and make
frameworks much easier to write, this approach is only
practical if the performance is comparable to that of the
threaded frameworks. Our goal is to perform a performance
evaluation of an actor model MAS framework written in the
language Scala by comparing it to a comparable threaded
framework.

Scala is a fairly new programming language that has been
in development at EPFL in Switzerland since 2003. It uses
an object-functional paradigm and compiles to the JVM,
which allows seamless calls to Java libraries and code. It
has static type checking and, as a result, takes full advantage
of HotSpot JVM implementations and typically runs at the
same speed as Java programs [4].

There has been significant work on the Scala language that
is well documented in the field of programming languages.
As a result, the language pulls in many of the best ideas
from the field [5] [6] [7] [8]. The name Scala is short
for Scalable Language, a property that makes it ideal for
generating Domain Specific Languages (DSLs). This can
be extremely beneficial in the field of simulation, where
many simulation packages have basically built up their own

DSLs over the years [9]. The design of Scala allows libraries
to be written such that they look and operate as normal
language features. These features, among many others, were
significant factors in motivating us to use the language for
these frameworks. The Scala actor library is unusually high-
performing relative to other JVM actor implementations.
Together, Scala’s extensibility and the convenience of a JVM
platform makes Scala a great language choice [10]. This
is the reason why we chose it over other actor-supporting
languages such as Erlang.

2. Related Work

To our knowledge, we are one of the first groups to
consider using Scala’s actor library for parallel simulations.
Some research has been done into the feasibility of using Er-
lang for MAS. The implementation described by Varela et al.
does map Erlang’s lightweight processes directly to agents,
but in this case, each agent is a collection of these processes.
Unfortunately, Varela’s work does not provide a performance
evaluation [11]. His group’s primary motivations for using
Erlang over Java was the much more natural fit they saw
between Erlang and the coding of agent behavior, combined
with Erlang’s excellent support for distributed computing [?].
Performance appears to have been good enough that any
weakness was compensated for by the convenience of using
a language that fits the problem well.

3. Scala

Scala, as a language very closely related to Java, bor-
rows much of its syntax; however, it omits semicolons
and eliminates the need for extensive boilerplate code. The
most noticeable difference is a type inference system for
limiting type specification when such specification would be
redundant. These tweaks make Scala much easier to read and
feel more like a scripting language even though it actually
runs on the robust JVM platform.

Listing 1: Scala Int to String class.

class Foo {
def bar(arg:

}

Int): String = arg.toString

Listing 2: Java Int to String class.

public class Foo {
public String bar(Int arg) {
return Integer.toString(arg);
}

}

In addition to these simple variations, Scala has many
more subtle differences and features, including very natural

Actor

Mailbox Messages
Reaction
Function Messages

Fig. 1: An actor. Mailbox buffers messages until the reaction
function processes them.

support for pattern matching. This is very useful because
the primary action of an actor is to react to a message with
an action that varies based on message content. Excellent
pattern matching syntax makes this a painless process.
Scala can represent this reaction function as a number of
case statements. These are matching functions evaluated in
sequence on the input. These can match on type or value and
can pull inner values by automatically applying extractors.
Extractors are present in all standard library collections and
can be automatically generated for a class by declaring it
with the case keyword. In the following example, the input
message is checked to see if it is an Int, the String “foo”, or
a Bar that contains 5. A default is provided, but since only
one match can occur, it does not require special syntax.

Listing 3: A simple match block.

msg match {
case msg: Int => println(‘‘An integer.’’)
case ‘‘foo’’ => println(‘‘Found foo.’’)
case Bar(5) => println(‘‘The bar.’’)
case =>

4. Actor Framework
4.1 Scala Actors

Scala has an excellent actor library. Since Scala is a JVM
language, this library is quite complicated because the JVM
is not designed to run actors efficiently [12] [13]. The library
works around this limitation by leveraging the language’s
functional nature and by using exceptions to navigate the
call stack. Event based actors, a variant that does not
block an underlying thread while waiting for messages, are
implemented as closures waiting to be called with an input
message. Upon receiving a message, the actor’s associated
closure is then scheduled on an available executor thread.
When an actor is finished reacting to the message, it throws
a suspend actor exception, which returns the actor to its idle

state. By implementing actors in this way instead of mapping
them directly to JVM threads, they become very lightweight.
This gives them substantially better performance than many
other JVM-based actor implementations [10].

A Scala actor can be defined by extending the Actor trait.
All actor functionality is contained in the act method, which
must be defined by the subclass. A simple actor is defined
below. React is the method actors call to “react” to the next
message in their mailbox. Due to its non-returning nature, a
result of its exception-based implementation, a for or while
loop will not work, so the library provides a special loop
function. Inside react is a matching function similar to the
one above. The “!” method is used to send messages to
actors, and sender can be used to refer to the actor that sent
the message being reacted to. This actor responds to Pings
with Pongs and Pongs with Pings.

Listing 4: A Ping-Pong actor.

class PingPong extends Actor {

def act() {
loop {
react {
case Ping => sender ! Pong
case Pong => sender ! Ping

}
}
}
}

4.2 Agents

In our framework, each agent is a subclass of actor.
This design allows the framework to inherit all of the
actor message passing functionality, and since actors process
concurrently, there are only a few agent features left to
implement. The primary task is to convert the event based
system of actors reacting to a system in which agents iterate
through time steps. We do this by creating a clock actor
that sends agents messages which trigger the processing of
steps. Once each agent finishes its step, it sends a message
back to the clock indicating that it is finished. Once the
clock receives finished messages from each agent, it sends
out new DoStep messages. The method that agents call upon
receiving a DoStep message is called doStep.

4.3 Stepping Algorithm

This results in the following step algorithm for the frame-
work. A runner object initializes the simulation and then the
clock object loops a step function of the form:

o Send DoStep message to each agent.

o Wait until every agent has replied with an EndStep
message.

e Cleanup and repeat if not finished.

(5] o,

‘ Cleanup ‘

Fig. 2: Clock sends DoStep messages, Agents call doStep
method, Agents inform clock that they are finished. Cleanup
and repeat.

Inside the doStep call, agents perform any simulation
logic they need to with the option of placing some code
to handle messages in a dedicated handleMessage method.
This was done because many messages in the simulation
are simple information requests. Processing these requests
inside doStep creates an unnecessary hassle because they
interrupt the logical flow of the agent’s code. This external
method also allows agents to respond to information requests
once finished with their core logic without having to know
how many requests they will receive. In the case in which
receiving a message is a core part of the agent’s logic, they
can still react to it in doStep.

These methods are defined in a core Agent abstract class
that is extended by simulation writers as needed. The act
method of an agent is a simple loop reacting to messages.
The messages it receives are of two possible types. The
first is FrameworkMessage. This type of message is used
by the framework to tell the agent what it should be doing.
Examples include messages to start the simulation and
do steps. The second type is a SimulationMessage. This
message is sent between agents as part of their steps. An
example is an information request message. The react sends
each type to its appropriate handleMessage method. In the
case of a SimulationMessage, this is the handleMessage
method defined by the simulation writer.

Upon receiving a DoStep message, the agent calls the
doStep method written by the simulation writer. Inside
this method, agents are free to send messages to other
agents using the conventional agent message send method,
“1”. When reacting to messages, a special react method
specifically for agents must be used. This implementation
provides a number of benefits. Using a number of Scala
language features allows this method to return normally,
unlike the usual react. It also allows an agent to use its

handleMessage method in addition to the partial function
passed in to react to messages and does so in a way that is
transparent to the simulation writer.

Listing 5: An example agent subclass.
AnAgent) extends Agent {

class AnAgent(friend:
def doStep() {
friend ! Greet(‘‘Hello’)
agentReact {
case Greet(msg) => println (msg)
}

}
}

4.4 Implementation

The implementation of this react is the most complex
component of the actor framework. While it is not strictly
necessary, its inclusion makes writing simulations substan-
tially easier through the avoidance of bizarre control flow.
For that reason, the performance hit from its overhead was
deemed acceptable.

The actual implementation is as follows: When agentReact
is called, the first action taken is to use Scala’s delimited
continuations library to store all remaining computation in
the doStep method as a continuation. Then the agent reacts
to incoming messages with both the partial function given
to agentReact and the agent’s coreReact partial function.
If the supplied partial function is used to react to the
message, the continuation is then called using the actor
library method andThen, which takes a function to apply
once react has finished. If the message is handled by the
coreReact partial function, this react block is repeated, again
by calling andThen. The primary drawback to this system is
that all looping constructs with continuation-creating code
in their bodies must be implemented with an understanding
of continuations. Since Scala’s constructs are not aware, a
special agentReactWhile function is defined.

Scala’s continuations library is one of the few that is not
implemented purely as library code. It works by using a
compiler plug-in to perform a transformation of all code
contained in the delimited continuation to continuation-
passing style (CPS). The result of this transformation is that
instead of returning normally, all functions take an argument,
which is the function to apply to the result. This function can
then be saved and stored as a “continuation” instead of being
evaluated immediately. The details of this transformation are
available in [14].

One might question the use of the Scala continuations
library to achieve this behavior instead of using andThen
following react. While the latter probably has better perfor-
mance, it would result in fairly convoluted code. If an agent
had many reacts interspersed with pieces of computation,
using andThen would require a deep nesting of function

Agent

def handleMessage(msg: SimMessage)
msg match

def coreReact =
case Simulation
case DoStep

Message

case NameQuery => sender ! Name
def doStep()
friend ! Ping

AgentReact

case Pong => printin(“foo”)
endStep

o
S

»0%0 case Pong => printin(“foo”)
andThen endStep
orElse coreReact andThen repeat()

EndStep)

Fig. 3: Agent message processing. If SimulationMessage,
send to handleMessage. If DoStep, perform agent behavior.
If agentReact called, move to modified react which forwards
message back to coreReact and then repeats agentReact by
calling the saved continuation if not the expected message.

Fig. 4: Note how a normal react results in deep nesting.

(a) Returning react. (b) Normal react.

def doStep () { def doStep () {

agentReact { agentReact {
partialFunction partialFunction
} } andThen {
agentCode agentCode
agentReact { agentReact {
partialFunction partialFunction
} } andThen {
agentCode agentCode

} }
}
}

calls. When writing more complex logic, this nesting would
begin to make code unreadable. One way to think of our
use of continuations is that the compiler’s CPS transform is
simply a way to get rid of these extra brackets in order to
make the code more readable. In the original work on Scala
actors, the authors also state that the lack of a return on react
is due to the lack of first-class continuations and, had there
been a technique similar to our implementation, they would
have used it instead [12]. When continuations were added
to Scala, one of the examples used was a modification to
react that made it return, which was an implementation very
similar to ours [14].

Messages in this framework are defined very simply.
FrameworkMessage and SimulationMessage are both traits
that extend a Message trait. Framework messages with
parameters are defined as case classes, where case is a
Scala keyword that automatically generates simple construc-
tor methods and extractors for the pattern matching done

in react. If there are no parameters, singleton messages
are used to save memory. Simulation writers define their
message types by extending the SimulationMessage trait
with additional case classes.

There is also a CentralAgent class that is given informa-
tion about all agents in the simulation. This agent is useful
because it allows normal agents to perform actions such as
requesting a reference to a random agent very easily. It is
always in a react loop waiting to respond to messages from
agents. If they desire, simulation writers can easily extend
it with additional functionality.

The final component of the simulation is the system by
which agents are initially created. A simulation writer must
provide an iterator that produces agents in sequence. Any
initial setup, such as setting agent data, must be done by this
iterator. A future task is to implement a DSL that simplifies
this process.

4.5 Example Simulation

Our primary benchmark is a simulation of Communicatin-
gAgents. These agents are friends with every other agent,
and each step they send a Hello message to each friend. Once
they have received a response HelloBack message they finish
their step. When doStep is called, the agent sends Hello to
each friend and counts how many were sent. It then moves
into an agentReact loop, in which it waits for a response from
every friend. Concurrently with agentReact, handleMessage
responds to Hello messages.

Listing 6: CommunicatingAgent implementation.

class CommunicatingAgent
(val friends:
extends Agent {
def doStep () {
var count = 0
for(a <— friends) {
a ! Hello
count += 1
1
agentReactWhile (count > 0) {
case HelloBack => count —= 1

}
endStep

}
def handleMessage (msg:
msg match {
case Hello => sender !

}

SimulationMessage) {

HelloBack

}
}

5. Threaded Framework

In order to evaluate the performance of the actor paral-
lelism approach to MAS, we also wrote simulations in a

ListBuffer [CommunicatingAgent])

framework using a threaded model. This framework pro-
vides an equivalent environment to write simulations such
as ours using conventional concurrency constructs and a
master-slave program structure. It was written as an initial
exploration of the merits of Scala as a MAS simulation
language. The step algorithm is as follows.

o Master calls “runStep” on slave.
« The slave iterates through its agent list.
o “doStep” is called for each agent.

— Returns a list of messages the agent has sent.
— Messages to agents placed in their mailboxes.

o Slave processes agents again
— “handleMessages” is called for each agent.

o Repeats until there are no messages.
o Slave finishes; informs master.
¢ Cleanup and advance time step.

Unfortunately, this framework suffers from many of the
problems associated with the threaded concurrency model.
Race conditions between threads make testing and debug-
ging difficult, and frequent synchronization of access to
shared memory slowed program execution down.

6. Experiments and Results
6.1 Testing Goals and Methods

Our primary goal in this research was to determine how
well Scala’s actor library performs relative to threads for
MAS simulation. To do this, we run a number of benchmarks
for our two frameworks that stress different framework com-
ponents. For these tests we recorded wall clock time between
simulation start and end, not counting agent creation. Our
test machines contained dual Xeon 5450 quad-core CPUs at
3.0 GHz and 16 GB of memory. All tests were run with a
maximum Java heap size of 14 GB and simulations were
run for 20 steps.

6.2 Agent Number

Our first test was to see how execution time scaled while
increasing the number of agents. To test this we wrote
an agent class where each agent performs no actions and
just immediately ends its step after starting. Here we had
some very bizarre findings. The threaded framework scaled
linearly with the addition of new agents, which is what
was expected. The actor framework did not. As Fig. 6
shows, at 100k agents, the execution times become very
random. Our plausible explanation for this behavior is the
interaction between the actor library, the JVM, and multi-
CPU machines. Since actors have special scheduling that
leverages exceptions, the clock actor is frequently suspended
and resumed. As this is happening, it could be switching
between threads, cores, or the physical CPUs. If this were
to thrash CPU cache or interfere with exception processing
in the JVM, execution would be substantially slowed down

20000 -

18000 - “<Actors
16000 4 ><Threads

14000 -
12000 -

10000 -

Time (S)

8000 -

6000 -

4000 -

2000 -

N7 S
0 2000000 4000000 6000000

Agents

8000000 10000000

Fig. 5: Execution time scaling for simple agents.

1400 -
<Actors
1200 ><Threads

SingleChipActors
1000 -|

800 -

Time (S)

600 -

400 -

200 -

e - N

0 200000 400000 600000 800000
Agents

1000000

Fig. 6: Note very large uncertainty for dual CPU actors, and
essentially none for single CPU actors.

by a seemingly random amount. To test this hypothesis, runs
were made on a single CPU machine up to 1 million agents
(capped due to memory limitations) and no random variation
was seen. While this is evidence in support of our hypothesis,
the problem merits additional effort to determine the exact
causes.

6.3 Computational Workload

The second test was to see how efficiently each framework
is for computationally intensive agents. This was done by
creating an agent type that computes the first 1000*scaler
squares. Our hypothesis was that as agent processor use
increases, differences in framework efficiency have less
affect on the resulting execution time. This is likely due to
the fact that regardless of which framework this agent code
is in, it still requires the same amount of CPU time. As Fig.
7 shows, this hypothesis appears to be correct.

6.4 Messaging

Our final test was of message passing performance. This
was done using the previously described communicating

2500

2000

1500

><Actors
><Threads

Time (S)

1000

500

0 200 400 600 800 1000 1200
x * 1000 first squares computed per agent

Fig. 7: Execution time scaling as agent computational work-
load varies.

4000 -
s<Actors
3500 1 ><Threads

3000 -
2500 -

2000 -

Time (S)

1500 -

1000 -

500 -

0 %
0.00E+00

5.00E+07
Messages Passed

1.00E+08

Fig. 8: Execution time scaling as messages passed increases.

agents simulation. In it, each agent is friends with every
other agent, so messages passed scales quadratically. This
was done instead of numerous rounds of messaging for a
small constant number of agents because it seems like a
more realistic way in which a framework would be stressed.
It is also the case that the threaded framework handles many
messages in one round very differently from many rounds
of a few messages per step.

As seen in Fig. 8, both frameworks exhibit roughly similar
linear scaling with messages sent, but the actor framework
scales slightly less optimally. This difference can be ex-
plained by the fact that starting and ending steps requires
message sending in the actor framework.

6.5 Overall Scaling

The overall performance of actors for MAS simulation
in Scala was slightly inferior to that of threads. In terms
of memory usage, both frameworks were similar, but the
threaded framework had measurably better execution time
for the messaging benchmark. It also did not suffer any
unusual issues on the agent count benchmark. Since the

primary way a MAS will be scaled up is by increasing
the number of agents and message volume, from a purely
performance perspective, threads are the obvious way to go.

7. Future Work

There are a number of ways in which our actor framework
could be improved. One of the main motivations for using
Scala was its extensibility, so a DSL for writing agent Al
could be implemented. This would make writing agent code
much simpler. Another task would be to use Scala’s remote
actor library to distribute this framework over multiple
machines. Remote actors allow local proxy actors to exist
for actors on other machines. These proxies can be sent mes-
sages that are forwarded to the actual actor. Other approaches
to synchronization could also be employed. The current
framework requires that all actors compute in lockstep, but
this restriction could be loosened as long as agents were
required to maintain the ability to respond to requests for
information about their past states. A final task could also be
to write a stripped down version of the actor library and tune
it for the purpose of MAS simulation. This has the potential
to eliminate the performance gap between the thread and
actor approaches.

8. Conclusion

We set out to compare the relative performance of two
approaches to parallelism when applied to the simulation of
multi-agent systems in the language Scala. Our conclusion
is that the threaded approach is superior from a strictly
performance-oriented point of view. However, with the ex-
ception of issues relating to the agent number benchmark,
actors did perform respectably. Given the ease of writing
the actor framework and the numerous ways it could be
improved, such as distribution across multiple machines,
loosening of time synchronization, or tuning the actor im-
plementation, this model shows clear promise applied to
MAS simulation. The language Scala is also an excellent
choice due to the ease with which it can be extended to
facilitate a DSL for writing agent Al. For these reasons,
we recommend that future groups attempting to implement
MAS frameworks consider using Scala actors.

References

[1] K. P. Sycara, “Multiagent systems,” Al Magazine, vol. 19, pp. 79-92,
1998.
[2] G. Agha, Actors: a model of concurrent computation in distributed

systems. Cambridge, MA, USA: MIT Press, 1986.

[3] J. Armstrong, “Erlang,” Commun. ACM, vol. 53,
Pp- 68-75, September 2010. [Online]. Available:
http://doi.acm.org/10.1145/1810891.1810910

[4] “The computer language benchmark game,”

http://shootout.alioth.debian.org//, 3 2011.

[S] H. Chafi, Z. DeVito, A. Moors, T. Rompf, A. K. Sujeeth,
P. Hanrahan, M. Odersky, and K. Olukotun, “Language virtualization
for heterogeneous parallel computing,” in Proceedings of the
ACM international conference on Object oriented programming
systems languages and applications, ser. OOPSLA ’10. New
York, NY, USA: ACM, 2010, pp. 835-847. [Online]. Available:
http://doi.acm.org/10.1145/1869459.1869527

[6] T. Rompf and M. Odersky, “Lightweight modular staging: a

pragmatic approach to runtime code generation and compiled dsls,”

in Proceedings of the ninth international conference on Generative
programming and component engineering, ser. GPCE "10. New

York, NY, USA: ACM, 2010, pp. 127-136. [Online]. Available:

http://doi.acm.org/10.1145/1868294.1868314

C. Hofer and K. Ostermann, “Modular domain-specific language com-

ponents in scala,” SIGPLAN Not., vol. 46, pp. 83-92, October 2010.

[Online]. Available: http://doi.acm.org/10.1145/1942788.1868307

[8] M. Odersky, “The scala experiment: can we provide better
language support for component systems?” in Conference
record of the 33rd ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, ser. POPL ’'06. New
York, NY, USA: ACM, 2006, pp. 166-167. [Online]. Available:
http://doi.acm.org/10.1145/1111037.1111052

[9] A. Law, Simulation Modeling and Analysis with Expertfit Software.
McGraw-Hill Science/Engineering/Math, 2006.

[10] R. K. Karmani, A. Shali, and G. Agha, “Actor frameworks for the
jvm platform: a comparative analysis,” in Proceedings of the 7th
International Conference on Principles and Practice of Programming
in Java, ser. PPPJ "09. New York, NY, USA: ACM, 2009, pp. 11-20.
[Online]. Available: http://doi.acm.org/10.1145/1596655.1596658

[11] C. Varela, C. Abalde, L. Castro, and J. Gulias, “On modelling
agent systems with erlang,” in Proceedings of the 2004 ACM
SIGPLAN workshop on Erlang, ser. ERLANG °04. New
York, NY, USA: ACM, 2004, pp. 65-70. [Online]. Available:
http://doi.acm.org/10.1145/1022471.1022481

[12] P. Haller and M. Odersky, “Scala actors: Unifying thread-
based and event-based programming,” Theor. Comput. Sci.,
vol. 410, pp. 202-220, February 2009. [Online]. Available:
http://portal.acm.org/citation.cfm?id=1496391.1496422

, “Event-Based Programming without Inversion of Control,” in
Modular Programming Languages, ser. Lecture Notes in Computer
Science, D. E. Lightfoot and C. A. Szyperski, Eds., 2006, pp. 4-22.

[14] T. Rompf, I. Maier, and M. Odersky, “Implementing first-class
polymorphic delimited continuations by a type-directed selective cps-
transform,” in Proceedings of the 14th ACM SIGPLAN international
conference on Functional programming, ser. ICFP ’09. New
York, NY, USA: ACM, 2009, pp. 317-328. [Online]. Available:
http://doi.acm.org/10.1145/1596550.1596596

[7

—

[13]

