
Avalanche in States; Combination of Sandpile and Cellular
Automata for Generate Random Numbers

Seyed Morteza Hosseini1, Hossein Karimi2, Majid Vafaei Jahan3
1,2,3 Department of Software Engineering, Mashhad Branch - Islamic Azad University, Mashhad, Iran

Abstract- Cellular Automata (CA) is a self organizing
structure with complex behavior which can be used in
pseudo-random numbers generation(PRNG). Pure CA has
a simple structure but has no ability to produce long
sequences of random numbers. In order to rectify this
problem, programmable CA (PCA), using stimulating
factor or combination of different self organizing Criticality
phenomenon can be used. In this paper, a PCA by using
Sandpile model is proposed. The Sandpile is a complex
system operating at a critical state between chaos and
order. This state is known as Self-Organized Criticality
(SOC) and is characterized by displaying scale invariant
behavior. In the precise case of the Sandpile Model, by
randomly and continuously dropping “sand grains” on top
of a two dimensional grid lattice, a power-law relationship
between the frequency and size of sand “avalanches” is
observed. The avalanche behavior and the pure CA
behavior are combined in a novel method which can be
used as the pseudo-random number generator.

Keywords: Random Number Generator, Self-Organizing
Criticality, Sandpile Model, Cellular Automata.

1 Introduction

Random number generators (RNGs) play an important
role in several computational fields, including Monte
Carlo techniques [1], Brownian dynamics [2], stochastic
optimization methods [2, 3] and key-based cryptography
[4]. It is usual to use mathematical or even evolutionary
methods to construct RNGs that yields high quality
generators. The quality of generators that determined by
statistical tests have a great important role; for example,
in cryptography, low quality of RNGs causes easily
breaking the encrypted context [4]. In solving
optimization problems, as shown in [5], performance and
speed of algorithms directly depend on quality of used
RNGs. Because of simple structure of CA and its complex
behavior and high ability to be used parallel, CA has a
well ability in generating random numbers. But one of the
major problems of CA is its bounded generated random
number sequence because of the self-organizing ability

and generate frequent numbers with specific rules. Hence,
a strategy for increasing the complexity of behavior and
the implementation of CA to present a better random
number sequence is required. In this paper, a new method
for stimulating CA and increasing the complexity of CA`s
behavior based on Sandpile model has been presented.
Sandpile model, because of existence of avalanche
phenomenon has a non-equilibrium behavior. Hybridizing
this model with cellular automata causes a random
behavior that it leads to generate a qualified sequence of
random numbers.

Herein a two dimensional n × m CA and combination
of 8 rules has been used. The obtained results show that
the sequence of generated numbers by CA passed all parts
of diehard test suite, entropy and chi-square and other
static tests. Some of the other of advantages of this
method are uniform distribution of generated numbers by
CA, high ability of parallel processing and also the
sensitivity to bit changes in particular applications such as
cryptography. This paper is organized as following: in
following section related works discussed. Section 3,
contains the basic concepts of CA and Sandpile model. In
section 4 the proposed RNG algorithm and its behavior
are discussed. In section 5, the experimental results are
illustrated and finally, in section 6, , the conclusion and
future works are discussed.

2 Related Works

The first work to apply CA as RNG was done by
Wolfram in 1986. His work shows the ability of CA to
generate random bits [6, 7]. Basic researches on CA are
on producing RNG by one dimensional CA with 3
neighbors [7]. Other researches are focused on increasing
CA's complexity with combinations of controllable cells
[4, 8] or increasing CA`s complexity with increasing
dimensionality. RNG are produced by using one
dimensional CA studied in [9, 10, 11, 12, 13] and two
dimensional CA in [14, 15, 16] and three dimensional CA
in [17]. Hortensius proposed the first non-uniform CA or
programmable CA (PCA) by using of the combination of
two rules, 90 and 150 in 1989[9]. PCA is a non-uniform
CA that allows different rules to be used at different time
steps on the same cell. He also represented another

generator using the combination of rules 30 and 45 in [10]
that its output bits have more dependencies to each other
rather than rules 90 and 150.

 Recently, extensive studies have been done on PCA
for generating random numbers [11, 15, 16, 18, 19]. First
works on two dimensional CA represented by Chaudhuri
et al. in 1994 [14]. Their results show that produced
generator using this CA works better rather than one
dimensional CA with the same size. In [20, 21] all 256
(simple) elementary cellular automata were investigated
(including those with rules given 90 and 150). It was
found that CA with nonlinear rules 45 (or its equivalent
rules 75, 89 or 101) exhibit chaotic (or pseudo-random)
behaviors similar to those obtained in LFSRs.

3 Cellular Automata and Sandpile
Model

3.1 Cellular Automata
A cellular automaton (CA), introduced by Von

Neumann in 1940s, is a dynamic system in which its time,
space and states are all discrete. The CA evolves
deterministically in discrete time steps and each cell takes its
value from a finite set S, called the State Set. A CA is named
Boolean if S = {0,1} . The ݅ − ℎ cell is denoted by ‹i› and theݐ
state of cell ‹i› at time t is denoted by ܽ௜

௧ . For each cell ‹i›,
called central cell, a symmetric neighborhood of radius r is
defined by (1):

௜ݒ = {‹݅ − ,‹ݎ … . , ‹݅›, … . , ‹݅ + (1) {‹ݎ
the value of each cell ‹i› is updated by a local transition
function ௜݂-called rule- which for a symmetric neighborhood
with radius r is defined as follows (2):

ܽ௜
௧ାଵ = ݂(ܽ௜ି௥

௧ , … , ܽ௜
௧ , … , ܽ௜ା௥

௧) (2)

or equivalently by (3):

ܽ௜
௧ାଵ = ௜ݒ)݂

௧) (3)

Such that ݒ௜
௧ is as follows (4):

௜ݒ
௧ = ݂(ܽ௜ି௥

௧ , … , ܽ௜
௧ , … , ܽ௜ା௥

௧) (4)

To represent a symmetric rule of radius r for a Boolean CA,
a binary string of length L is used, where ܮ = 2ଶ௥ାଵ , Table 1
Shows the rule 90 of radius one (r=1).

Table 1. The Rule Representation Of Boolean Symmetric
Rule 90 Of Radius One
Neighborhood

Number
7 6 5 4 3 2 1 0

࢏࢜
࢚ 111 110 101 100 011 010 001 000

࢏࢜)ࢌ
࢚) 0 1 0 1 1 0 1 0

If all CA cells obey the same rule, then the CA is said

to be a uniform CA; otherwise, it is a non-uniform
CA[22]; in addition, a CA is said to be a CA with periodic
boundary condition if the extreme cells are adjacent to

each other else it called null-boundary CA. If a CA rule
involves only XOR logic, it is called a linear rule; rules
involving XNOR logic are referred to complemented
rules. A CA with all cells having linear rules is called
linear CA, whereas a CA having a combination of linear
and complemented rules is called an additive CA [23].
Nandi et al. presented a programmable CA (PCA) in 1994
[23]. A CA is said to be a PCA if it uses a control CA to
determine the rules of each cell. A control CA is
essentially just another basic CA which is usually of
uniform nature. The rule function used by each cell
changes with time and is decided by the control CA. PCA
is, in fact, a non-uniform CA because all its cells
collectively use different rule functions. A PCA may use
m-bit control CA, where m 1. For each cell, there are 2m
rules to choose from, thereby, allowing less probability of
correlations among the cells. Compared to uniform CA,
PCA allows several control lines per cell. Through these
control lines, different rules can be applied to the same
cell at different time steps according to the rule control
signals. Fig. 1, shows a PCA cell structure.

Fig. 1. A PCA cell structure

As Illustrated in Fig. 1, control signals select cell's rule. In
this paper a two dimensional Sandpile model and two
dimensional PCA with non-periodic boundary condition
is considered. Each PCA cell's state can be a number as 0,
1, 2, 3. Herein, applied rules are the same rules that were
used in elementary CA.

3.2 Sandpile Model

In 1987, Bak at al. [24] identified the SOC
phenomenon associated with dynamical systems. The first
system were SOC was observed was named after its
inspiration as the Sandpile model, and consists of a
cellular automata where at each cell of the lattice, there is
a value which corresponds to the slope of the pile. Grains
of sand are randomly “thrown” into the lattice where they
pile up and increment the values of the cells. When a
value exceeds a specific threshold, an avalanche takes
place and four grains belonging to that cell are distributed
by the neighboring sites (von Neumann neighborhood). If
one of those sites also exceeds the threshold value(zc), the
avalanche continues, and the grains are also sent to the
adjacent cells. The procedure of the Sandpile model is
shown in fig. 2.

 With these settings, and depending on the state of the
lattice and the position of the new grain, a grain may
cause rather different responses. It may not cause any
change in the system if it falls in a cell with its value
bellow threshold (other than increasing the sand on the

cell, of course) and it may generate large avalanches of
sand that will strongly redefine the shape of the pile.

Fig. 2. 2D Bak-Tang-Wisenfeld Sandpile Model

4 Proposed RNG Based On

Combination of Sandpile and PCA

4.1 Proposed RNG
In this scheme a two dimensional ݊ × ݉ PCA with

Null boundary condition is used to generate random
numbers by using 8 rules: 153, 30, 90, 165, 86, 105, 110,
150. According to [25], generated numbers by these rules
have the best results in different tests such as entropy, chi-
square and diehard. The Boolean expression of each CA
rule is shown in Table 2.

In this paper, for Sandpile implementation, the

threshold value is considered equal to 4 and each cell has
four nearest neighbors: up, down, left and right (Von-
Neuman neighborhood). The value of each CA`s cell is an
integer between 0 and 3. For converting these numbers to
0 and 1(binary state), their residual over 2 is used. Hence,
numbers 0 and 2 (even numbers) are delegated to 0 and
numbers 1 and 3 (odd numbers) are delegated to 1. In
order to generate random numbers, the CA was
initialized by random numbers between 0 and 3. At each
time step, there are two steps that are discussed in the
following:

Firstly, a ݊ × ݉ CA is set to the binary state and each
row divides into 4-cell’s parts (each part has four cells).
In each word the first two cells show the number of time
that Sandpile run on each cell (߮) and the second two
cells show the cell that action should be run on it (ߙ).

Each word (φ, α), is extracted from the word in the
previous row. Because of increasing ߮ has no tangible
effect on the quality of the generated random numbers
and only increases processing time, ߮ is restricted to the
maximum equal to 2. If the first two cell of each word is
equal to 0, 1 or 2 the Sandpile action is run once; else if it
is equal to 3 the Sandpile action is run twice. Fig. 3, show
the hardware schema process of way of selection for
performing sandpile action and the number of sandpile
actions for a 4 cell section in row i+1.

Fig. 3. Proposed CCA with selection of a cell for running
Sandpile action.

For example, Fig. 4(a), shows the three rows of CA;
and Fig. 4(b), shows its binary state. These figures show
the number of Sandpile runs and the cells that Sandpile
applied on them.

(b) binary state of three rows (a) three rows of CA
Fig. 4. An example of CA and its binary state

For determination of (φ, α), in the first word of the
second row, the corresponding data in the previous row
i.e. first row was used. The value of the first two bits of
the first word of first row is (11)ଶ that imply number 3.
So as mentioned, the number of Sandpile run in first word
of the second row would be equal to 3. The value of the
second two bits of the first word of the first row is
(10)ଶ that shows cell 2 is selected. So Sandpile is run
twice on cell 2 of the first word of second row i.e. the cell
[1, 2]. Because the considered CA is periodic, previous
row of the first row is the last row (seventh row). It is
repeated for second word of second row similarly. The
second word of the first row, which determine the number
of Sandpile run is (10)ଶ = 2 and the next word which
determine the cell that the Sandpile applied it
was (00)ଶ = 0, Thus on the zero cell of the second word
of the second row i.e. cell [1, 4], the Sandpile was
performed once. For all rows, these data inferred
synchronically.

In the second step, the CA has been updated by the
eight mentioned rules. This step comprised three parts. In
the first part, a rule for each cell, according to the Table 3

Table 2: The detail and Boolean expression of each CA Rule

Boolean Representation Possible Input Configuration Rule
Name 000 001 010 011 100 101 110 111

[xi-1 nor xi+1] or [(xi xor
xi+1) and xi-1] 1 0 1 0 0 1 1 0 101
Not[xi-1 xor xi xor xi+1]1 0 0 1 0 1 1 0 105
[xi-1 nor xi] xor [not(xi+1)]0 1 1 0 1 0 1 0 86
[xi-1] xnor [xi+1]1 0 1 0 0 1 0 1 165
[xi-1] xor [xi+1]0 1 0 1 1 0 1 0 90
[xi-1] xor [xi or xi+1] 0 1 1 1 1 0 0 0 30
[xi] xnor [xi+1]1 0 0 1 1 0 0 1 153
[xi-1] xor [xi] xor [xi+1]0 1 1 0 1 0 0 1 150

synchronically determined. The number of rules which
used in this paper is specified. To determine a rule for cell
[i, j], the procedure is shown as following: for cells [i-1, j-
1], [i-1, j], [i-1, j+1] and [i+1, j-1], [i+1, j], [i+1, j+1], the
XOR operator was used on them correspondingly (i.e. the
XOR operator applied on cells [i-1,j-1] and [i+1,j-1] and
so forth) and generate an integer between 0 and 7. Fig. 5,
shows the PCA Structure and hardware presentation of
determined rules 90/ 150/ 165/ 105/ 101/ 86/ 30/153 for
cell [i,j].

Fig. 5. Proposed PCA with Determined rules for cell [i,j]

The obtained number is the rule number that must be
applied on the cell [i, j]. For instance, if after performing
Sandpile action, the values of CA will be Fig. 4(b), the
number of determined rule for cell [1, 1] is equal to
111 ⊕ 001 = 110, i.e. which is the 6th rule. In other
words, according to Table 3 in performing rule section on
CA, the rule which should be applied on the cell [1, 1] is
153.

Table 3. CA rules lookup Table
7

(111)
6

(110)
5

(101)
4

(100)
3

(011)
2

(010)
1

(001)
0

(000)
150 153 30 90 165 86 105 101

In the second part, determined rules were applied.
Using rules also is synchronously and the rules would be
applied with respect to the rows. For example, in Fig.
4(b), the result after performing rule 153 on cell [1, 1] is
equal to ܴ݈݁ݑଵହଷ(101) = 0. In the third part, for updating
the CA, the value of each CA cell should be added to the
value that obtained from the used rule on that cell, which
will be 0 or 1, and since all values must be an integer
between 0 and 3, their integer residual of them by 4 were
calculated.

4.2 How Use of Sandpile Model Results in
Random State in Cellular Automata?

Role of sandpile model in this model is to actuate and
produce the maximum disturbance in cellular automata
for preventing from cycle formation and reaching the
maximum entropy in cellular automata. As it was stated,

The Sandpile is a complex system operating at a critical
state between chaos and order and a power-law
relationship between the frequency and size of sand
“avalanches” is observed .In a system exhibiting critical
behavior, A small perturbation in one given location of
the system may generate a small effect on its
neighbourhoods or a chain reaction that affects all the
constituents of the system. The statistical distributions

describing the response of the system exhibiting SOC are
given by power laws in the form

 P(s) ~ ିݏఛ (5)
where s is the number of constituents of the system

affected by the perturbation, d is the duration of the chain
reaction(lifetime), and ߬ are constants. Large avalanches
are very rare while small ones appear very often.
Without any fine-tuning of parameters, the system
evolves to a non-equilibrium critical state. Fig. 6 shows a
distribution of avalanches created by our sandpile model
with a dimension of 12 × 12, which has been running for
100000 steps.

(a) Size of avalanches over
time (steps); right: Log-log

(b) Log-log transformation of the
size of avalanches in relation to
their frequency of occurence

Fig. 6. Power law number output of the sandpile model.

As it is shown in figure 6, behavior of applied sandpile
model in the proposed generator follows power law and
the number of avalanche occurrences is inversely
proportional with the size of avalanche. The average
occurred state change in cellular automata was measured
equal to %47.83 after performing sandpile on rows.

Fig. 7. Percentage Changes in Cells After Applying
Sandpile

Fig. 7 shows percentage changes in cells after 1000 times

sandpile performance. Combining this model with cellular
automata, in addition to disturbing cells state, causes a
severe mutation in values of cellular automata because of
creating huge avalanches and prevents from short period
length sequences and leads to the maximum entropy in
cells values. Average of Percentage changes after
performing rules of cellular automata and performing
sandpile action on cells is %50.1.

5 Experimental Results

For analyze the proposed generator, the generated bits
sequence divided into 4-bit parts and so, different tests
such as entropy, chi-square and the changes sensitivity

and other tests on the obtained numbers were assessed
which are between 0 and 15. To perform all tests which
will be presented in following sections, an 8 × 8 cellular
automata is applied with random initial values.

5.1 Several Basic Statistical Tests For PRNG
Let s =ݏ଴, ,ଵݏ ,ଶݏ ௡ିଵ be a binary sequence ofݏ , …

length n. This subsection presents several basic statistical
tests that are commonly used for determining whether the
binary sequence s possesses some specific characteristics
that a truly random sequence would be likely to exhibit. It
is emphasized again that the outcome of each test is not
definite, but rather probabilistic.

5.1.1 Frequency Test (Monobit Test)
The purpose of this test is to determine whether the

number of 0’ݏ and 1’ݏ in s are approximately the same, as
would be expected for a random sequence. Let ݊଴, ݊ଵ
denote the number of 0’ݏ and 1’ݏ in s, respectively. The
statistic used is:

1ݔ =
(݊଴ − ݊ଵ)ଶ

݊ (6)

which approximately follows ܽ ݔଶdistribution with 1
degree of freedom if ݊ ≥ 10. For a significance level of
α = 0.05, the threshold values for this test is 3.8415 [26].

5.1.2 Serial Test (Two-Bit Test)

The purpose of this test is to determine whether the
number of occurrences of 00, 01, 10, and 11 as
subsequences of ݏ are approximately the same, as would
be expected for a random sequence. Let ݊଴, ݊ଵ denote the
number of 0’ݏ and 1’ݏ in s, respectively, and let
݊00, ݊01, ݊10, ݊11 denote the number of occurrences of
00, 01, 10, 11 in s, respectively. Note that ݊00 + ݊01 +
 ݊10 + ݊11 = (݊ − 1) since the subsequences are
allowed to overlap. The statistic used is:

4
݊ − 1

(݊00ଶ + ݊01ଶ + ݊10ଶ + ݊11ଶ) −
2
݊

(݊଴
ଶ + ݊ଵ

ଶ) + 1 (7)

 which approximately follows ܽ ݔଶdistribution with 2
degrees of freedom if ݊ ≥ 21. For a significance level of
α = 0.05, the threshold values for this test is 5.9915 [26].

5.1.3 Poker Test

Let ݉ be a positive integer such that ቔ௡
௠

ቕ ≥ 5. (2௠)

and let ݇ = ቔ௡
௠

ቕ. Divide the sequence s into k non-
overlapping parts each of length ݉, and let ݊௜ be the
number of occurrences of the ݅௧௛ type of sequence of
length ݉, 1 ≤ ݅ ≤ 2݉. The poker test determines
whether the sequences of length ݉ each appear
approximately the same number of times in ݏ, as would be
expected for a random sequence. The statistic used is:

3ݔ =
2௠

݇
ቌ෍ ݊௜

ଶ
ଶ೘

௜ୀଵ

ቍ − ݇ (8)

Which approximately follows ܽ ݔଶ distribution with
2௠ − 1degrees of freedom. Note that the poker test is a
generalization of the frequency test: setting m = 1in the
poker test yields the frequency test. . For a significance

level of α = 0.05, the threshold values for this test is
14.0671 [26].

5.1.4 Autocorrelation Test

The purpose of this test is to check for correlations
between the sequence ݏ and (non-cyclic) shifted versions
of it. Let ݀ be a fixed integer,1 ≤ ݀ ≤ උ݊

2ൗ ඏ. The number
of bits in s not equal to their d-shifts is ܣ(݀) =
 ∑ ௜ݏ

௡ିௗିଵ
௜ୀ଴ .௜ାௗ where ⊕ denotes the XOR operatorݏ ⊕

The statistic used is:

ହݔ = 2 ൬ܣ(݀) −
݊ − ݀

2
൰ /√݊ − ݀ (9)

Which approximately follows an ܰ(0; 1) distribution if
݊ − ݀ ≥ 10. Since small values of ܣ(݀) are as
unexpected as large values of ܣ(݀), a two-sided test
should be used. . For a significance level of α = 0.05, the
threshold values for this test is 1.96 [26]. In Table 4,
values of discussed tests are presented for the proposed
generator. For this, a sequence of random numbers is
generated with 1 million bits and discussed tests are
implemented on it. This procedure is repeated 100 times
and its average is given, too..

As it is shown in Table 4, generator is able to pass all
tests.

5.2 ENT Test
The ENT test is useful for evaluating pseudorandom

number generators for encryption and statistical sampling
applications, compression algorithms, and other
applications where the information density of a file is of
interest [27]. The ENT test is a collective term for three
tests, known as the Entropy test, Chi-square test, and
Serial correlation coefficient (SCC) test. Table 5 shows
values of this test for the proposed generator. In entropy
test, its maximum value is 4 and Chi- Square test with
freedom degree 4 and precision of 0.1 is used. For doing
these tests, a sequence of length 2ଵ଻ is used.

Table 5. ENT Test
TESTS

Entropy Chi-Square SCC
3.9999 3.0185 0.00008

As it is represented in above table, generated sequence
is able to pass all tests successfully and with good result.

5.3 PRNG Quality Evaluation
To compare how our PRNG performs against several

different PRNGs, we use Diehard test suite [28]. For this
reason, the proposed generator based on obtained score
from DIEHRD test is compared with other generators. we
used Johnson’s scoring scheme [29]: we initialized (a0,
a1, a2, a3, a4, a5, a6, a7) with 32 different random values
obtained from http://randomnumber.org, got 32 different
10MB files, and then assigned scores based on the results
of the Diehard tests. The PRNGs we have compared to

Table 4. Values of 4 basic statistical test
TESTS

Pass
Frequency Serial Poker Autocorrelation

0.459 2.533 8.851 0.312 4/4

ours are of several different kinds: Linear Congruential
Generators (rand [30], rand1k [31], pm [32]), Multiply
with Carry Generators (mother [33]), Additive and
Subtractive Generators (add [30], sub [32]), Compound
Generators (shsub [30], shpm [32], shlec [32]), Feedback
Shift Register Generators (tgfsr [34], fsr [35]), and
Tausworthe Generators (tauss [36]).

Each of the Diehard tests produces one or more p-
values. We categorize them as good, suspect or rejected.
We classify a p-value as rejected if p ≥ 0.998, and as
suspect if 0.95 ≤ p < 0.998; all other p-values are
considered to be good. We assign two points for every
rejection, one point for every suspect classification, and
no points for the rest. Finally, we add up these points to
produce a global Diehard score for each PRNG, and
compute the average over the 32 evaluations: low scores
indicate good PRNG quality. The information relating to
the different PRNGs was taken from [31, 37]. The results
are presented in Table 6. We note that our PRNG is
outstandingly better than the rest of the analyzed PRNGs:
the lowest scores correspond to shsub (17.125) and fsr
(17.90625), significantly greater than our PRNG
(12.718750). On the other hand, the average scores
increase up to 50.59375 (pm), 66.53125 (rand), and even
291.78125 (rand1k).

Table 6. PRNG Diehard Scores

PRNG Total Score Mean
Rand 2129 66.531250
rand1k 9337 291.78125
Pm 1619 50.593750
Mother 602 18.812500
Add 577 18.031250
Sub 655 20.468750
Shsub 548 17.125000
shpm 799 24.968750
shlec 751 23.468750
fsr 573 17.906250
tgfsr 584 18.250000
tauss 935 29.218750
Proposed PRNG 407 12.718750

5.4 Avalanche Effect

Bit change sensitivity analysis is used to analyze the
RNGs that are used in cryptography. One of the desired
properties in each cryptography algorithm is that a small
change in plaintext or key yields salient changes in
ciphertext. In special case, changing one bit in key or
plaintext should change in half of the ciphertext. This
property is known as avalanche and represented by Fiestel
in 1973 [16].

As mentioned before, the proposed generator could be
used to generate key in cryptography. To generate a
unique key in both encoding and decoding, the initial
values must be available. Thus, for high security in
cryptography, generated bits stream must have too much
dependency to this parameter. As mentioned before, a
8 × 8 CA with an integer between 0 and 3 as the value of
each cell was used. Then two bits are needed to determine
the value of each cell and 128 bits could determine the

value of cells. Two analysis of this section, 128 bits
randomly generated to determine the initial state and the
generated bits sequence generated from one cell. Then
one of these 128 bits has been inverted and the sequence
of generated bits with the new initial state of the same cell
generated. At last, the both sequences have been
compared with each other. Fig. 8, shows the changes
percent of generated sequences from one specific cell
with two initial states that differ only in the ݅ݐℎ bit
(horizontal axis).

Fig. 8. changes percentage between generated data
from two keys that only differ in one bit

6 Conclusion

In this paper, a new PCA for generating random
numbers using CA and Sandpile model presented. This
method, have the high performance in all tests and could
be used in cryptography. Because of avalanche and self
organizing properties of Sandpile model, it has a complex
behavior and could be used as a convenient factor in
stimulating of CA to generate a high quality sequence of
random numbers. In each step, first the Sandpile process
applied on the four neighbors of each cell of the two
dimensional automata and then the CA has been updated
by the synthetic of 8 rules 165, 105, 90, 150, 153, 101, 30,
86. The results of applied tests on the generated numbers
show that this generator has the maximum entropy and
since passing the chi-square and diehard tests. This
generator also has a convenient speed and holds the
ability of parallelism of CA.

Reference

[1] J. Gentle, "Random number generation and Monte Carlo
methods," Springer New York 2003, 2th edition, 2004, ISBN-
10: 0387001786
[2] A. Reese, "Random number generators in genetic
algorithms for unconstrained and constrained optimization,"
Nonlinear Analysis: Theory, Methods & Applications, Vol. 71,
pp: 679 - 692, 2009.
[3] P.L.Ecuyer, "Random numbers for simulation,
" Communications of the ACM, Vol. 33, pp:85-97, 1990.
[4] M. Tomassini, M. Sipper, and M. Perrenoud, "On the
generation of high quality random numbers by two-dimensional
Cellular Automata," IEEE Transactions on Computers, Vol.
49, pp: 1146 –1151, 2000.

[5] J.Carmelo, A. Bastos-Filho, D. Jดulio, D. Andrade, R.
Marcelo, S. Pita, D. Ramos, "Impact of the Quality of Random
Numbers Generators on the Performance of Particle Swarm
Optimization," IEEE International Conference on Systems,
Man and Cybernetics , pp: 4988–4993, 2009.
[6] S. Wolfram, "Cryptography with cellular automata," in
Proc. CRTPTO 85 Advances in Cryptography, Vol. 218, pp:
429–432, 1985.
[7] S. Wolfram, "Theory and Applications of Cellular
Automata," River Edge, NJ: World Scientific, pp:1983–1986,
1986.
[8] S.-U. Guan and S. Zhang, "A family of controllable cellular
automata for pseudorandom number generation," International
Journal of Modern Physics C, Vol. 13, Issue 8, pp:1047-1073
2002.
[9] P. D. Hortensius, R. D. Mcleod, and H. C. Card, "Parallel
random number generation for VLSI system using cellular
automata," IEEE Transactions on Computers, Vol. 38, pp:
1466–1473, 1989.
[10] P. D. Hortensius, R. D. Mcleod,W. Pries, D. M. Miller,
and H. C. Card, "Cellular automata-based pseudorandom
number generators for built-in self-test," IEEE Transactions on
Computers, Vol. 8, pp: 842–859, 1989.
[11] P. Anghelescu “Encryption Algorithm using
Programmable Cellular Automata”, World Congress on
Internet Security (WorldCIS), pp: 233 – 239, 2011
[12] S.H. Shin, K.Y. Yoo, “Analysis of 2-State, 3-
Neighborhood Cellular Automata Rules for Cryptographic
Pseudorandom Number Generation
 “,International Conference on Computational Science and
Engineering, CSE '09, pp: 399 – 404,2009.
[13] X.Xuewen, L.Yuanxiang, X.Zhuliang, W.Rong, “Data
Encryption Based on Multi-Granularity Reversible Cellular
Automata”, International Conference on Computational
Intelligence and Security, 2009. CIS '09, pp: 192 – 196, 2009.
[14] D. R. Chowdhury, I. S. Gupta, and P. P. Chaudhuri, "A
class of two-dimensional cellular automata and applications in
random pattern testing," Journal of Electronic Testing: Theory
and Applications, Vol. 5, pp: 65–80, 1994.
[15] B.H.Kang, D.H.Lee, C.P.Hong, "High-Performance
Pseudorandom Number Generator Using Two-Dimensional
Cellular Automata", 4th IEEE International Symposium on
Electronic Design, Test and Applications, pp:597 - 602, 2008
[16] B.H.Kang, D.H.Lee, C.P.Hong, ”Pseudorandom Number
Generation Using Cellular Automata", Novel Algorithms and
Techniques In Telecommunications, Automation and Industrial
Electronics, pp:401-404, 2008.
[17] S.H.Shin, G.D.Park, K.Y.Yoo, “A Virtual Three-
Dimension Cellular Automata Pseudorandom Number
Generator Based on the Moore Neighborhood Method”, 4th
International Conference on Intelligent Computing, ICIC 2008,
pp: 174-181, 2008.
[18] A. Ray, D. Das, “Encryption Algorithm for Block Ciphers
Based on Programmable Cellular Automata”, Information
Processing and Management, Vol.70, pp:269-275, 2010.

[19] N.S.Maiti, S.Ghosh, B.K.Shikdar, P.P.Chaudhuri ,
“Programmable Cellular Automata (PCA) Based Advanced
Encryption Standard (AES) Hardware”, 9th International
Conference on Cellular Automata for Research and Industry,
ACRI, pp:271-274, 2010.
[20] R. Dogaru, I. Dogaru, and H. Kim, "Binary chaos
synchronization inelementary cellular automata", Int. J.
Bifurcation and Chaos, 19, 2009.
[21] R. Dogaru, I. Dogaru, H.Kim,"Synchronization in
elementary cellular automata", Proceedings of the 1Oth
International Workshop on Multimedia Signal Processing and
Transmission (MSPT'08, July 21-22, pp. 35-40, 2008.
[22] I.Kokolakis, I.Andreadis, and P. Tsalids, "Comparison
between cellular automata and linear feedback shift registers
based pseudo-random number generators," Microprocessors
and Microsystems, Vol. 20, pp: 643–658, 1997.
[23] S. Nandi, B. K. Kar, and P. P. Chowdhuri, "Theory and
applications of cellular automata in cryptography,” IEEE
Transactions on Computers, Vol. 43, pp:1346–1357, 1994.
[24] P.Bak, C.Tang, , K.Wiesenfeld, “Self-organized criticality:
an explanation of 1/f noise”, Physical Review of Letters, pp:
381-384, 1987
[25] F. Seredynski, P. Bouvry, and A.Y. Zomaya, "Cellular
automata computations and secret key cryptography," Parallel
Computing, Vol.30, pp: 753-766, 2004.
[26] Alfred J. Menezes, Paul C. van Oorschot, Scott
A.Vanstone “Handbook of Applied Cryptograph”, CRC Press;
1 edition, pp:181-183, 1996, ISBN-10: 0849385237.
[27] ENT Test Suite, http:// www.fourmilab.ch/random
[28] G.Marsaglia, Diehard test, http://stat.fsu.edu/
~geo/diehard.html, 1998.
[29] B.C. Johnson. Radix-b extensions to some common
empirical tests for PRNGs. ACM Trans. on Modeling and
Comp. Sim., 6(4):261–273, 1996.
[30] D.E. Knuth. The Art of Computer Programming, Volume
2, Addison-Wesley, 3rd edition, 1998.
[31] M.M. Meysenburg and J.A. Foster. Randomness and GA
performance, revisited.In Proc. of GECCO’99, volume 1, pages
425–432. Morgan Kaufmann, 1999.
[32] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P.
Flannery. Numerical Recipes in C. Cambridge University
Press, 2nd edition, 1992.
[33] G. Marsaglia. Yet another RNG. Posted to sci.stat.math,
1994.
[34] M. Matsumoto and Y. Kurita. Twisted GFSR generators.
ACM Trans. on Modeling and Comp. Sim., 2(3):179–194,1992.
[35] B. Schneier. Applied Cryptography. John Wiley, 1994.
[36] S. Tezuka and P. L’Ecuyer. Efficient and portable
combined Tausworthe Random Number Generators. ACM
Trans. on Modeling and Comp. Sim., 1(2):99–112, 1991.
[37] M.M. Meysenburg and J.A. Foster. The quality of PRNGs
and simple genetic algorithm performance. In Proc. of the 7th
Int. Conference on Genetic Algorithms, pp: 276–281, 1997.
[38] W. Stallings, "Cryptography and Network Security,"
Prentice Hall, 3th Edition, 2002, ISBN-10: 0130914290.

