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Abstract— Insertions and deletions occur during evolution
of biological sequences resulting in gaps in sequence align-
ments. The quality of an alignment depends on the placement
of the gaps. Reliable pairwise as well as multiple sequence
alignments are useful in inferring protein protein interacton
sites through residue conservation[23], [24]. It has been
reported that the Zipfian distribution best approximates
the observed gap-lengths in the sequence alignments. The
probability of a gap of length N decreases, inversely related
to length, as a function ofN−c for some suitable c. We
have analysed four different gap scoring models: affine,
log, power and the new Zipf that is based on Zipfian
distribution. When tested on pairwise alignments from the
BAliBASE benchmark suite, the widely used affine gaps were
outperformed by the three other models. Log, Power and Zipf
gap models performed comparably well.
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1. Introduction
Aligning a new protein sequence to a known sequence

is an essential and first step to study the structural and
functional information of the new protein molecule. Pairwise
alignments are done through a method called dynamic pro-
gramming, first applied to biological sequences by Needle-
man and Wunsch [13]. Historically local sequence align-
ments are calculated using the algorithm Smith-Waterman
[19] and global alignments are calculated by Needleman-
Wunsch [13], each having their own advantages. For ex-
ample, local alignments are more suitable for identifying
protein domains irrespective of their domain shuffling and
global alignment is necessary when you want full length
alignments.

Many variants of sequence alignment algorithms are used
for searching sequence databases e.g. SSEARCH [16] as
well as methods that use word search for example FASTA
[15], BLAST [2], PSI-BLAST [3] etc. Alignment scores
are used to rank sequences and provide statistics for the
likelihood of homology with the query. Therefore alignment
quality directly influences the signal-to-noise, hence the
sensitivity of database searches.

Gaps are common in alignments of biological sequences.
They occur more frequently between distantly related se-

quences. Gaps in pairwise or multiple sequence alignments
represent insertion or deletion (indels) events in the evolution
of biological sequences.

The quality of an alignment is obtained in part through
scoring aligned pairs of residues. The indels are scored by
pairing a residue in one sequence with a gap in another
sequence. The placement of gaps influences the quality score
and hence the quality of an alignment.

Thus placement of gaps is critical in sequence alignment
and they have been studied extensively [19], [18], [11], [1],
[12].

A number of different gap scoring models have been dis-
cussed. However three parameters, gap open, gap extension
and length of the gap are common to most of the gap models.

It has recently been proposed that observed gap lengths
obey a Zipfian distribution and that this could be used to
derive an appropriate gap penalty model, although this was
not tested [6]. Since the Zipfian equation is so simple, we
were interested in evaluating its performance for pairwise
alignment. Here we report the performance of Zipfian gap
penalties using the BAliBASE testbed and compare it to
other concave gap models.

2. Methods
2.1 Gap Models

Gaps in sequence alignment represent the insertions and
deletions that occurred in the history of the protein family of
sequences [4]. Placing gaps in the right place is essential to
the quality of an alignment. We have studied four different
gap models by modifying the Monotone pairwise alignment
package [12]. The quality of alignment for different gap
models are assessed with the BAliBASE benchmark database
[20].

2.2 Affine gap model
The affine gap model is the most widely used gap scoring

scheme in alignment algorithms.

gapcost = m · x + c , m < c (1)

wherec is the cost for opening a gap andm is the cost of
extending a gap andx is length of the gap. The default values
in Monotone are for gap openc = 9 and gap extension



m = 3. However,c = 10 and m = 1 are commonly used
for protein database searches.

The affine gap model is an extension of a linear gap
model of the formgapcost = mx. In the affine model
the conditionm < c is set to allow long insertions and
deletions to be penalised less to overcome the deficiency of
the linear gap model where short and long gaps are treated
as equally likely. It has been shown by [6] that for gaps
observed in aligned protein sequences, the affine gap is a
poor approximation. The affine gap model was used to study
the distribution of indel lengths [17] and they suggested a
quadruple affine gap model as an alternative to plain affine
gap model. This would be expensive to calculate. The linear
gap model equation is in fact a straight line equation.

2.3 Log gap model
The log gap model [12] is of the form

gapcost = c + m · log(x) (2)

wherec is the gap open penalty,m is the gap extension
penalty andx is length of gap. The default values in
Monotone are for gap openc = 9 and gap extensionm = 3.

2.4 Power gap model
The Power gap model [12] is of the form

gapcost = c + m · xd where d > 0 (3)

wherec is the gap open penalty,m is the gap extension
penalty,d is gap power and x is the length of the gap. The
power law is convex only for0 < d ≤ 1.

The default values in Monotone are for gap openc = 9
and gap extensionm = 3 and powerd = 0.5.

2.5 The new Zipf gap model based on Zipfian
distribution

Chang and Benner have studied the gap length distribution
in a set of pairwise alignments and suggested that the Zipfian
distribution can be used as a best approximation for scoring
the gaps in an alignment [6]. Their detailed study shows that
the number of gaps say n of length N decreases according
to the expression

n = c1N
−c2 (4)

where c1 and c2 are parameters empirically selected to fit
the data.

Benner also suggested that this function is independent of
the length of the gap and the extent of divergence. One caveat
is that they used a dataset with just one gap per pairwise
alignment. Even if the Zipfian holds for multiple gaps, the
derived parameters may not. We have further tested their
suggestion by incorporating the Zipfian gap scoring model
into the Monotone [12] pairwise alignment package.

Figure 1: Gap penalty scores generated by the Zipfian curve
for 10 ∗N−1.7 where N is the gap length. Starting value of
c1 = 10 is typical for pairwise alignment with the Blosum62
matrix.

Figure 1 shows the gap penalty scores generated by the
Zipfian curve for10 ∗ N−1.7 where N is the gap length. A
starting value of 10 is typical for pairwise alignment with
Blosum62 [10]. The value of the curve at position N is added
to the gap extension cost at position N-1. Since the curve
converges, we cannot use the equation 1 as it is. Therefore
we take the cumulative sum over the entire given gap length.

Define the cumulative sum

gapcost(n) = P =
n∑

N=1

c1

N c2
(5)

Here the cumulative sum P can be used as the gap cost for
inserting a gap of N (or n) symbols. This gap cost function is
monotonically increasing wheregapcost(n) > gapcost(n−
1) for all n. In other words it is a non-decreasing, concave
gap function.

The equation 5 is in fact the partial sum of the infinite
series of the famous Riemann Zeta function of the form

ζ(p) =
∞∑

n=1

n−p (6)

As a special case whenp = 1, the ζ(p) becomes the
logorithm function which is an advantage that one could
mimic different gap models inside the alignment algorithm
by changing the exponentp of Riemann Zeta function [21].

Riemann Zeta function is extensively studied in number
theory and has number of interesting properties. When one
considers indels as infinite series of evolutionary events then
it would be interesting to study these events in the light of
Riemann Zeta function.

The Figure 1 shows the plot of equation 4. The curve is
asymptotic to X-axis.



Figure 2: Shows the cumulative distribution plot of equation-
5 showing the gap score for different gap lengths. The value
of the curve at position n is added to the gap extension
cost at position n-1. For gaps of more than 20 residues,
the extension cost becomes very small. This curve diverges
as the length of the gap increases. The costs of opening
and then extending small gaps are high. However the curve
becomes asymptotic and the costs of further extending long
gaps become very small.

Figure 2 shows the Cumulative sum for the Zipfian values
in Figure 1 (See equation 5). The costs of opening and then
extending small gaps are high. However the curve becomes
asymptotic and the costs of extending long gaps become
very small.

3. Results
3.1 The Scoring Method

We used the BAliBASE Version 2.0 benchmark alignment
database [20]. BAliBASE is designed for evaluating multiple
sequence alignment algorithms. Alignments in BAliBASE
were derived from visually inspected structure alignments.
Therefore they are not biased toward any sequence alignment
method.

BAliBASE consists of mainly five different reference
alignment sets. Reference 1 consists of equidistant se-
quences, Reference 2 consists of related families with diver-
gent, orphan sequences, Reference 3 consists of families of
related sequences, Reference 4 consists of N and C terminal
extension sequences, Reference 5 consists of internal inser-
tions. Refer to the BAliBASE [20] paper for more details.

We have modified Richard Mott’s software package
Monotone [12] to allow Zipfian values to be computed and
used for gap scoring. The Monotone package is elegantly
designed and it was easy to incorporate the new Zipfian gap
model. Monotone also comes with the affine, log and power
gap models.

Monotone reads two sequences from two different files. So
it was necessary to split the sequences from the BAliBASE
sequence files. First the sequences from reference files
were separated into single files and the multiple sequence
alignment files were also separated with all the possible
pairwise combinations intact. See table 1 for details.

Table 1: Pairwise alignments available in BaliBASE-2
Set Number of Files Sequences Pairwise alignments

Ref1 82 367 652
Ref2 23 412 3544
Ref3 12 266 2865
Ref4 12 107 504
Ref5 12 112 570

Each file in each Balibase reference set consists of different numbers of
sequences. Note that the total pairwisen(n−1)

2
comparisons is based on

the number of sequences in each file.

A script was written to generate all the possible pairwise
alignment commands to run Monotone for different gap
models. The program BaliScore was used to assess the
quality of the alignment with reference to the test alignment.
BaliScore gives SP, Sum of Pairs score and CS, Column
Score. The SP score determines the extent to which the test
program, in this case Monotone, succeeded in aligning the
sequences. The CS score is designed to see whether the test
program can align all of the sequences correctly in a multiple
alignment (that is not relevant here).

We plotted the overall SP scores for all the different
gap models using Blosum62 [10] and Gonnet PAM250 [5]
matrices by varying the exponent of the Zipfian gap model
by 0.1 increments over a range from 1.0 to 2.0.

3.2 Comparison of four penalty schemes
Figures 3 and 4 show the comparison of the four gap

penalty models: affine, log, power and Zipfian. The X-axis
shows the gap open penalty varied from 1 to 25 and the Y-
axis shows the overall percentage BaliScore [20] for all five
different reference sets (See Table.1). The range of baliscore
is from 0, the lowest, to 1, the highest for each alignments.
We used two different popular comparison matrices namely
Blosum62 [10] and Gonnet PAM250 [5].

Examining the affine scores in Figures 3 and 4, the best
scores are achieved with gap opening in the range 7.0 -
9.0 for both matrices, however the overall score is higher
for PAM250, indicative of better alignments. Better quality
alignments for the PAM250 matrix are in accordance with
previous matrix comparisons (Vogt et al., 1995). Optimal
gap opening penalties observed here are slightly lower than
the typical values used as defaults in sequence alignment.

In both figures, the peak BALiBASE scores for affine gap
are below the peak scores of the other gap functions. It is
also clear that the affine gap penalty does not tolerate the
higher penalty values as well as the other models. (This is
not a major consideration provided that gap penalties are



Figure 3: Comparison of 4 gap penalty schemes tested
by pairwise BAliBASE scores for the Blosum62 exchange
matrix. The obtained BAliBASE score (Y axis) is reported
for the cost of opening a gap varied over a range of 2
to 25 (X axis). For all gap penalties, affine gaps always
perform worse than the other functions. Peak performances
of the log, power and Zipf functions are very close with log
slightly ahead. See text for the equations describing the gap
functions.

Figure 4: Comparison of 4 gap penalty schemes tested
by pairwise BAliBASE scores for the Gonnet PAM250
exchange matrix, suitable for aligning highly divergent pro-
teins. The obtained BAliBASE score (Y axis) is reported
for the cost of opening a gap varied over a range of 2 to
25 (X axis). Affine gaps again perform worse than the other
functions. Note that the better performance of the smooth
models is more apparent with the more sensitive PAM250
matrix than with the Blosum62. Peak performances of the
log, power and Zipf functions are very close again with log
slightly ahead. See text for the equations describing the gap
functions.

being set close to optimal perfomance). The peak difference
is smaller than we expected, especially for Blosum62. The
poorer performance of affine becomes clearer using the more
sensitive PAM250 matrix. This may imply that alignment
with better residue exchange parameterisation benefits more
from the improved gap penalty models.

The log, power and Zipfian models outperform affine for
both Blosum62 and PAM250. However, the peak perfor-
mances of the three smooth models are all very close for
both tested matrices. Based solely on performance in our
tests, we would not be able to choose between the three
models. Note that for log and power we ran the tests using
the default Monotone gap extension value of 3.0. This value
has already been well optimised for the smooth gap models
supplied in the Monotone package. However, we observed
very poor performance for affine with the Monotone defaults
(data not shown) - a gap penalty of 3.0 is much higher than
usually recommended for protein alignment. Therefore, in
accordance with standard practice, we have kept the affine
gap opening and gap extension penalties in the ratio of 10
to 1 for the tests.

From these figures, it is clear that the default gap opening
penalty value 9.0 for Monotone could be set to higher.

3.3 Effect of varying the Zipfian exponent
The exponent of the equation 5c2 has been varied in the

range of 1.0 to 2.0 keepingc1 at a constant 1.0. The Figure
5 and Figure 6 are graphs showing the overall percentage
BaliScore score distribution for the variations ofc2. The gap
opening penalties are computed using the equation 5. With
the exponent 1.7 the highest score 24.18 is achieved when
gap opening penalty is 8 or 9 for Blosum62 matrix whereas
for PAM250 matrix with the same exponent the highest score
is 26.48 when the gap open penalty is 8. For exponent 1.8
the highest score 26.49 with gap open 8.0 for PAM250, and
with Blosum62 it is 24.15 with gap open 9.0.

The results are in good agreement with the observed value
of exponentc2 = 1.8 [6]. Though the higher exponent
tolerates large gap penalties they do not get higher score
comparatively. In a progressive multiple sequence alignment
scenario the exponent in the Zipfian could be used to adjust
the gap openings dynamically for different divergence.

4. Discussion
The Zipf law has been used to study phenomena in many

areas e.g. linguistic, audio signals [8] and also recently to
study the human transcriptome [14]. The Zipf law suggests
that the frequency of occurrence of a word is inversely
proportional to its rank.

Chang and Benner showed that the gap-lengths can be
approximated by the Zipfian distribution with the probability
of a gap of length N decreasing as a function of the gap
length [6].



Figure 5: BAliBASE score distributions for different ex-
ponent values of the Zipfian function and the Blosum62
matrix. Varying the exponent yields a small difference for
peak performance withN−1.4 marginally best. However,
this value performs relatively less well when gap penalties
are set too high. Values closer to the Benner exponent
of N−1.8 have a broader peak and are more tolerant of
higher gap penalties: These values may be appropriate when
sequence similarity varies widely and gap penalty values are
necessarily imprecise.

Figure 6: BAliBASE score distributions for different expo-
nent values of the Zipfian function and the Gonnet PAM250
matrix. Varying the exponent yields even smaller differ-
ences than for Blosum62 for peak performance withN−1.4

marginally best. Again, this value performs relatively less
well when gap penalties are set too high. Values closer to
the Benner exponent ofN−1.8 have a broader peak and are
more tolerant of higher gap penalties: These values may be
appropriate when sequence similarity varies widely and gap
penalty values are necessarily imprecise.

Other authors have proposed concave gap functions. For
long gaps, Gotoh used a piecewise linear gap-weighting
function that approximated a smooth concave function [9].
Miller and Myers [11] and Waterman [22] also used concave
weighting functions to compare sequences. Mott has shown
that by using monotonic gap penalties, the chances of
detecting a similarity containing a long gap is greater over
affine gap penalties. We have seen that in Monotone the
default value of gap opening 9 and gap extension 3 for
affine gaps performed very poorly. The situation improved
when we modified the affine gap extension as one tenth of
gap opening penalty, which is typical for protein sequence
alignment, but still the affine gap penalty was worse.

Despite the extensive literature on concave penalty func-
tions, all widely used alignment and database search soft-
ware continue to use affine gaps. One reason may be in-
creased computational costs. Myers and Miller found affine
gaps to be three times faster than other concave functions.
Performance should be less important with recent computer
hardware. Furthermore precalculation and array lookup can
reduce the time penalty for any gap scheme that is more
complicated than affine.

BAliBASE is the most widely used alignment bench-
marking suite. Using BAliBASE we have now shown that
the non-affine gap penalties are better suited for pairwise
sequence alignments. Although it does not outperform the
other smooth gap models, the Zipfian model shows promise
as the simplest of the models tried, with the lowest parameter
space. From the Figure 5 and Figure 6 it is clear that the
higher exponent tolerates longer gaps.

We would like to suggest that in a progressive multiple
alignment environment where the highly homologous se-
quences are aligned first, the gap opening in equation 4 could
be adjusted automatically to fit to the extent of divergence
of the sequence or profile that are already aligned with the
new sequences or profile. This is quite logical because a
fixed gap opening cannot perform well for merging group
of sequences with varied degree of divergence.

BAliBASE covers a range of alignment test cases includ-
ing long gaps. Though BAliBASE benchmark alignments are
designed for testing multiple sequence alignment programs,
BAliBASE can also be adopted for use with pairwise align-
ments. The pairwise test with local alignment approximates
database search properties. Thus Zipfian gap model should
be suitable for use in sequence database searches.

The Zipfian gap model might also be useful for nucleic
acid alignment, since genomic sequence alignment needs to
handle very large indels. For example, insertion of a Line-1
element creates a gap of more than 8000 bases and affine
gaps are completely unsuitable for dealing with such long
gaps.

In future work, we hope to examine the performance of
Zipfian penalties for the progressive alignment algorithm of
Clustalw [7]
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