
Dynamic LZW for Compressing Large Files

Chung-E Wang
Department of Computer Science

California State University, Sacramento

Sacramento, CA 95819-6021

 Abstract. The amount of data stored digitally

continues to grow dramatically across many fields, along

with the need for algorithms to efficiently compress this

data for storage and transmission. In this paper, we

describe an improvement of LZW data compression. We

employ a dynamic dictionary, in which least recently

used and aging algorithms are used to replace

infrequently used entries. We demonstrate that these

pruning techniques result in significant gains in

compression ratios for large data files.

 Keywords. LZW data compression, dynamic

dictionary, table pruning, least recently used, aging

replacement.

1. Introduction

 Data compression algorithms are widely used for data

storage and data transmission. A popular lossless method

known as Lempel-Ziv (LZ) compression [1] replaces a

string of characters with an index into a dictionary that is

built during the compression process. There are many

modifications of the original LZ compression algorithm,
many of which are feature different implementations of

the dictionary [1]-[6].

 Lempel-Ziv-Welch (LZW) compression [4] is Terry

Welch’s modification of LZ compression. This algorithm

uses a string table to implement the dictionary. Initially,

the string table contains all strings of length 1. During the

process of compression, the algorithm adds every new

string it sees to the string table. To compress, the

algorithm scans the input data for the longest matching

string in the string table and outputs the index of that

string as the result of the compression. Compression

occurs when a long string of characters is replaced by a
shorter index.

 One difficulty in using LZW compression on large

data files is in managing the dictionary, as the size of the

string table often surpasses that of available memory.

Here we propose a new method called table pruning for

managing the dictionary. We have demonstrated our

method with least recently used and aging replacement

algorithms and improved the compression ratio obtained

from using LZW alone. Finally, we discuss some factors

we observed to be crucial to compression ratios.

2. Handling the Ever Growing String

Table

 One drawback to be considered in implementing the

LZW algorithm is the ever-growing string table; as more

data is analyzed the dictionary becomes increasingly

large. The table must be managed, as computer memory

is limited. Two existing methods for handling the

ever-growing string table [1], [9] are discussed below.

2.1 Table Freezing

 This is the method used by the original LZW

algorithm. This method picks a size of the string table

and does not allow the table to grow beyond that size.

Instead, it continues the compression according to the

frozen table. It is simple and easy but it doesn’t work well

with large files.

2.2 Table Flushing

 This is the method used in [9]. This method computes

the current compression ratio periodically. When the

table is full and the current compression ratio drops

below some predetermined threshold value, it flushes the

string table. That is, the algorithm abandons the current

string table and builds a new one when compressing the

remaining input data.

 Flushing can get rid of infrequently used entries.

However, this drastic operation also flushes out

frequently used entries. Thus, it doesn’t improve
compression ratios for a lot of input files.

2.3 Table Pruning

 We propose to prune the string table. Once the string

table becomes full and an additional entry is needed, we

replace an infrequently used entry with the new entry and

the compression continues. However, the problem of
selecting an infrequently used entry for pruning is

non-trivial.

3. Selecting an Infrequently Used

Entry for Replacement

 Many strategies exist for selecting infrequently used

entries, a problem similar to selecting replacement pages
for virtual memory management systems. Here we utilize

principals from two of these so-called “page replacement

algorithms”: Least Recently Used and Aging

Replacement.

3.1 Least Recently Used (LRU)

 In LRU, the entry which has not been accessed for the

longest is selected as the replacement entry. In our
implementation, we use a self-organizing list to select the

least recently used entry. This list contains an index to

every entry of the string table. During the compression,

every time an entry is accessed, the corresponding index

is moved to the front of the list. When a replacement

entry is needed, it’s selected from the end of the list.

3.2 Aging Replacement

 In addition to LRU, we use the aging replacement

algorithm to manage the string table. In this algorithm,

we keep a value called time to live (TTL) for every table

entry. When an entry is created the corresponding TTL is

initialized to some predetermined value. Periodically, the

TTL is decreased. When the TTL becomes zero, the

entry is deleted from the string table. In order to let table

accesses closer to the present time have more impact than

table accesses long ago, when an entry is accessed, its

TTL is reset to (current value/2+initially value). When a

replacement entry is needed, an unused entry or the one
with the smallest TTL will be selected.

4. Implementation Complicatedness

 The implementation of our idea is somewhat

complicated mainly due to the representation and

management of the string table.

 In order to speed up the process of searching the

string table, the double hashing technique is used to

implement the string table. In order to achieve a good

performance of the hash table, the size of the hash table is

25% bigger than the needed size of the string table.

 Because of hashing, deleting or replacing entry of the

string table cannot be done directly. To replace an entry,

we need to mark an entry as deleted and use an unused
entry for the new entry. Because of this, we need to clean

up marked entries before the hash table gets full. To do

so, we need to recreate the hash table periodically.

 Moreover, if LRU algorithm is used to select

infrequently used entries, a linked list is added to

implement the self-organizing list. If the aging

replacement algorithm is used, a heap is added to

accelerate the process of finding the entry with the

smallest TTL.

5. Factors That Affect the

Compression Ratio

 We found the following factors to be crucial to the

resulting compression ratio, the ratio of the compressed

file size to the original file size.

5.1 The maximum size of the string table

 The maximum size of the string table determines the

number of bits needed to represent a code word, i.e. an

index to the string table. The larger the size the greater

number of bits will be required to represent an index. To

compress a small file, a smaller table results in a smaller
compressed file. To compress a large file, a smaller table

holds less strings and thus less chance of using an index

to encode a long string of characters and thus reduce the

compression efficacy. Algorithms in [7]-[9] reduce the

size of the compressed file by using variable length

tables. According to [9], the maximum number of bits

can be saved is 3840. For large files with millions of

bytes, this is insignificant.

 To fully utilize all possible combinations of bits of

compressed codeword, the size of the string table is a

power of 2. After experimenting with different table sizes

ranging from 212 through 222, we found that a table of size
216, i.e. 65536 works well with large text files.

5.2 The period of recreating the hash table

 The hash table must be recreated before the hash table

becomes full. However, if the table is recreated too often,

the program speed is greatly decreased. Moreover,

according to our observations, different lengths of period
result in different compression ratios.

 According to our study, for a table of size 65536, the

optimal period to recreate the string table is after

compressing 4096 strings.

5.3 The interval of decreasing TTLs

 Recreating the hash table is a time consuming process

in which every entries of the table must be accessed. In
order to reduce the speed impact of managing the hash

table, we paired the task of recreating the hash table with

the task of decreasing TTLs. That is, recreating the hash

table and decreasing the TTLs are done at the same time.

5.4 The initial value of TTLs

 If the initial value of TTLs is too small, many entries

of the string table will be deleted too soon and thus the

table pruning method has the same draw back as the table

flushing method.

 After some experiments, we found the optimal initial
TTL value to be the size of the table divided by 1024.

That is, for a table of 65536, the best initial TTL value is

64.

6. Emperical Results

 To evaluate the effectiveness of our methods, we test

our methods with test files from the web site Canterbury

Corpus. (http://corpus.canterbury.ac.nz). The Canterbury

Corpus is a benchmark to enable researchers to evaluate

lossless compression methods.

 We present our results in the following tables. The

three test files E.coli, bible.txt and world192.txt are in the

large corpus collection of the Canterbury Corpus. In

these experiments, we have used string tables of size
65536, hash table recreating period of 4096, and TTL

initial value of 64.

Table 1: Compressed file sizes

 E.coli bible.txt world192.txt

Original

file size

(bytes)

4,638,690

4,047,392

2,473,400

LZW 1,213,588 1,417,762 925,826

LZW/

Aging

1,199,245

1,242,153

804,493

LZW

/LRU

1,234,866

1,291,120

850,560

Table 2: Compression ratios

 E.coli bible.txt world192.txt

LZW 3.82 2.85 2.67

LZW/aging 3.87

(+1%)

3.26

(+12%)

3.07

(+13%)

LZW /LRU 3.76
(-1%)

3.13
(+9%)

2.91
(+8%)

 Besides the test files from The Canterbury Corpus, we

have also tested our methods with other text files.

Compression tests on these files yielded the following

findings:

• LZW/aging does better than LZW/LRU 90% of the

time.

• LZW/aging can improve the compression ratio over

LZW by 10-15% for 90% of the files tested.

 Preliminary tests of our methods with video and

image files also gave promising results. The original

LZW consistently inflate video and image files by about

25%. Our LZW/aging can deflate video and image files

by 1% consistently. In other words, LZW/aging can

improve the compression gain by 26% for large video or

image files over the original LZW.

7. Decompression

 Decompression is a simple task relative to

compression. Since there is no need to search the string

table, the hashing technique is not required and thus there

is no need to recreate the hash table periodically.

However, a heap or a self-organizing list is still needed

for LZW/aging and LZW/LRU respectively. The

purpose of including a heap or a self-organizing list is to

synchronize the decompression string table with the
compression string table so the two tables use the same

sequence of replacement entries.

8. Conclusions

 We have described an improvement of LZW data
compression which use table pruning techniques. With

more efficient management of the dynamic dictionary, a

better compression ratio may be achieved. Specifically,

we show that LZW/aging can significantly improve the

compression ratio for most large files.

 According to our experiments, we identified four

factors that are crucial to the compression ratios of

LZW/aging and LZW/LRU. These factors are the size of

the string table, the period of recreating the hash table,

the interval of decreasing TTLs and the initial value of

TTLs. Further work needs be done to characterize the
combinatorial effects of these factors and determine their

optimal combinations.

 While the aging algorithm provided considerable

improvement over LZW compression alone, additional

replacement algorithms should be explored. Finally, we

will explore more on how the compression methods

perform on different types of data files such as video and

image files.

9. References

[1] Ziv, J. and Lempel A. 1977. “A universal algorithm for

sequential data compression”. IEEE Trans. Inf. Theory 23, 3

(May), 337-343.

[2] Ziv, J., & Lempel, A. 1978. “Compression of

individual sequences via variable-rate coding”,

IEEE Trans. Inform. Theory, 24(5), 530-536.

[3] Storer, J.A., & Szymanski, T.G. (1982) “Data

Compression via Textual Substitution,” Journal of
ACM, 29(4), 928-951.

[4] Welch, T. A. 1984. “A technique for high-performance data

compression”. Computer 17, 6 (June), 8-19.

[5] Willard, L., Lempel, A., Ziv, J. & Cohn, M. (1984)

“Apparatus and method for compressing data signals

and restoring the compressed data signals”, US

patent - US4464650.

[6] Horspool, R.N. (1991) "Improving LZW," Proc.

Data Compression Conference (DCC 91),

Snowbird, Utah, IEEE Computer Society Press, Los

Alamitos, CA, pp. 332-341.

[7] Ouaissa, K., Abdat, M. and Plume, P. 1995.
“Adaptive limitation of the dictionary size in LZW

data compression”. Proceedings 1995 IEEE

International Symposium on Information Theory.

[8] Chai, Z. and Chen W. 2004. “An adaptive

LZWCompression algorithm using changeable

maximum-code-length”. Fourth International

Conference on Computer and Information

Technology (CIT'04) pp. 1175-1180.

[9] Raghuwanshi, B.S., Jain, S. Chawda, D. and Varma,

B. 2009. “New dynamic approach for LZW data

compression”. IJCNS Vol. 1, No. 1 (October),
22-26.

