
Finite State Machine Minimization and Row
Equivalence Application

Hassan Farhat
University of Nebraska at Omaha

Abstarct- Finite state machines minimization (finite
automata) is a well known problem in formal languages and
computer design. For a given automata, effective
procedures exist that converts the automaton to a unique
equivalent automaton but with possibly fewer number of
states.

While several minimization procedures are
devised, we show that some of the procedures do not yield
the minimum automata. In particular, we show that,
contrary to assumptions, the row equivalence method of
minimization does not always yield the unique minimum.
We explore the three common methods of minimizations.
We then look at the need to employ minimization procedures
other than row equivalence to achieve a unique minimum
automaton.

1 Introduction

Finite automaton is fundamental in the study of the
fields of computer science and computer engineering. It is
found in the study of software algorithms as in the case of
compilers [2, 3]. And it is important in the design of
hardware units in computer engineering [1, 7].

In the study of formal languages, the languages
recognized by finite automata are called regular languages.
The languages are closed under the set operations: Kleene
closure, union, complement and intersection. In addition,
given the finite state machines, FSMs, of two regular
languages, the automata for the union, complement, and
intersection can be easily constructed (an effective
procedure exists for the construction) [2]. Effective
procedures exist, as well, that reduce the number of state
(nodes) in an FSM. For a given FSM there exist a unique
equivalent FSM with minimum number of states [2, 3].

In hardware realization, FSMs are mapped to
Mealy or Moore machines [7]. In a Mealy machine, the
output of the machine is associated with an input and a node
(state) while in a Moore machine, the output is associated
with a node only. The two machines are equivalent; a
procedure exists that maps one machine to the other. In [8]
we showed that a minimum automaton does not always
yield the optimal hardware design and discussed automata
partition [9].

While several procedures are proposed that yield
minimum automata [4,5,6], we show that some do not
always yield the minimum automaton. In particular we
show the row method of minimization as presented in [4, 6]
does not yield always a minimum. In [4], the row
equivalence algorithm is expanded to include self-loops as a
method of minimization. We show that even with this
expansion, for some examples, the method does not yield
minimum automata.

The paper is organized as follows. In section 2, we
present two common methods of automata minimization. In
section 3 we look at the row method of minimization.
Section 4 presents a counter example and shows that other
methods of minimization yield a smaller automaton. The
conclusion is given in section 5.

2 Regular Languages and
Corresponding Finite State Machines

The definitions of regular languages are found in
[2,3]1. The definition is based on the construction of regular
expressions. The regular expression generates (describes)
set of elements (words).

A finite automata, also called finite-state machine,
M, is a recognizer for a regular language; i.e., for a given
word, M will determine if the word is in the regular
language. Formally, M, is defined as a quintuple M = (Q, ,
q0, , A) where Q is a finite set of symbols (states), q0 is a
special element of Q called the start state, A is a subset of Q
(accepting states), is a finite set of symbols (the alphabet),
and is a function from Q  to Q (the next state
function).

The finite-state machine can be described as a
directed graph or in tabular form. Example: consider the
language over the alphabet {0, 1}. A word in the alphabet
is any binary string of 0s and 1s. The language, L, where
each word ends in two 0s is a regular language. Figure 1
gives the recognizer finite automat (automata), M, as a
directed graph.

1 This section is presented in [8]



CB

D E F

0 1

0 0

0

0

1

1

0

1

1

1

1

0

Start

A

G

Figure 1: accept states have double circles, start state is
labeled with start arrow

In hardware design, we describe the automata a
little different. The automata can be described as a Mealy
or Moore machine. The accepting states are removed from
the definition of the automata. Instead, the machine is
presented as a hardware block with inputs and outputs with
states assigned binary codes and represented as memory
elements. The conversion to Mealy or Moore is simple.
Figure 2 shows the Moore conversion. Accepting states
have an output of 1 while non-accepting states have an
output of 0. For a given input (processed completely), if the
final output is 1, the input is a word in the language. An
output of zero means the input word is not the language.

C
0

B
0

D
1

E
0

F
0

0 1

0 0

0

0

1

1

0

1

1

1

1

0

Start

A
0

G
0

Figure 2: Moore realization, with each state we assign an
output (bottom label) ; state D is accepting state (output 1

when in state D)

There are two main minimization procedures that
produce the minimized automata: a) the partitioning
method, and (b) the implication method [2]. We apply these
to our example. The modified tabular representation is
shown in Figure 3.

Figure 3: Moore tabular form of automata, it includes the
output column corresponding to present state

The partition method: Iteratively, place states in
groups (partitions) based on the output response from a
given state, call the partitions Pi, i corresponds to the
iteration number. The 0 iteration contains all the automata
states in a single group. P1 places the states in two groups
based on the output; those with output zero and those with
output 1. P1 : (A, B, C, E, F, G)(D).

Starting with P1 we form new groups based on
next states on input 0 and input 1, call these 0-successor and
1 successor respectively. 0-successor(A, B, C, E, F, G) =
(B, D, F, D, F). This part of the partition is split if the
successor states belong to different previous groups. Split B
and F since the next state is D; D and other successor states
are in different previous groups. New P2 partition is P2:
(A, C, E, G)(B, F)(D). To complete P2 we also form the 1-
successors; 1-successor(A, B, C, E, F, G) = (C, E, G, G, E,
G); no new groups formed.

Iteratively, we repeat the above to generate P3.
The stopping criteria is a point where P(i+1) = Pi. When P3
is formed we find P2 = P3. The modified minimum
automata contain three states (A, C, E, G), (B, F) and D.

The implication method of minimization: This
procedure applies to incompletely specified automata as
well (an automata where the transition function, , is not
completely defined over the alphabet domain). It is based
on a table construction as follows. The table contains
columns for every state in the table except the last state; it
also contains rows for every state except the first. For a
column with label Sj and row Si, the corresponding entry is
either X or two pairs of states. The entry is X if the outputs
of Si and Sj are different. The table entries are the pairs
(Snj0, Sni0) and (Snj1, Sni1) (next state of states Si and Sj
on input 0 and 1 respectively). When this is applied to the
original automata we obtain the table shown in Figure 4(a).

Pair of states with Xs are not equivalent. From this table we
form additional tables by adding new Xs. The stopping
criteria: when the new table generated is the same as the
previous table. To add Xs, we examine each pair for states
entries. We place an X if the entry contains a pair with an X
entry already generated in the table.

Lets look at the above example, the first entry
checked corresponds to states (A, B) column A and row B.
This entry contains the pair (B, D) and (C, E). Since for the
entry (B, D) in the current table, Figure 4(a), an X is

PS X = 0 X = 1 X = 0, 1
A B C 0
B D E 0
C F G 0
D D E 1
E F G 0
F D E 0
G F G 0



present, in the new table construction (Figure 4(b)), we
place an X in entry (A, B).

B B, D B X

C, E

C B, F D, F C B, F X

C, G E, G C, G
D X X X D X X X

E B, F D, F F, F X E B, F X X

C, G E, G G, G C, G
F B, D D, D F, D X F, D F X X X X

C, E E, E G, E G, E
G B, F D, F F, F X F, F D, F G B, F X X X

C, G E, G G, G G, G E, G C, G

A B C D E F A B C D E F
(a ) (b)

Figure 4: Implication method tables

Similar reasoning applies to other entries to obtain Figure
4(b). In the figure pairs of the form (x, x) are removed since
it is not possible to replace them with Xs.

On starting with Figure 4(b) and repeating the
iteration process, the new table generated is the same as
Figure 4(b). Hence, the process stops.

The remaining entries with no Xs represent states
that are equivalent. Hence states (A, C), (A, E) (A, G) (B,
F) are equivalent. The automata minimization forms an
equivalence relation, hence states A, C, E, F and G are
equivalent. The final partition is (A, C, E, F, G)(B, F)(D).
This is the same grouping obtained using the partition
procedure above.

3 The row equivalence method of
minimization

The row equivalence method of minimization
relies on identification of equivalent rows in a state table as
given in Figure 3. It is based on the following definition
[6].

Definition: In a state table, two state are said to be
equivalent if: a) the next states rows are identical, and b) if
the output is the same from each state on each input
combination.

In [4], the definition for part (a) was modified so as
to allow for cycles in the state diagram. For two states A
and B, with identical outputs on all input combinations
starting in either state, the two states are equivalent if either
or both properties 1 and 2 are satisfied. Property 1: the
successor of state A on input x is A, and the successor of
state B on input x is B (each state has an edge that loops
back to itself on input x). Property 2: If on some input x
the successor of state A is state B and the successor of state
B is state A.

On repeated identification of equivalent states and
reducing the table by keeping only one state from each class
of equivalent states, the minimum can be obtained. We
apply the method to the example state diagram above.
From Figure 3, we note that state B and F are equivalent and
states C, E and G are equivalent. On removing states F, E
and G we obtain Figure 5.

NS OUTPUT
PS X=0 X=1 X=0, 1

A B C 0 (A, C) Equivalent
B B E 0
C B C 0
E B C 1

Figure 5

Note that the states of the table are renamed in
cases that reference states that are removed (example row
with present state C).
By inspection of the table, we see that states A and C are
equivalent. By removing state C we obtain the reduced
table found in Figure 6.

NS OUTPUT

PS X=0 X=1 X=0, 1
A B A 0
B B E 0

E B A 1 RenameEasC
Figure 6

On renaming state E, we obtain the minimum
automaton, as was done using either method of
minimization in the previous section.
We next show that even though the row equivalence method
works for the previous example, it does not always yield a
minimum. 5

4 A Counter Example

We consider the state table shown in Figure 7. By
inspection of the table, there are no identical rows. We then
look at two rows that satisfy properties 1 or 2 as stated in
section 5. On input x = 0, rows D, E and F have loops (next
state = present state). However, the next states are different
on input x. Hence property 1 fails. Note that state N is not
considered since the output from state N is 1.



NS OUTPUT
PS X = 0 X = 1 X = 0, 1
A F B 0
B E C 0
C D A 0
D D M 0
E E L 0
F F K 0

K N C 0

L N B 0

M N A 0

N N N 1

Figure 7

We then check to see if property 2 holds true. For
this property to hold true, we need to have two rows i and j
(present states i and j) such that on some input x the next
state from i is state j and the next state from j is state i. In
addition, the remaining elements of the rows should be
identical. By inspection, we find this property does not hold
true, as well.

Based on the row equivalence method then, we
conclude that the above table is already in reduced form.
We next show this is not the case by forming a smaller
automaton based on the partition method of minimization.

We use the partition method to show the minimum
automaton yields fewer states than concluded in the row
equivalence method. The 0 iteration contains all the
automata states in a single group, P0 = (A, B, C, D, E, F, K,
L, M, N). P1 places the states in two groups based on the
output; those with output zero and those with output one; P1
= (A, B, C, D, E, F, K, L, M) (N).

From the P1 partition we look at 0-successor(A, B,
C, D, E, F, K, L, M) = (F, E, D, D, E, F, N, N, N). Hence
the new partition due to 0-successor is (A, B, C, D, E) (K,
L, M) (N). The 1-successor(A, B, C, D, E, F, K, L, M)
results in (B, C, A, M, L, K, C, B, A) which results in
further partitions, P2 = (A, B, C) (D, E, F) (K, L, M) (N).
From P2, when we consider the 0-partitions of (A, B, C),
(D, E, F), and (K, L, M), we respectively obtain, (F, E, D),
(D, E, F) and (N, N, N); no new partitions are generated.
Similarly we consider the 1-partitions of (A, B, C), (D, E,
F), and (K, L, M). We obtain (B, C, A), (M, L, K) and (C,
B, A); no new partitions are generated. Since P3 = P2, the
partition in P2 forms the minimum automaton with 4 states
only.

5 Conclusion

In this paper we have considered a well known
problem in formal languages; the problem of state
minimization. While three algorithms are normally given to
form the minimum automaton, we showed the row
equivalence method does generally result in a minimum
automaton. The row equivalence method can be chosen as

a preprocessing step in the minimization. However, to
guarantee minimum automata it needs to be appended by the
implication method of minimization, or the partition method
based on the state successor method.

References

[1] N. Weste and D. Harris. “CMOS VLSI design 3rd
edition”, Addison Wesley, 2004.

[2] J. Martin. “Introduction to Languages and the Theory
of Computation”. McGraw Hill, 1991.

[3] W. Barett, R. Bates, D. Gustafson, J. Couch.
“Compiler Construction Theory and Practice, 2nd

edition”. SRA publishing, 1979.
[4] V. Nelson, H. Nagle, B. Carroll, J. Irwin. “Digital

logic Circuit Analysis and Design”. Prentice Hall,
1995.

[5] R. Katz and B. Gaetano. “Contemporary Logic
Design, 2nd edition”. Prentice Hall, 2005.

[6] M. Mano and C. Kime. “Logic and Computer Design
Fundamentals, 3 rd Edition”. Prentice Hall, 2003.

[7] D. Gajski. “Principle of Digital Design”. Prentice
Hall, 1997.

[8] H. Farhat. “Minimization of State Diagrams and
Realization at the Hardware Level”. ICIAS, 2010.

[9] L. Benini, G. De Micheli, F. Vemzeulen. “Finite-
State Machine Partitioning For Low Power”, ISCAS,
1998.


