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Abstract- Cellular Automata (CA) is a self organizing 
structure with complex behavior which can be used in 
pseudo-random numbers generation(PRNG). Pure CA has 
a simple structure but has no ability to produce long 
sequences of random numbers. In order to rectify this 
problem, programmable CA (PCA), using stimulating 
factor or combination of different self organizing Criticality  
phenomenon can be used. In this paper, a PCA by using 
Sandpile model is proposed. The Sandpile is a complex 
system operating at a critical state between chaos and 
order. This state is known as Self-Organized Criticality 
(SOC) and is characterized by displaying scale invariant 
behavior. In the precise case of the Sandpile Model, by 
randomly and continuously dropping “sand grains” on top 
of a two dimensional grid lattice, a power-law relationship 
between the frequency and size of sand “avalanches” is 
observed. The avalanche behavior and the pure CA 
behavior are combined in a novel method  which can be 
used as the pseudo-random number generator. 

Keywords: Random Number Generator, Self-Organizing 
Criticality, Sandpile Model, Cellular Automata. 

 

1    Introduction 

Random number generators (RNGs) play an important 
role in several computational fields, including Monte 
Carlo techniques [1], Brownian dynamics [2], stochastic 
optimization methods [2, 3] and key-based cryptography 
[4]. It is usual to use mathematical or even evolutionary 
methods to construct RNGs that yields high quality 
generators. The quality of generators that determined by 
statistical tests have a great important role; for example, 
in cryptography, low quality of RNGs causes easily 
breaking the encrypted context [4]. In solving 
optimization problems, as shown in [5], performance and 
speed of algorithms directly depend on quality of used 
RNGs. Because of simple structure of CA and its complex 
behavior and high ability to be used parallel, CA has a 
well ability in generating random numbers. But one of the 
major problems of  CA  is its bounded generated random 
number sequence because of the self-organizing ability 

and generate frequent numbers with specific rules. Hence, 
a strategy for increasing the complexity of behavior and 
the implementation of CA to present a better random 
number sequence is required. In this paper, a new method 
for stimulating CA and increasing the complexity of CA`s 
behavior based on Sandpile model has been presented. 
Sandpile model, because of existence of avalanche 
phenomenon has a non-equilibrium behavior. Hybridizing 
this model with cellular automata causes a random 
behavior that it leads to generate a qualified sequence of 
random numbers.  

Herein a two dimensional n × m CA and combination 
of 8 rules has been used. The obtained results show that 
the sequence of generated numbers by CA passed all parts 
of diehard test suite, entropy and chi-square and other  
static tests. Some of the other of advantages of this 
method are uniform distribution of generated numbers by 
CA, high ability of parallel processing and also the 
sensitivity to bit changes in particular applications such as 
cryptography. This paper is organized as following: in 
following section related works discussed. Section 3, 
contains the basic concepts of CA and Sandpile model. In 
section 4 the proposed RNG algorithm and its behavior 
are discussed. In section 5, the experimental results are 
illustrated and finally, in section 6, , the conclusion and 
future works are discussed. 
 
2    Related Works  

The first work to apply CA as RNG was done by 
Wolfram in 1986. His work shows the ability of CA to 
generate random bits [6, 7]. Basic researches on CA are 
on producing RNG by one dimensional CA with 3 
neighbors [7]. Other researches are focused on increasing 
CA's complexity with combinations of controllable cells 
[4, 8] or increasing CA`s complexity with increasing 
dimensionality. RNG are produced by using one 
dimensional CA studied in [9, 10, 11, 12, 13] and two 
dimensional CA in [14, 15, 16] and three dimensional CA 
in [17]. Hortensius proposed the first non-uniform CA or 
programmable CA (PCA) by using of the combination of 
two rules, 90 and 150 in 1989[9]. PCA is a non-uniform 
CA that allows different rules to be used at different time 
steps on the same cell. He also represented another 



generator using the combination of rules 30 and 45 in [10] 
that its output bits have more dependencies to each other 
rather than rules 90 and 150. 

 Recently, extensive studies have been done on PCA 
for generating random numbers [11, 15, 16, 18, 19]. First 
works on two dimensional CA represented by Chaudhuri 
et al. in 1994 [14]. Their results show that produced 
generator using this CA works better rather than one 
dimensional CA with the same size. In [20, 21] all 256 
(simple) elementary cellular automata were investigated 
(including those with rules given 90 and 150). It was 
found that CA with nonlinear rules 45 (or its equivalent 
rules 75, 89 or 101) exhibit chaotic (or pseudo-random) 
behaviors similar to those obtained in LFSRs. 

3    Cellular Automata and Sandpile 
Model 

3.1    Cellular Automata  
A cellular automaton (CA), introduced by Von 

Neumann in 1940s, is a dynamic system in which its time, 
space and states are all discrete. The CA evolves 
deterministically in discrete time steps and each cell takes its 
value from a finite set S, called the State Set. A CA is named 
Boolean if S = {0,1} . The ݅ −  ℎ cell is denoted by ‹i› and theݐ
state of cell ‹i› at time t is denoted by ܽ௜

௧ . For each cell ‹i›, 
called central cell, a symmetric neighborhood of radius r is 
defined by (1): 

௜ݒ = {‹݅ − ,‹ݎ … . , ‹݅›, … . , ‹݅ +  (1) {‹ݎ
the value of each cell ‹i› is updated by a local transition 
function ௜݂-called rule- which for a symmetric neighborhood 
with radius r is defined as follows (2): 

ܽ௜
௧ାଵ = ݂(ܽ௜ି௥

௧ , … , ܽ௜
௧ , … , ܽ௜ା௥

௧ ) (2) 

or equivalently by (3): 

ܽ௜
௧ାଵ = ௜ݒ)݂

௧) (3) 

Such that ݒ௜
௧ is as follows (4): 

௜ݒ
௧ =  ݂(ܽ௜ି௥

௧ , … , ܽ௜
௧ , … , ܽ௜ା௥

௧ ) (4) 

To represent a symmetric rule of radius r for a Boolean CA, 
a binary string of length L is used, where ܮ = 2ଶ௥ାଵ , Table 1 
Shows the rule 90 of radius one (r=1). 

Table 1. The Rule Representation Of Boolean Symmetric 
Rule 90 Of Radius One 
Neighborhood 

Number 
7 6 5 4 3 2 1 0 

࢏࢜
࢚ 111 110 101 100 011 010 001 000 

࢏࢜)ࢌ
࢚) 0 1 0 1 1 0 1 0 

 

 
If all CA cells obey the same rule, then the CA is said 

to be a uniform CA; otherwise, it is a non-uniform 
CA[22]; in addition, a CA is said to be a CA with periodic 
boundary condition if the extreme cells are adjacent to 

each other else it called null-boundary CA. If a CA rule 
involves only XOR logic, it is called a linear rule; rules 
involving XNOR logic are referred to complemented 
rules. A CA with all cells having linear rules is called 
linear CA, whereas a CA having a combination of linear 
and complemented rules is called an additive CA [23]. 
Nandi et al. presented a programmable CA (PCA) in 1994 
[23]. A CA is said to be a PCA if it uses a control CA to 
determine the rules of each cell. A control CA is 
essentially just another basic CA which is usually of 
uniform nature. The rule function used by each cell 
changes with time and is decided by the control CA. PCA 
is, in fact, a non-uniform CA because all its cells 
collectively use different rule functions. A PCA may use 
m-bit control CA, where m 1. For each cell, there are 2m 
rules to choose from, thereby, allowing less probability of 
correlations among the cells. Compared to uniform CA, 
PCA allows several control lines per cell. Through these 
control lines, different rules can be applied to the same 
cell at different time steps according to the rule control 
signals. Fig. 1, shows a PCA cell structure. 

 

 
Fig. 1.  A PCA cell structure  

As Illustrated in Fig. 1, control signals select cell's rule. In 
this paper a two dimensional Sandpile model and two 
dimensional PCA with non-periodic boundary condition 
is considered. Each PCA cell's state can be a number as 0, 
1, 2, 3. Herein, applied rules are the same rules that were 
used in elementary CA. 
 
3.2     Sandpile Model 

In 1987, Bak at al. [24] identified the SOC 
phenomenon associated with dynamical systems. The first 
system were SOC was observed was named after its 
inspiration as the Sandpile model, and consists of a 
cellular automata where at each cell of the lattice, there is 
a value which corresponds to the slope of the pile. Grains 
of sand are randomly “thrown” into the lattice where they 
pile up and increment the values of the cells. When a 
value exceeds a specific threshold, an avalanche takes 
place and four grains belonging to that cell are distributed 
by the neighboring sites (von Neumann neighborhood). If 
one of those sites also exceeds the threshold value(zc), the 
avalanche continues, and the grains are also sent to the 
adjacent cells. The procedure of the Sandpile model is 
shown in fig. 2. 

 With these settings, and depending on the state of the 
lattice and the position of the new grain, a grain may 
cause rather different responses. It may not cause any 
change in the system if it falls in a cell with its value 
bellow threshold (other than increasing the sand on the 



cell, of course) and it may generate large avalanches of 
sand that will strongly redefine the shape of the pile. 

 

 
Fig. 2. 2D Bak-Tang-Wisenfeld Sandpile Model 

 
4 Proposed RNG Based On 

Combination of Sandpile and PCA 

4.1   Proposed RNG 
In this scheme a two dimensional ݊ × ݉ PCA with 

Null boundary condition is used to generate random 
numbers by using 8 rules: 153, 30, 90, 165, 86, 105, 110, 
150. According to [25], generated numbers by these rules 
have the best results in different tests such as entropy, chi-
square and diehard. The Boolean expression of each CA 
rule is shown in Table 2. 

 

 
In this paper, for Sandpile implementation, the 

threshold value is considered equal to 4 and each cell has 
four nearest neighbors: up, down, left and right (Von-
Neuman neighborhood). The value of each CA`s cell is an 
integer between 0 and 3. For converting these numbers to 
0 and 1(binary state), their residual over 2 is used. Hence, 
numbers 0 and 2 (even numbers) are delegated to 0 and 
numbers 1 and 3 (odd numbers) are delegated to 1. In 
order to generate random numbers,  the CA was 
initialized by random numbers between 0 and 3. At each 
time step, there are two steps that are discussed in the 
following:   

Firstly, a ݊ × ݉ CA is set to the binary state and each 
row divides into 4-cell’s parts (each part has four cells). 
In each word the first two cells show the number of time 
that Sandpile run on each cell (߮) and the second two 
cells show the cell that action should be run on it (ߙ). 

Each word (φ, α), is extracted from the word in the 
previous row. Because of increasing ߮ has no tangible 
effect on the quality of the generated random numbers 
and only increases processing time, ߮ is restricted to the 
maximum equal to 2.  If the first two cell of each word is 
equal to 0, 1 or 2 the Sandpile action is run once; else if it 
is equal to 3 the Sandpile action is run twice. Fig. 3, show 
the hardware schema process of way of selection for 
performing sandpile action and the number of sandpile 
actions for a 4 cell section in row i+1. 

 
Fig. 3.  Proposed CCA with selection of a cell for running 
Sandpile action. 

For example, Fig. 4(a), shows the three rows of CA; 
and Fig. 4(b), shows its binary state. These figures show 
the number of Sandpile runs and the cells that Sandpile 
applied on them.  

  

(b) binary state of three rows  (a) three rows of CA 
Fig. 4.  An example of CA and its binary state 

For determination of (φ, α), in the first word of the 
second row, the corresponding data in the previous row 
i.e. first row was used. The value of the first two bits of 
the first word of first row is (11)ଶ that imply number 3. 
So as mentioned, the number of Sandpile run in first word 
of the second row would be equal to 3. The value of the 
second two bits of the first word of the first row is 
(10)ଶ that shows cell 2 is selected. So Sandpile is run 
twice on cell 2 of the first word of second row i.e. the cell 
[1, 2]. Because the considered CA is periodic, previous 
row of the first row is the last row (seventh row). It is 
repeated for second word of second row similarly. The 
second word of the first row, which determine the number 
of Sandpile run is (10)ଶ = 2 and the next word which 
determine the cell that the Sandpile applied it 
was (00)ଶ = 0, Thus on the zero cell of the second word 
of the second row i.e. cell [1, 4], the Sandpile was 
performed once. For all rows, these data inferred 
synchronically.  

In the second step, the CA has been updated by the 
eight mentioned rules. This step comprised three parts. In 
the first part, a rule for each cell, according to the Table 3 

Table 2: The detail and Boolean expression of each CA Rule

Boolean Representation  Possible Input Configuration  Rule 
Name 000  001 010 011 100 101 110 111 

[xi-1  nor xi+1 ]  or  [(xi  xor 
xi+1 )  and xi-1 ] 1  0  1  0  0  1  1  0  101  
Not[xi-1  xor  xi   xor   xi+1 ]1  0  0  1  0  1  1  0  105  
[xi-1  nor xi  ] xor [not(xi+1 )]0  1  1  0  1  0  1  0  86  
[xi-1]  xnor [xi+1 ]1  0  1  0  0  1  0  1  165  
[xi-1]  xor  [xi+1]0  1  0  1  1  0  1  0  90  
[xi-1]  xor [xi  or  xi+1 ] 0  1  1  1  1  0  0  0  30  
[xi]  xnor  [xi+1]1  0  0  1  1  0  0  1  153 
[xi-1]  xor  [xi]   xor   [xi+1]0  1  1  0  1  0  0  1  150 



synchronically determined. The number of rules which 
used in this paper is specified. To determine a rule for cell 
[i, j], the procedure is shown as following: for cells [i-1, j-
1], [i-1, j], [i-1, j+1] and [i+1, j-1], [i+1, j], [i+1, j+1], the 
XOR operator was used on them correspondingly (i.e. the 
XOR operator applied on cells [i-1,j-1] and  [i+1,j-1] and 
so forth) and generate an integer between 0 and 7. Fig. 5, 
shows the PCA Structure and hardware presentation of 
determined rules 90/ 150/ 165/ 105/ 101/ 86/ 30/153 for 
cell [i,j].   

 
Fig.  5. Proposed PCA with Determined rules for cell [i,j] 

The obtained number is the rule number that must be 
applied on the cell [i, j]. For instance, if after performing 
Sandpile action, the values of CA will be Fig. 4(b), the 
number of determined rule for cell [1, 1] is equal to 
111 ⊕ 001 = 110, i.e. which is the 6th rule. In other 
words, according to Table 3 in performing rule section on 
CA, the rule which should be applied on the cell [1, 1] is 
153. 

Table 3.  CA rules lookup Table 
7 

(111) 
6 

(110) 
5 

(101) 
4 

(100) 
3 

(011) 
2 

(010) 
1 

(001) 
0 

(000) 
150 153 30 90 165 86 105 101  

In the second part, determined rules were applied. 
Using rules also is synchronously and the rules would be 
applied with respect to the rows. For example, in Fig. 
4(b), the result after performing rule 153 on cell [1, 1] is 
equal to ܴ݈݁ݑଵହଷ(101) = 0. In the third part, for updating 
the CA, the value of each CA cell should be added to the 
value that obtained from the used rule on that cell, which 
will be 0 or 1, and since all values must be an integer 
between 0 and 3, their integer residual of them by 4 were 
calculated. 

4.2    How Use of Sandpile Model Results in 
Random State in Cellular Automata? 

Role of sandpile model in this model is to actuate and 
produce the maximum disturbance in cellular automata 
for preventing from cycle formation and reaching the 
maximum entropy in cellular automata. As it was stated, 

The Sandpile is a complex system operating at a critical 
state between chaos and order and a power-law 
relationship between the frequency and size of sand 
“avalanches” is observed .In a system exhibiting critical 
behavior, A small perturbation in one given location of 
the system may generate a small effect on its 
neighbourhoods or a chain reaction that affects all the 
constituents of the system. The statistical distributions 

describing the response of the system exhibiting SOC are 
given by power laws in the form 

   P(s) ~ ିݏఛ  (5) 
where s is the number of constituents of the system 

affected by the perturbation, d is the duration of the chain 
reaction(lifetime), and ߬ are constants. Large avalanches 
are very rare while small ones appear very often. 
Without any fine-tuning of parameters, the system 
evolves to a non-equilibrium critical state. Fig. 6 shows a 
distribution of avalanches created by our sandpile model 
with a dimension of 12 × 12, which has been running for 
100000 steps. 

 
(a) Size of avalanches over 
time (steps); right: Log-log 

(b)  Log-log transformation of the 
size of avalanches in relation to 
their frequency of occurence 

Fig. 6. Power law number output of the sandpile model. 
 

As it is shown in figure 6, behavior of applied sandpile 
model in the proposed generator follows power law and 
the number of avalanche occurrences is inversely 
proportional with the size of avalanche. The average 
occurred state change in cellular automata was measured 
equal to %47.83 after performing sandpile on rows.  

  
Fig. 7. Percentage Changes in Cells After Applying 
Sandpile 

 
Fig. 7 shows percentage changes in cells after 1000 times 

sandpile performance. Combining this model with cellular 
automata, in addition to disturbing cells state, causes a 
severe mutation in values of cellular automata because of 
creating huge avalanches and prevents from short period 
length sequences and leads to the maximum entropy in 
cells values.  Average  of  Percentage changes after 
performing rules of cellular automata and performing 
sandpile action on cells is %50.1. 
 
5  Experimental Results 

For analyze the proposed generator, the generated bits 
sequence divided into 4-bit parts and so, different tests 
such as entropy, chi-square and the changes sensitivity 



and other tests on the obtained numbers were assessed 
which are between 0 and 15. To perform all tests which 
will be presented in following sections, an 8 × 8 cellular 
automata is applied with random initial values. 

5.1 Several Basic Statistical Tests For PRNG 
Let s =ݏ଴, ,ଵݏ ,ଶݏ  ௡ିଵ be a binary sequence ofݏ , …

length n. This subsection presents several basic statistical 
tests that are commonly used for determining whether the 
binary sequence s possesses some specific characteristics 
that a truly random sequence would be likely to exhibit. It 
is emphasized again that the outcome of each test is not 
definite, but rather probabilistic.  

5.1.1    Frequency Test (Monobit Test) 
The purpose of this test is to determine whether the 

number of 0’ݏ and 1’ݏ in s are approximately the same, as 
would be expected for a random sequence. Let ݊଴, ݊ଵ 
denote the number of 0’ݏ and 1’ݏ in s, respectively. The 
statistic used is: 

1ݔ =
(݊଴ −  ݊ଵ )ଶ

݊  (6) 

which approximately follows ܽ ݔଶdistribution with 1 
degree of freedom if  ݊ ≥ 10. For a significance level of 
α = 0.05, the threshold values for this test is 3.8415 [26]. 
 
5.1.2    Serial Test (Two-Bit Test) 

The purpose of this test is to determine whether the 
number of occurrences of 00, 01, 10, and 11 as 
subsequences of ݏ are approximately the same, as would 
be expected for a random sequence. Let ݊଴, ݊ଵ denote the 
number of 0’ݏ and 1’ݏ in s, respectively, and let 
݊00, ݊01, ݊10, ݊11 denote the number of occurrences of 
00, 01, 10, 11 in s, respectively. Note that ݊00 +  ݊01 +
 ݊10 +  ݊11 =  (݊ −  1) since the subsequences are 
allowed to overlap. The statistic used is: 

4
݊ − 1

(݊00ଶ + ݊01ଶ + ݊10ଶ + ݊11ଶ) −  
2
݊

(݊଴
ଶ + ݊ଵ

ଶ) +  1 (7) 

 which approximately follows ܽ ݔଶdistribution with 2 
degrees of freedom if ݊ ≥ 21. For a significance level of 
α = 0.05, the threshold values for this test is 5.9915 [26]. 
 
5.1.3    Poker Test 

Let ݉ be a positive integer such that ቔ௡
௠

ቕ ≥ 5. (2௠)  

and let ݇ = ቔ௡
௠

ቕ. Divide the sequence s into k non-
overlapping parts each of length ݉, and let ݊௜ be the 
number of occurrences of the ݅௧௛ type of sequence of 
length ݉, 1 ≤  ݅ ≤ 2݉. The poker test determines 
whether the sequences of length ݉ each appear 
approximately the same number of times in ݏ, as would be 
expected for a random sequence. The statistic used is: 

3ݔ =  
2௠

݇
ቌ෍ ݊௜

ଶ
ଶ೘

௜ୀଵ

ቍ −  ݇ (8) 

Which approximately follows  ܽ ݔଶ distribution with 
2௠ − 1degrees of freedom. Note that the poker test is a 
generalization of the frequency test: setting m = 1in the 
poker test yields the frequency test. . For a significance 

level of α = 0.05, the threshold values for this test is 
14.0671 [26]. 
 
5.1.4    Autocorrelation Test 

The purpose of this test is to check for correlations 
between the sequence ݏ and (non-cyclic) shifted versions 
of it. Let ݀ be a fixed integer,1 ≤ ݀ ≤ උ݊

2ൗ ඏ. The number 
of bits in s not equal to their d-shifts is ܣ(݀) =
 ∑ ௜ݏ

௡ିௗିଵ
௜ୀ଴  .௜ାௗ where ⊕ denotes the XOR operatorݏ ⊕

The statistic used is: 

ହݔ = 2 ൬ܣ(݀) − 
݊ − ݀

2
൰ /√݊ − ݀ (9) 

Which approximately follows an ܰ(0;  1) distribution if 
݊ −  ݀ ≥  10. Since small values of ܣ(݀) are as 
unexpected as large values of ܣ(݀), a two-sided test 
should be used. . For a significance level of α = 0.05, the 
threshold values for this test is 1.96 [26]. In Table 4, 
values of discussed tests are presented for the proposed 
generator. For this, a sequence of random numbers is 
generated with 1 million bits and discussed tests are 
implemented on it. This procedure is repeated 100 times 
and its average is given, too.. 

As it is shown in Table 4, generator  is able to pass all 
tests. 

5.2     ENT Test 
The ENT test is useful for evaluating pseudorandom 

number generators for encryption and statistical sampling 
applications, compression algorithms, and other 
applications where the information density of a file is of 
interest [27]. The ENT test is a collective term for three 
tests, known as the Entropy test, Chi-square test, and 
Serial correlation coefficient (SCC) test. Table 5 shows 
values of this test for the proposed generator. In entropy 
test, its maximum value is 4 and Chi- Square test with 
freedom degree 4 and precision of 0.1 is used. For doing 
these tests, a sequence of length 2ଵ଻ is used. 

Table 5. ENT Test 
TESTS 

Entropy Chi-Square SCC 
3.9999 3.0185 0.00008   

As it is represented in above table, generated sequence 
is able to pass all tests successfully and with good result. 

5.3     PRNG Quality Evaluation 
To compare how our PRNG performs against several 

different PRNGs, we use Diehard test suite [28]. For this 
reason, the proposed generator based on obtained score 
from DIEHRD test is compared with other generators. we 
used Johnson’s scoring scheme [29]: we initialized (a0, 
a1, a2, a3, a4, a5, a6, a7) with 32 different random values 
obtained from http://randomnumber.org, got 32 different 
10MB files, and then assigned scores based on the results 
of the Diehard tests. The PRNGs we have compared to 

Table 4.  Values of 4 basic statistical test 
TESTS 

Pass 
Frequency Serial Poker Autocorrelation 

0.459 2.533 8.851 0.312 4/4 
 



ours are of several different kinds: Linear Congruential 
Generators (rand [30], rand1k [31], pm [32]), Multiply 
with Carry Generators (mother [33]), Additive and 
Subtractive Generators (add [30], sub [32]), Compound 
Generators (shsub [30], shpm [32], shlec [32]), Feedback 
Shift Register Generators (tgfsr [34], fsr [35]), and 
Tausworthe Generators (tauss [36]).  

Each of the Diehard tests produces one or more p-
values. We categorize them as good, suspect or rejected. 
We classify a p-value as rejected if p ≥ 0.998, and as 
suspect if 0.95 ≤ p < 0.998; all other p-values are 
considered to be good. We assign two points for every 
rejection, one point for every suspect classification, and 
no points for the rest. Finally, we add up these points to 
produce a global Diehard score for each PRNG, and 
compute the average over the 32 evaluations: low scores 
indicate good PRNG quality. The information relating to 
the different PRNGs was taken from [31, 37]. The results 
are presented in Table 6. We note that our PRNG is 
outstandingly better than the rest of the analyzed PRNGs: 
the lowest scores correspond to shsub (17.125) and fsr 
(17.90625), significantly greater than our PRNG 
(12.718750). On the other hand, the average scores 
increase up to 50.59375 (pm), 66.53125 (rand), and even 
291.78125 (rand1k).  

 
Table 6. PRNG Diehard Scores 

PRNG Total Score Mean 
Rand 2129 66.531250 
rand1k 9337 291.78125 
Pm 1619 50.593750 
Mother 602 18.812500 
Add 577 18.031250 
Sub 655 20.468750 
Shsub 548 17.125000 
shpm 799 24.968750 
shlec 751 23.468750 
fsr 573 17.906250 
tgfsr 584 18.250000 
tauss 935 29.218750 
Proposed PRNG 407 12.718750 

 

 
5.4    Avalanche Effect 

Bit change sensitivity analysis is used to analyze the 
RNGs that are used in cryptography. One of the desired 
properties in each cryptography algorithm is that a small 
change in plaintext or key yields salient changes in 
ciphertext. In special case, changing one bit in key or 
plaintext should change in half of the ciphertext. This 
property is known as avalanche and represented by Fiestel 
in 1973 [16].  

As mentioned before, the proposed generator could be 
used to generate key in cryptography. To generate a 
unique key in both encoding and decoding, the initial 
values must be available. Thus, for high security in 
cryptography, generated bits stream must have too much 
dependency to this parameter. As mentioned before, a 
8 × 8 CA with an integer between 0 and 3 as the value of 
each cell was used. Then two bits are needed to determine 
the value of each cell and 128 bits could determine the 

value of cells. Two analysis of this section, 128 bits 
randomly generated to determine the initial state and the 
generated bits sequence generated from one cell. Then 
one of these 128 bits has been inverted and the sequence 
of generated bits with the new initial state of the same cell 
generated. At last, the both sequences have been 
compared with each other. Fig. 8, shows the changes 
percent of generated sequences from one specific cell 
with two initial states that differ only in the ݅ݐℎ bit 
(horizontal axis). 

 
Fig. 8.     changes percentage between generated data 
from two keys that only differ in one bit 

 
6     Conclusion  

In this paper, a new PCA for generating random 
numbers using CA and Sandpile model presented. This 
method, have the high performance in all tests and could 
be used in cryptography. Because of avalanche and self 
organizing properties of Sandpile model, it has a complex 
behavior and could be used as a convenient factor in 
stimulating of CA to generate a high quality sequence of 
random numbers. In each step, first the Sandpile process 
applied on the four neighbors of each cell of the two 
dimensional automata and then the CA has been updated 
by the synthetic of 8 rules 165, 105, 90, 150, 153, 101, 30, 
86. The results of applied tests on the generated numbers 
show that this generator has the maximum entropy and 
since passing the chi-square and diehard tests. This 
generator also has a convenient speed and holds the 
ability of parallelism of CA. 
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